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Abstract

Document-level relation extraction aims to extract
relations between entities in a document. In con-
trast to sentence-level relation extraction, it deals
with longer texts and more complex entity interac-
tions, which requires reasoning over multiple sen-
tences with rich reasoning skills. Most current re-
searches construct a document-level graph first, and
then focus on the overall graph structure or the
paths between the target entity pair in the graph.
In this paper, we propose a novel subgraph reason-
ing (SGR) framework for document-level relation
extraction. SGR combines the advantages of both
graph-based models and path-based models, inte-
grating various paths between the target entity pair
into a much simpler subgraph structure to perform
relational reasoning. Moreover, the paths gener-
ated by our designed heuristic strategy explicitly
model the requisite reasoning skills and roughly
cover the supporting sentences for each relation
instance. Experimental results on DocRED show
that SGR outperforms existing models, and further
analyses demonstrate that our method is both ef-
fective and explainable. Our code is available at
https://github.com/Crystalovo/SGR.

1 Introduction

Relation extraction (RE), which aims to identify semantic re-
lations between entities from plain text, is one of the most
fundamental tasks in information extraction and natural lan-
guage processing. Previous research efforts on RE mainly
concentrate on sentence-level, attempting to predict the re-
lations between two entities within a sentence [Zeng et al.,
2014; Zhou et al., 2016; Zhang et al., 2018; Wei ef al., 2020].
However, a large number of relations are expressed by more
than one sentence and can only be extracted by reading and
reasoning over multiple sentences. For this reason, many
researchers start to explore document-level RE [Quirk and
Poon, 2017; Gupta et al., 2019; Christopoulou et al., 2019].
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Espoo Cathedral
[1] The Espoo Cathedral is a medieval stone church in Espoo, and
the seat of the Diocese of Espoo of the Evangelical Lutheran Church of

. [2] The cathedral is located in the district of Espoon keskus, near
the Espoonjoki river. [3] The oldest parts of the church were completed in the
1480s and it is thus the oldest preserved building in the city. ... [6] In addition
to being the seat of the Diocese of Espoo, the Espoo Cathedral serves as the
church for the Espoo Cathedral Parish and ...

Subject: Espoo
Object:

Relation: country Supporting Sentences: [1]

Subject: Espoo Cathedral Parish
Object:

Relation: country Supporting Sentences: [1], [6]

Subject: Espoo Cathedral
Object: Espoon keskus
Relation: location

Supporting Sentences: [1], [2]

Figure 1: An example of document-level RE from DocRED. Three
annotated relational facts are presented, with entity mentions in-
volved in these facts colored and other entity mentions underlined
for clarity.

Recently, A large-scale, manually-annotated, and general-
purpose dataset for document-level RE, DocRED, is pro-
posed in [Yao er al., 2019]. DocRED attracts much attention
and further propels the document-level RE forward.

In document-level RE, there are several major challenges.
First of all, the target entities involved in a relational fact may
reside in different sentences, making it impossible to deter-
mine their relations solely based on a single sentence. Addi-
tionally, an entity may be mentioned in many sentences, so
the information from corresponding mentions must be prop-
erly aggregated to better represent the entity. Moreover, many
relations need to be identified with rich reasoning skills (i.e.,
pattern recognition, logical reasoning, co-reference reason-
ing, and common-sense reasoning) [Yao et al., 2019], which
often requires reasoning over global and complex information
in the document.

As Figure 1 shows, it is easy to identify the intra-sentence
relational fact (Espoo, country, Finland) that the subject and
object appear in the same sentence. On the contrary, iden-
tifying the inter-sentence relational facts (Espoo Cathedral
Parish, country, Finland) and (Espoo Cathedral, location, Es-
poon keskus) that the subject and object do not appear in the
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same sentence and thus have long-distance dependencies is
not trivial. Therefore, the identification of these two relational
facts requires reasoning over more than one sentence. For ex-
ample, the relation between Espoo Cathedral Parish and Fin-
land is indirectly established by a reference The Cathedral at
the beginning of sentence 2, which requires performing co-
reference reasoning over sentence 1 and sentence 2. While
the relation between Espoo Cathedral and Espoon keskus is
indirectly established by a bridge entity Espoo Cathedral, re-
quiring performing logical reasoning over sentence 1 and sen-
tence 6.

These examples indicate that a model for document-level
RE needs to be able to effectively capture complex interac-
tions between long-distance entities across multiple sentences
in the document. Most recent studies construct a document-
level graph based on syntactic dependency, heuristics, and
other factors, then use graph neural networks to perform
multi-hop reasoning to obtain meaningful entity representa-
tions [Zhang et al., 2018; Nan et al., 2020; Zeng et al., 2020].
However, these methods only take into account the overall
graph structure, so they may ignore local contextual infor-
mation surrounding the target entity pair. Moreover, as a re-
sult of the over-smoothing problem, these methods may fail
to model the interactions between long-distance entities. In
addition to graph-based models, some path-based models at-
tempt to extract paths between the target entity pair that retain
sufficient information to predict the relations [Xu ef al., 2021;
Huang et al., 2021]. These methods explicitly consider the
above-mentioned reasoning skills and can alleviate the prob-
lem of modeling long-distance entity interactions, but they
treat each path separately and not all entity pairs can be con-
nected by a path.

In this paper, we propose a novel SubGraph Reasoning
(SGR) framework for document-level RE. SGR combines the
benefits of both graph-based and path-based models, integrat-
ing various paths into a much simpler subgraph structure to
perform various reasonings at once. More specifically, we
start by building a heterogeneous graph with three different
types of nodes: entity nodes, mention nodes, and sentence
nodes. Then, considering the reasoning skills required for
document-level RE, we heuristically design a simple but ex-
tremely effective strategy to generate reasoning paths. These
paths not only intuitively model all potential reasoning skills,
but they also roughly cover the annotated supporting sen-
tences in practice. Furthermore, the path generation strategy
ensures that all entity pairs could be connected by a path. Af-
ter the reasoning paths are generated, inspired by the success
of incorporating subgraph structure in knowledge graph com-
pletion [Teru et al., 2020], question answering [Yasunaga et
al., 20211, link prediction [Cai and Ji, 2020], etc., we extract a
subgraph around the target entity pair based on the previously
generated paths and finally apply an R-GCN [Schlichtkrull et
al., 2018] on the subgraph. In this way, the model could fo-
cus on the most crucial entities, mentions, and sentences and
perform joint reasoning over various reasoning paths.

We evaluate SGR on DocRED, experimental results show
that SGR achieves better performance than existing models,
and further analyses demonstrate that our method is both ef-
fective and explainable.

4332

2 Methodology

In this section, we first briefly introduce the document-level
RE task formulation, and then describe the proposed model
in detail. Figure 2 gives an illustration of our approach.

2.1 Task Formulation

Given a document d containing sentences {s;},°, and enti-
Ne

ties {e;},°,, the task of document-level RE is to predict the
relations R’ C R between each entity pair (e, e;), where R
is a pre-defined relation set, e, and e; refer to head and tail
entities, respectively. An entity e; may appear multiple times
in the document via its corresponding mentions {m§ }:;’1 A
relation 7 € R exists between entities e, and e; if it is ex-
pressed by any pair of their mentions.

2.2 Document Encoding

d -
For a document d = {wi}Lzll, we encode it into a sequence
d
of vectors {g; }\%, :

{91,92, . ,g‘d|} = Encoder ({xl,xg, .. ,m‘d‘}) (1)

where z; is the concatnation of w;’s word embedding and
entity type embedding.

x; = [Ey(wy); Ey(t;)] (2

where F,,(-) and E;(-) denote the word embedding layer
and entity type embedding layer respectively. t; is the cor-
responding entity type id of w;.

2.3 Subgraph Reasoning

Document Graph Construction

Since an entity may spread across multiple sentences in the
document via its corresponding mentions, we build a hetero-
geneous graph G comprised of entity nodes, mention nodes,
and sentence nodes. The node embeddings are initialized as
follows:

h,, = Max ({gj}ijSi) 3)
B, = Max ({05}, cm, ) 4)
B, = Max ({Bw, },, .. ) 5)

Then, to explicitly model the interactions among entities,
mentions, and sentences, we introduce three types of edges.

* Mention-Entity Edge: We connect a mention node to
an entity node if the mention refers to the entity in order
to model the co-reference of mentions.

* Mention-Sentence Edge: The co-occurrence of men-
tions in a sentence may indicate a relation. Therefore,
we add an edge between a mention node and a sentence
node if the mention resides in the sentence.

* Sentence-Sentence Edge: Unlike previous meth-
ods that connect all sentence nodes with each
other [Christopoulou et al., 2019; Wang et al., 20201, we
only add edges between two sentence nodes that corre-
sponding sentences are adjacent in the document to keep
the sequential information.
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Figure 2: Overview of our approach. The generated reasoning paths are indicated by dashed lines.

Reasoning Path Generation

Our approach aims to predict the relations by focusing on rel-
evant entities, mentions, and sentences rather than the entire
document. To this end, we assume that the paths between
two target entities, containing a subset of all nodes in the
graph, provide sufficient information to determine the rela-
tions. Therefore, inspired by [Xu et al., 2021], we introduce
the following reasoning paths, which connect two target enti-
ties and explicitly model the four types of reasoning skills we
discussed earlier. The meta-path schemes of these paths are
illustrated in Figure 3.

* Intra-sentence Reasoning Path: The relation between
two entities co-occurred in the same sentence (e.g., 1st
relational fact in Figure 1) can be formulated as a path
in the form of E-M-S-M-E. “E”, “M”, and “S” are en-
tity node, mention node, and sentence node, respec-
tively, “-” denotes edge. The intra-sentence reasoning
path models two types of reasoning: pattern recognition
and common-sense reasoning, as they generally perform
reasoning inside the sentence.

* Inter-sentence Reasoning Path: For two entities that
have no mentions in the same sentence, we use the inter-
sentence reasoning path to model the relations between
them. It can be thought of as adding additional bridges to
the intra-sentence reasoning path, as shown in Figure 3.
According to the different kinds of bridges, we introduce
logical reasoning path and co-reference reasoning path.

Logical Reasoning Path: The relation indirectly estab-
lished by a bridge entity (e.g., 2nd relational fact in Fig-
ure 1) can be formulated as a path in the form of E-M-S-
M-E-M-S-M-E, which models logical reasoning by per-
forming reasoning over sentences containing the head,
bridge, and tail entities, respectively.

Co-reference Reasoning Path: The relation between two
entities in adjacent sentences is mostly established by a
reference (e.g., 3rd relational fact in Figure 1). It can be
formulated as a path in the form of E-M-S-S-M-E, which
models co-reference reasoning by performing reasoning
over two adjacent sentences containing the head and tail
entities respectively.

Naturally, these two types of reasoning paths are just
special cases of the inter-sentence reasoning path, which
contain only a single bridge. In fact, with repetition,
there could be several different kinds of bridges in an
inter-sentence reasoning path.
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As a result of reasoning path generation, all entity pairs
could be connected by at least one path and these paths are
able to capture both the semantic and structural correlations
between the entity pair. The problem is that even if we gener-
ate paths under the meta-path scheme, there would still be a
large number of paths for an entity pair, but only few of them
are necessary.

Hence, we simply constrain the scale of paths by limiting
the number of bridges, thus generating fewer but better paths
to remove the noise from irrelevant paths. Specifically, given
an entity pair, we start with searching for intra-sentence rea-
soning paths (0 bridges) between them, if none are found,
turn to search for inter-sentence reasoning paths without rep-
etitions (1 bridge), gradually relaxing the limit on the number
of bridges by allowing more and more repetitions until at least
one path is found.

To verify the effectiveness of our heuristic path generation
strategy, we compare the generated paths with the annotated
supporting sentences on the development set of DocRED.
The results show that the supporting sentences for 75.2% of
relation instances are covered by the sentences contained in
the generated paths and 53.5% are exactly the same. More-
over, we find that the paths between each entity pair con-
tain an average of 1.8 sentences, implying that up to 80%
of the sentences in the document could be filtered out. Con-
sequently, the reasoning paths generated by our strategy are
both sufficient and non-redundant for relational reasoning.

Path Types Schemes

Intra-Sentence Reasoning Path

Bridge

Inter-Sentence Reasoning Path

Repetition

Target Entity Node Bridge Entity Node Mention Node Sentence Node

Figure 3: Reasoning path types and their corresponding meta-path
schemes.

Subgraph Extraction

In document-level RE, there could be multiple relations be-
tween an entity pair, corresponding to multiple reasoning
paths. In addition, determining a single implicit relation may
also require multiple reasoning paths.
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Previous works [Huang et al., 2021; Xu et al., 2021] tend to
use each path to predict the relations independently and then
aggregate the results. In contrast, we extract an enclosing
subgraph G’ around the entity pair in the graph G to integrate
different paths. Specifically, the subgraph G’ is an induced
subgraph of G, formed from the nodes that appear at least
once on the paths and all of the edges in G among those nodes.

As an example shown in Figure 2, for two target entities
that do not appear in the same sentence but can be associ-
ated by a bridge entity or a bridge sentence, we generate two
inter-sentence reasoning paths without repetitions (a logical
reasoning path and a co-reference reasoning path) between
them, and then use these paths to extract a subgraph.

Subgraph Encoding

In this stage, we first introduce a super node z, and connect
z to the target entity nodes in the subgraph. The super node
embedding h, is initialized as the max-pooling of the target
entity node embeddings.

Then we employ an L-layer stacked R-GCN [Schlichtkrull
et al., 2018] on the subgraph, which applies message passing
for different types of edges separately in each layer. Given
node w at layer [, the aggregation of u’s immediate neighbors
is defined as:

1
Wit =c | > 3 WO+ W’ | )
teT veN] Ut

where o(-) is an activation function, N is the neighbors of
node u under edge type t € T, ¢,; = |N}| is a normalization

constant, Wt(l), Wél) € R4 *dn gre trainable parameters.

In particular, we set the L to 2 to enable the super node to
aggregate information from the target entity nodes and their
subordinate mention nodes, as well as the sentence nodes to
aggregate information from all entity and mention nodes in
the subgraph.

2.4 Classification

We formulate the document-level RE task as a multi-label
classification task. To calculate the probabilities of rela-
tions between an entity pair (ep,e;), we use information
from both the global document encoder and the local sub-
graph. Specifically, we concatenate the following represen-
tations: (1) the linear combination of the initial target en-
tity node embeddings h, = W,([h,, ; h.,]), which provides
global entity-aware information of the target entity pair; (2)
the learned super node embedding h(ZL), which provides lo-
cal entity-aware information of the target entity pair; (3)
the max-pooling of all learned sentence node embeddings

hEJL,) = Max ({h(gf)} G >, which provides local contex-
s, €G’

tual information of the target entity pair; (4) the entity dis-
tance embedding F(dp,;), where dj,; is the relative distance
between the first mentions of the target entity pair in the doc-
ument, Fy(-) is the relative distance embedding layer. The
concatenated representation is then passed through an MLP:

P(r | en,er) = MLP ( [hc; h("); i, Ed(dht)} ) %)
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We use binary cross entropy loss to train our model:

L=— ZZ Z I(r; =1)log P (r; | en,e:)

DES h#t rER (8)
+1I(r; =0)1log (1 — P (r; | en,er))

where S denotes the whole corpus, I(-) refers to the indica-
tion function.

3 Experiments

3.1 Dataset

We evaluate our model on DocRED, a large-scale human-
annotated dataset for document-level RE constructed from
Wikipedia and Wikidata. DocRED contains 3,053 documents
for training, 1,000 for development, and 1,000 for testing, in-
volving 96 relation types, 132,275 entities, and 56,354 rela-
tional facts. Moreover, more than 40.7% of relational facts
can only be extracted from multiple sentences, and 61.1% of
relation instances require multiple reasoning skills. It also
provides supporting sentences for each relation instance as
part of the annotation.

3.2 Experimental Settings

Following the settings of [Yao er al., 2019], We use
GloVe (100d) [Pennington et al., 2014] and BiLSTM
(256d) [Hochreiter and Schmidhuber, 1997] as word embed-
ding and encoder, respectively. With setting the batch size to
4, we train our model using AdamW [Loshchilov and Hut-
ter, 2019] optimizer, a linear learning rate scheduler with 6%
warmup, and a maximum learning rate of 0.01. All hyper-
parameters are tuned based on the development set.

3.3 Baselines and Evaluation Metric

We compare our model with existing sequence-based mod-
els, including CNN/LSTM/BiLSTM based models evaluated
in [Yao er al., 2019] and HIN [Tang er al., 2020]; graph-
based models, including GAT [Velickovic et al., 2018],
GCNN [Sahu et al., 2019], EoG [Christopoulou et al.,
2019], AGGCN [Guo et al., 2019], LSR [Nan ef al., 2020],
GAIN [Zeng et al., 20201, and SIRE [Zeng et al., 2021]; and
path-based models, including DRN [Xu ef al., 2021] and
Paths+BiLSTM [Huang et al., 2021].

Following [Yao et al., 2019], we use F1 and Ign F1 as the
evaluation metrics. Ign F1 denotes F1 scores excluding rela-
tional facts that exist in both training and development/testing
sets. Moreover, F1 scores for intra- and inter-sentence entity
pairs are also evaluated on the development set. The results
on the testing set is evaluated through CodaLab'.

3.4 Main Results

As shown in Table 1, our proposed model SGR achieves
57.49% F1 and 55.82% Ign F1 on the development set,
57.15% F1 and 55.12% Ign F1 on the testing set, significantly
outperforming all strong baselines. Specifically, SGR obtains
3.85 F1 and 3.97 Ign F1 points higher than the sequence-
based model HIN on the testing set. Compared with the re-
cent path-based models DRN and Paths+LSTM, SGR also

'https://competitions.codalab.org/competitions/20717
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Model Dev Test
Intra-F1  Inter-F1 F1 Ign F1 F1 Ign F1
CNN [Yao et al., 2019] 51.87* 37.58* 4345 41.58 4226 40.33
Sequence-based LSTM [Yao et al., 2019] 56.57* 41.47*  50.68 48.44 50.07 47.71
q BiLSTM [Yao et al., 2019] 57.05* 43.49* 5094 4887 51.06 48.78
HIN-Glove [Tang et al., 2020] - - 5295 51.06 5330 5I1.15
GAT* [Velickovic et al., 2018] 58.14 4394 5144 4517 4951 47.36
GCNN* [Sahu et al., 2019] 57.78 44.11 51.52 4622 51.62 49.59
EoG* [Christopoulou et al., 2019] 58.90 4460 5215 4594 5182 4948
Graph-based AGGCN* [Guo et al., 2019] 58.76 4545 5247 4629 5145 48.89
LSR-Glove [Nan er al., 2020] 60.83 4835 55.17 48.82 5418 52.15
GAIN-Glove [Zeng et al., 2020] 61.67 4877 5529 53.05 55.08 52.66
SIRE-Glove [Zeng et al., 2021] 62.94 4897 5591 5410 5596 54.04
Path-based DRN-Glove [Xu et al., 2021] - - 56.49 5461 5633 54.35
Paths+BiLSTM [Huang et al., 20211  62.73 49.11 56.54 - 56.23 -
Ours SGR 63.58 4994 5749 5582 5715 55.12

Table 1: Performance on DocRED. Results with * are reported in [Nan et al., 2020].

achieves a better performance. Moreover, SGR outperforms
the state-of-the-art graph-based model SIRE in the same ex-
perimental setting by 1.19% and 1.08% in terms of F1 and
Ign F1 on the testing set. These results indicate that our pro-
posed model combines the benefits of both path-based mod-
els and graph-based models by leveraging both well-designed
reasoning paths and subgraph structure to learn more expres-
sive features.

Meanwhile, we can see that SGR outperforms all base-
line models on both intra- and inter-sentence settings, which
demonstrates that subgraph reasoning improves performance
on inter-sentence relation instances, while intra-sentence re-
lation instances benefit from it as well.

3.5 Performance Analysis

To further assess the effectiveness of SGR, we divide the de-
velopment set into several subsets based on different analyt-
ical strategies, and evaluate models trained with or without
subgraph reasoning on each subset.

Entity Distance. In this part, we explore our model’s ca-
pacity for capturing the relations between entity pair in long-
distance. For this purpose, we examine the model perfor-
mance in terms of entity distance, which is defined as the
relative distance between the first mentions of the target en-
tity pair in the document, and report the F1 score in Figure 4a.
The first thing to note is that as the entity distance increases,
the F1 score gradually decreases, which is consistent with hu-
man intuition that capturing long-distance relations is still a
challenging problem for document-level RE. Also, the model
with subgraph reasoning consistently outperforms the model
without subgraph reasoning, especially when the entity dis-
tance > 64. This is because explicitly incorporating the graph
structure breaks the limitations of sequence modeling. In ad-
dition, the finer subgraph structure further makes model focus
more on the target entity pair and related entities, thus reduc-
ing the influence of unrelated entities in long-distance.

0.75
—— w/ Subgraph Reasoning 060
0.70 w/o Subgraph Reasoning 0.59

0.65 058
@

T
>0.60 >
8 8 0.57

0.55 0.56
—— W/ Subgraph Reasoning
0.55 wj/o Subgraph Reasoning

0.50

0.45
[0,4) [4,16) [16,64) [64,128) =128 1,2) [2,3) [3.4) [4,5) =5

(a) Entity Distance (b) Average Number of Entity Mentions

Figure 4: Performance analysis results in terms of (a) entity distance
and (b) average number of entity mentions.

Average Number of Entity Mentions. In order to investi-
gate our model’s capacity for aggregating information from
multiple mentions, we examine the model performance in
terms of average mention number of the target entity pair.
From Figure 4b we can first observe that models do not per-
form well when the average mention number is small, which
reveals that the information carried by a single mention is
quite limited, making relations harder to be predicted. When
the average mention number is large, however, not all men-
tions are necessary to predict the relations, and aggregating
information indiscriminately may introduce noise from irrel-
evant mentions. Nevertheless, the subgraph structure makes
model focus more on mentions that are relevant to the target
entity pair, so the model with subgraph reasoning consistently
maintains a relatively high performance with the increase of
average mention number, especially when the average men-
tion number > 4.

3.6 Case Study

In Figure 5, we present two case studies to better illustrate
the reasoning process and the effectiveness of our proposed
model. In the first case, we can first infer that the Skai TV
in sentence 1 is part of the Skai Group in sentence 2 by co-
reference reasoning. Then, using Skai TV as a bridge entity,
we can further infer that Greece is the country of Skai Group
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[1] Skai TV is a Greek free-to-air television network based in Piraeus. [2] It is part of the Skai Group, one of the largest media groups in the country. ... [5] Skai
TV is also a member of Digea, a consortium of private television networks introducing digital terrestrial transmission in Greece.

Relation: P17
Supporting Sentences: [1], [2], [5]

Prediction: P17
Sentences contained in Subgraph: [1], [2], [5]

Subgraph:

[1] The Beibu Gulf Economic Rim or Beibu Economic Belt also known as Gulf of Tonkin Economic Belt defines the economic region or rim surrounding around
China's southwestern coastal region and cities around the Gulf of Tonkin. [2] The region is part of Chinese government's "Go West" strategy, to boost its less
developed western regions. [3] The implementation of the campaign, has resulted in many construction projects in cities on the Beibu Gulf Rim, especially in
Guangxi. [4] The Beibu Gulf economic rim has emerged as a new highlight of China - ASEAN cooperation, especially between Vietnam, who is also cooperating
in this economic zone. [5] It covers Guangdong, Hainan and Guangxi, and northern and central Vietnam.

Relations: P17, P131
Supporting Sentences: [2], [3], [4], [5]

Predictions: P17, P131
Sentences contained in Subgraph: [2], [3], [4], [5]

Subgraph:

Figure 5: Case studies of our approach. “P17” refers to “country”. “P131” refers to “located in the administrative territorial entity”.

by logical reasoning. The preceding reasoning process can
be expressed as an inter-sentence reasoning path with both a
bridge sentence and a bridge entity. In the other more com-
plicated case that two target entities, China and Guangxi, are
mentioned in each of the five sentences, we can generate four
reasoning paths between them and use these paths to extract
a subgraph to make predictions. It should be noticed that, in
these two cases, not only does our proposed model correctly
predict the relations, but the sentences contained in the sub-
graph extracted by our proposed model also accurately cover
the supporting sentences.

4 Related Work

Various approaches have been shown effective in document-
level RE, which can be roughly divided into sequence-based
models, graph-based models, and path-based models.

Sequence-based Models. These models mostly rely on
LSTM- or Transformer-based architectures, which can model
complex interactions among entities by implicitly captur-
ing long-distance dependencies. [Yao er al., 2019] use
CNN/LSTM/BILSTM to encode the document into a se-
quence of hidden state vectors, and then compute entity rep-
resentations to predict the relations for each entity pair. The
hierarchical inference network (HIN) is proposed by [Tang
et al., 2020], which uses multi-granularity inference infor-
mation including entity-level, sentence-level, and document-
level to better model complex interactions between entities.
[Ye er al., 2020] propose a language representation model
to better capture and represent the co-reference information.
[Zhou et al., 2021] use attentions learned from transformer
to locate relevant context and adopt an adaptive threshold for
each entity pair.

Graph-based Models. These models generally construct
a graph with words, mentions, entities, or sentences as
nodes, and predict the relations by reasoning on the graph.
[Christopoulou et al., 2019] propose an edge-oriented graph
neural model that focuses on encoding information into edge
representations rather than node representations. [Nan er al.,

2020] propose the latent structure refinement (LSR) model,
which dynamically induces the latent document-level graph
to empower the relational reasoning across sentences. [Zeng
et al., 2020] propose the graph aggregation and inference net-
work (GAIN), which constructs two graphs of different gran-
ularity: heterogeneous mention-level graph and entity-level
graph to respectively model the interactions among different
mentions and conduct a path reasoning mechanism to pre-
dict the relations. [Zeng et al., 2021] propose the separate
intra- and inter-sentential reasoning (SIRE) model to repre-
sent intra- and inter-sentential relations in different ways, as
well as a new and straightforward form of logical reasoning
module to cover all cases of logical reasoning chains.

Path-based Models. These models typically extract rea-
soning paths between the entity pair, and perform relational
reasoning with them instead of reading the entire document.
[Xu et al., 2021] model the paths of reasoning skills explic-
itly, propose the discriminative reasoning network (DRN) to
encode the reasoning paths, and then estimate the relation
probability distribution of different reasoning paths. [Huang
et al., 2021] select supporting sentences from the document
using several well-designed handcrafted rules and combining
them with a BILSTM to predict the relations.

5 Conclusion

In this paper, we propose a novel subgraph reasoning (SGR)
framework for document-level RE that combines the advan-
tages of both graph-based models and path-based models.
In particular, we extract a subgraph around the target entity
pair based on corresponding reasoning paths and perform re-
lational reasoning by applying an R-GCN on the subgraph,
which considers all potential reasoning skills. Besides, the
reasoning paths generated by our designed heuristic strategy
explicitly model the document-level RE required reasoning
skills and roughly cover the supporting sentences for each re-
lation instance. Experimental results show that SGR outper-
forms existing models on both intra- and inter-sentence set-
tings. Further analyses demonstrate that our method is both
effective and explainable.
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