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Abstract
The recent progress in non-autoregressive text-to-
speech (NAR-TTS) has made fast and high-quality
speech synthesis possible. However, current NAR-
TTS models usually use phoneme sequence as in-
put and thus cannot understand the tree-structured
syntactic information of the input sequence, which
hurts the prosody modeling. To this end, we pro-
pose SyntaSpeech, a syntax-aware and light-weight
NAR-TTS model, which integrates tree-structured
syntactic information into the prosody modeling
modules in PortaSpeech. Specifically, 1) We build
a syntactic graph based on the dependency tree of
the input sentence, then process the text encoding
with a syntactic graph encoder to extract the syn-
tactic information. 2) We incorporate the extracted
syntactic encoding with PortaSpeech to improve
the prosody prediction. 3) We introduce a multi-
length discriminator to replace the flow-based post-
net in PortaSpeech, which simplifies the training
pipeline and improves the inference speed, while
keeping the naturalness of the generated audio. Ex-
periments on three datasets not only show that the
tree-structured syntactic information grants Syn-
taSpeech the ability to synthesize better audio with
expressive prosody, but also demonstrate the gen-
eralization ability of SyntaSpeech to adapt to mul-
tiple languages and multi-speaker text-to-speech.
Ablation studies demonstrate the necessity of each
component in SyntaSpeech. Source code and audio
samples are available at https://syntaspeech.github.
io.

1 Introduction
Text-to-speech (TTS) aims to synthesize natural speech for
input text. Recently, deep learning based TTS has made
rapid progress and shown competitive performance with tra-
ditional TTS systems [van den Oord et al., 2016]. Neural
TTS approaches typically learn an acoustic model that gener-
ates the mel-spectrogram or linguistic features from the in-
put sentence [Wang et al., 2017], then adopt a vocoder to
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synthesize the waveform [van den Oord et al., 2016]. To ef-
fectively extract semantic and prosody information from the
input text, some previous neural TTS models generate mel-
spectrograms autoregressively and suffer from slow inference
speed [Ping et al., 2018]. To improve the practicality, non-
autoregressive text-to-speech (NAR-TTS) explores to synthe-
size the mel-spectrogram in parallel [Ren et al., 2019], yet is
faced with the difficulty to model expressive prosody using
non-autoregressive structures. Recently, NAR-TTS modules
tackle this problem by decoupling the prosody into several
aspects (such as duration, pitch, etc) [Kim et al., 2020][Ren
et al., 2021a], and achieves comparable performance with au-
toregressive text-to-speech approaches (AR-TTS). Currently,
improving the modeling of the prosody is still an open ques-
tion in NAR-TTS.

Syntactic information, especially the dependency relation,
possesses rich intonational features such as pitch accent and
phrasing of the input text [Hirschberg and Rambow, 2001].
To be intuitive, we provide an example in Fig.1 to show the
potential relationship between the dependency tree and the
audio. There are also many TTS extensions utilizing syntac-
tic information to improve prosody. For instance, GraphTTS
[Sun et al., 2020] and GraphPB [Sun et al., 2021] construct a
syntactic graph based on the character sequence and prosody
boundary in the sentence, respectively. GraphSpeech [Liu et
al., 2021] and RGNN [Zhou et al., 2021] utilize dependency
relation in a sentence and extract the syntactic information
with graph neural networks. However, previous syntax-aware
TTS models are done in the framework of AR-TTS. Since
AR-TTS predicts the duration and pitch autoregressively, it
could easily exploit the syntactic information by taking it as
auxiliary input features of the backbone. By contrast, NAR-
TTS typically models prosody with external predictors, al-
though the extracted features can be used as the auxiliary in-
put features of these prosody predictors, this approach has not
been explored yet. To our knowledge, there is no NAR-TTS
model that could effectively embed the tree-structured syn-
tactic information to improve the prosody prediction.

To exploit the syntactic information with NAR-TTS, in this
work, we propose SyntaSpeech, a syntax-aware generative
text-to-speech model, which improves the prosody in the gen-
erated mel-spectrogram using a graph encoder to exploit the
dependency relation of the raw text, and enhances the audio
quality with adversarial training. Specifically,
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Figure 1: The dependency tree of the input text ”The earliest book
printed with movable types”. The emphasis in the real audio is
marked with the emphasis symbol.

• To generate the word-level syntactic encoding, we build
a syntax graph for each input sentence based on its de-
pendency tree, process the phoneme-level latent encod-
ing to represent the word node in the graph, then aggre-
gate the graphical features with a graph encoder.

• To utilize the extracted syntactic features in prosody
modeling, we incorporate the graph encoder into Por-
taSpeech. The syntactic encoding is embedded into the
duration predictor and the variational generator, to im-
prove the duration and pitch prediction, respectively.

• To generate realistic audio with lightweight structures
and simplify the training pipeline, we adopt multi-length
adversarial training to replace the flow-based post-net in
PortaSpeech.

To demonstrate the generalization ability of our Syn-
taSpeech, we perform experiments on three datasets, includ-
ing one single-speaker English dataset, one single-speaker
Chinese corpus, and one multi-speaker English dataset. Ex-
periments on all datasets show that SyntaSpeech outperforms
other state-of-the-art TTS models in voice quality and (espe-
cially) prosody in terms of subjective and objective evalua-
tion metrics. The rest of the paper is organized as follows: In
Sec.2 we discuss recent progress in NAR-TTS and previous
works that develop a syntax-aware TTS model. In Sec.3 we
introduce our SyntaSpeech in details. Performance evalua-
tion and ablation studies of SyntaSpeech are given in Sec.4.
Finally, we draw conclusions in Sec.5.

2 Related Works
2.1 Non-Autoregressive Text-to-Speech
In the past few years, modern neural TTS thrived with the
development of deep learning. Originally, to model the long-
term relationships among the input tokens, previous works
tend to generate the mel-spectrogram autoregressively [Wang
et al., 2017][Ping et al., 2018]. However, AR-TTS is faced
with the challenges of slow inference and robustness issues
(e.g., word skipping) incurred by autoregressive generation.

To tackle these issues, many works explore adopting non-
autoregressive generation. Some works use positional atten-
tion for the text and speech alignment[Peng et al., 2020],
while the other works use duration prediction to handle the
length mismatch between text and mel-frame sequences. For
instance, FastSpeech [Ren et al., 2019], Glow-TTS [Kim et

al., 2020], and EATS [Donahue et al., 2021] use duration pre-
dictor to upsample the phoneme sequence to match the length
of mel-spectrograms. These works enjoy fast inference and
well robustness. Recent works further improve the expres-
siveness in NAR-TTS by modeling the variation information.
For instance, FastSpeech 2 [Ren et al., 2021a] introduced
a pitch predictor to infer the pitch contour in the generated
mel-spectrogram. VITS [Kim et al., 2021] and PortaSpeech
[Ren et al., 2021b] leverage variational auto-encoder (VAE)
to model the variation information in the latent space. To
date, improving the expressiveness of the generated wave-
form is still an open question to the TTS community.

2.2 Syntax-aware Text-to-Speech
Syntax information, which records the dependency relation
between the tokens in the text, is acknowledged as a help-
ful feature to estimate the prosody of the speech and has
been studied in speech synthesis before the neural TTS age
[Hirschberg and Rambow, 2001][Mishra et al., 2015].

Modern TTS typically utilizes the syntactic information as
auxiliary features in AR-TTS modules: GraphTTS [Sun et
al., 2020] designs a character-level text-to-graph module to
extract the sequential information in the sentence and tries
several graph neural networks (GNNs) to process the graph-
ical features. The extracted syntactic feature is then fed into
the decoder of Tacotron [Wang et al., 2017] as an auxiliary
encoding. Later, GraphSpeech [Liu et al., 2021] introduces
dependency parsing in the text-to-graph module to better rep-
resent the syntactic information of the input sentence, and uti-
lizes bi-directional gated recurrent unit (GRU) to aggregate
information through the syntactic graph. Recently, RGGN
[Zhou et al., 2021] also adopts dependency parsing to con-
struct the syntactic graph and utilize pre-trained word em-
bedding from BERT [Devlin et al., 2019], then process the
graphical data with gated graph neural network (GGNN) [Li
et al., 2016]. Both of GraphSpeech and RGGN regard the
dependency-based syntactic encoding as auxiliary features
and feed them into the encoder of the sequence-to-sequence
(seq-to-seq) AR-TTS module.

The difference between SyntaSpeech and previous works
is as follows. Firstly, to our knowledge, our SyntaSpeech is
the first work that analyzes the syntactic information in NAR-
TTS. Secondly, previous works extract syntactic informa-
tion to provide a better text representation for the seq-to-seq
model, while we learn the syntactic encoding for the duration
and other prosody attributes prediction, which could make
full use of the syntactic features and is more interpretable.
Thirdly, previous works either use pre-trained embedding or
learn character-level embedding as the node representation in
the syntactic graph, by contrast, we process the latent features
in the backbone of the TTS model with word-level pooling
[Ren et al., 2021b] to formulate the node embedding.

3 SyntaSpeech
To exploit the syntactic information of the input text in the
framework of NAR-TTS, we propose SyntaSpeech, which
exploits the dependency relation to improve the naturalness
and expressiveness of the synthesized audio waveform. In
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this section, we first introduce a syntactic graph builder to
construct a syntactic graph based on the input text, which
can be utilized in either English or Chinese. Then we de-
sign the overall network structure of SyntaSpeech based on
PortaSpeech [Ren et al., 2021b]. As shown in Figure 1a,
SyntaSpeech designs a syntactic graph encoder to provide
syntactic information for duration prediction (in linguistic en-
coder) and other prosody attributes distribution modeling (in
variational generator). In general, SyntaSpeech exploits the
syntactic information in the raw text with the following steps:

• Firstly, the text sequence is fed into the transformer-
based phoneme encoder to obtain the phoneme encod-
ing, which is then processed into a word-level represen-
tation with average pooling based on the word boundary.

• Secondly, the syntactic graph builder constructs the syn-
tactic graph using dependency relation, and the word en-
coding is aggregated through the constructed graph us-
ing gated graph convolution [Li et al., 2016].

• Thirdly, the obtained word-level syntactic encoding is
expanded into phoneme level and frame level, to embed
syntactic information into the duration prediction and
pitch-energy prediction, respectively.

Besides, we also replace the post-net in PortaSpeech with
adversarial training to simplify the training pipeline while
keeping the naturalness of the generated mel-spectrogram.
We describe these designs in detail in the following subsec-
tions. More technical details are provided in Appendix A.

3.1 Syntactic Graph based on Dependency
Relation

Dependency parse tree can be regarded as a directed graph,
where each edge represents the dependency relation between
two nodes (words). It provides a hierarchical representation
for plain text sentences and is considered to contain rich syn-
tactic information. To make full use of the syntactic informa-
tion contained in the dependency tree, we introduce a syntac-
tic graph builder to convert the dependency tree (or say the
raw dependency graph) into a syntactic graph, which is more
compatible with graph neural networks and existing NAR-
TTS structures.

The biggest challenge in extracting syntactic information
with GNNs is the single-directed structure of the raw depen-
dency graph, which denotes that the leaf node in the graph
cannot obtain any information from other nodes during the
graph aggregation. To handle this, inspired by previous works
that exploit dependency relation in AR-TTS, we add a reverse
edge for each directed edge in the dependency tree so that
the information flow in the graph is bi-directional. Specifi-
cally, there could be forward edges from parent nodes to child
nodes, which is consistent with the dependency tree, as well
as reversed edges from child nodes to parent nodes. Then, we
introduce our methods of constructing syntactic graphs with
node embedding in specific languages.

Graph for English. To construct the syntactic graph for
English text, we add BOS and EOS into the above-mentioned
bi-directional graph and connect them with the first and last
words of the input sentence, respectively. To be intuitive,

we provide an example that transforms an English sentence
into syntactic graph in Fig.3a, where forward edges are rep-
resented as solid black arrows and reversed edges are dashed
black arrows. Then we consider the node representation in
the constructed syntactic graph. Note that while TTS mod-
els typically use phoneme sequence as the input, the word
is the fundamental unit in dependency parsing. To obtain
the word-level node embedding, inspired by PortaSpeech, we
adopt word-level average pooling to the phoneme encoding
with word boundary information to generate the word encod-
ing. As our node embedding is the latent encoding in the TTS
model, it possesses valuable acoustic features for the TTS
task and can be jointly optimized through backpropagation.

Graph for Chinese. As for the Chinese dataset, we make
small adaptations. Different from English where the pronun-
ciation of the word is directly decided by the phoneme, in
Chinese the phoneme decides the pronunciation of the Chi-
nese character, and the character decides the pronunciation of
the word. To make the node representation more compati-
ble with the Chinese pronunciation law, instead of extracting
the word-level encoding as we design for English, we adopt
character-level average pooling to generate the character en-
coding. To be coherent to the obtained character encoding,
we extend the syntactic graph by expanding each word node
into several Chinese character nodes, then use the first char-
acter node in each word to make the inter-word dependency
connection, and other characters are sequentially connected
according to the order in the word. Therefore, we addition-
ally define two edges to represent the intra-word connection
in forward and reversed directions, respectively. An intuitive
example is shown in Fig.3b, where the green solid/dashed ar-
rows denote the intra-word forward/reversed edges.

Graph for other languages. The syntactic graph for other
languages can be constructed similarly. For instance, French
and Spanish datasets can directly follow our approach for En-
glish, while Japanese datasets can use our graph construction
method for Chinese.

3.2 Syntax-Aware Graph Encoder for Prosody
Prediction

To learn the syntax-aware word representation from the input
text, we design a syntactic graph encoder based on the syn-
tactic graph builder and GNNs, which is shown in Fig. 2b.
As illustrated in Sec.3.1, we process the input text with word
boundary with the syntactic graph builder to generate a syn-
tactic graph with heterogeneous edges (2 edges for English
and 4 edges for Chinese), and in the meantime, the phoneme
embedding is processed with word-level average pooling to
formulate the node embedding in the syntactic graph. Now
that the syntactic graph is equipped with learnable node em-
bedding, the syntactic information is extracted through graph
aggregation as follows: 1) we utilize two stacked Gated
Graph Convolution layers with both 5 iterations to extract the
long-term dependency in the graph; 2) the output of all pre-
ceding layers are summed up as the output syntactic word-
level encoding, so as to assemble and reuse the word-level
features from different receptive fields in the syntactic graph.

Then we consider embedding the extracted syntactic word
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Figure 2: The overall structure for SyntaSpeech. In subfigure(a), ”ML-Discrim” denotes Multi-Length Discriminator in HiFiSinger. In
subfigure (b), ”WP” denotes the word-level average pooling operation, and the ”Syntactic Graph Builder” is illustrated in Sec.3.1. In subfigure
(c), ”LR” denotes the Length Regulator proposed in PortaSpeech. In subfigures (a) and (d), the dashed lines denote that the operations are
only executed in the training phase.
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Figure 3: Two examples of syntactic graph construction.

encoding into the TTS model. SyntaSpeech keeps main struc-
tures of PortaSpeech: a Transformer-based linguistic encoder

to extract frame-level semantic representations with the help
of a word-level duration predictor; a VAE-based variational
generator with flow-based prior to synthesize the predicted
mel-spectrogram. With these structures, PortaSpeech divides
the prosody prediction (including duration, pitch, energy,
etc.) into two sub-tasks: the duration predictor in linguistic
encoder controls the timing in word-level; and in the varia-
tional generator, a flow-based enhanced prior distribution is
introduced to predict the pitch, energy, and other prosody at-
tributes. Based on the above insights, SyntaSpeech learns
two individual syntactic graph encoders to extract syntactic
features for duration prediction and other prosody attributes
(e.g., energy and pitch) distribution modeling, respectively.
To be specific, the extracted syntactic word encoding of the
first graph encoder is expanded into phoneme-level and be fed
into the duration predictor (as shown in Fig.2c), and the out-
put of the second graph encoder is expanded into frame level
as auxiliary features of the prior flow in variational generator
(as shown in Fig. 2d).

3.3 Multi-Length Adversarial Training
The mel-spectrogram prediction of TTS models learned with
mean square error (MSE) or mean absolute error (MAE) is
generally challenged with blurry outputs. To handle this, Por-
taSpeech introduces a flow-based post-net to refine the pre-
dicted mel-spectrogram of the variational generator. Another
common practice in handling the over-smoothing problem is
to adopt the adversarial loss [Bińkowski et al., 2020][Don-
ahue et al., 2021]. Following HiFiSinger [Chen et al., 2020],
we introduce a multi-length discriminator to distinguish be-
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tween the output generated by the TTS model and the ground
truth mel-spectrogram. Specifically, the variational genera-
tor is coupled with an ensemble of multiple CNN-based dis-
criminators which evaluates the generated (true) spectrogram
based on random windows of different lengths. Detailed
structures can be found in Appendix A.2. Compared with
using post-net in PortaSpeech, the benefits of multi-length
adversarial training are twofold: 1) it can generate realistic
spectrogram similar to post-net yet at a faster inference speed;
2) it can better capture unnatural slice in the generated sample
and help improve the naturalness of word pronunciation.

4 Experiments
4.1 Experimental Setup
Datasets and Baselines. We evaluate SyntaSpeech on three
datasets: 1) LJSpeech1 [Ito and Johnson, 2017], a single-
speaker database which contains 13,100 English audio clips
with a total of nearly 24 hours speech; 2) Biaobei2, a Chi-
nese speech corpus consists of 10,000 sentences (about 12
hours) from a Chinese speaker; 3) LibriTTS3 [Zen et al.,
2019], an English dataset with 149,736 audio clips (about
245 hours) from 1,151 speakers (We only use train clean360
and train clean100). For computational efficiency, we first
use the syntactic graph builder to process the raw text of the
whole dataset to construct syntactic graphs and record them
in the disk. We then load the mini-batch along with the pre-
constructed syntactic graph during training and testing. The
raw text is transformed into a phoneme sequence using an
open-sourced grapheme-to-phoneme tool. The ground truth
mel-spectrograms are generated from the raw waveform with
the frame size 1024 and the hop size 256. We compare Syn-
taSpeech against two state-of-the-art NAR-TTS models: Por-
taSpeech and FastSpeech 2.

Model Configuration. SyntaSpeech consists of a phoneme
encoder, a linguistic encoder, two syntactic graph encoders
(with the same structures), a variational generator, and a
multi-length discriminator. The phoneme encoder and lin-
guistic encoder are based on multiple feed-forward Trans-
former blocks, and the variational generator uses the same
structure in PortaSpeech. The multi-length discriminator is
a lightweight CNN that consists of multiple stacked convo-
lutional layers with batch normalization and treats the input
spectrogram as images. We put more detailed model config-
urations in Appendix B.1.

Training and Evaluation. We train the SyntaSpeech on 1
Nvidia 2080Ti GPU with a batch size of 64 sentences. We
use the Adam optimizer with β1 = 0.9 ,β2 = 0.98, ε = 10−9

and follow the same learning rate schedule in [Vaswani et al.,
2017]. It takes 320k steps for training until convergence. We
use HiFi-GAN [Kong et al., 2020] as the vocoder in LJSpeech
and Biaobei, and use Parallel WaveGAN [Yamamoto et al.,
2020] as the vocoder in LibriTTS. We conduct MOS (mean
opinion score) and CMOS (comparative mean opinion score)
evaluations on the test set via Amazon Mechanical Turk. We

1https://keithito.com/LJ-Speech-Dataset/
2https://www.data-baker.com/open source.html
3http://www.openslr.org/60.

Method LJSpeech Biaobei LibriTTS

GT 4.32± 0.09 4.43± 0.05 4.32± 0.07
GT (voc.) 4.26± 0.09 4.34± 0.05 4.29± 0.07

FastSpeech2 3.85± 0.12 3.75± 0.10 3.98± 0.08
PortaSpeech 4.01± 0.12 3.90± 0.10 4.06± 0.07

SyntaSpeech 4.19 ± 0.10 4.12 ± 0.07 4.18 ± 0.07

Table 1: MOS-P evaluation on three datasets.

Method LJSpeech Biaobei LibriTTS

GT 4.26± 0.06 4.46± 0.05 4.25± 0.06
GT (voc.) 4.17± 0.08 4.33± 0.06 4.19± 0.08

FastSpeech2 3.94± 0.09 3.82± 0.09 3.95± 0.09
PortaSpeech 4.02± 0.08 4.05± 0.08 4.03± 0.10

SyntaSpeech 4.13 ± 0.08 4.19 ± 0.07 4.10 ± 0.08

Table 2: MOS-Q evaluation on three datasets.

analyze the MOS and CMOS in two aspects: prosody (natu-
ralness of pitch, energy, and duration) and audio quality (clar-
ity, high-frequency and original timbre reconstruction), and
score MOS-P/CMOS-P and MOS-Q/CMOS-Q correspond-
ing to the MOS/CMOS of prosody and audio quality. We
put more details about the subjective evaluation in Appendix
B.2.

4.2 Performance
We compare the audio performance (MOS-P and MOS-Q)
of our SyntaSpeech with other systems, including 1) GT, the
ground truth audio; 2) GT (voc.), where we first convert the
ground truth audio into mel-spectrograms, and then convert
the mel-spectrograms back to audio using external vocoders;
3) FastSpeech2 [Ren et al., 2021a]; 4) PortaSpeech [Ren et
al., 2021b]. We perform the experiments on three datasets as
mentioned in Sec.4.1. The results are shown in Table 1 and
2. We observe that SyntaSpeech outperforms previous TTS
models in both prosody (MOS-P) and audio quality (MOS-
Q), which demonstrates its performance and robustness in
multiple languages and multi-speaker TTS tasks. As our Syn-
taSpeech follows the variational generator in PortaSpeech, we
perform a case study to demonstrate that SyntaSpeech could
generate more natural audio than its baseline PortaSpeech,
using a variety of latent variables of VAE. The result is put in
Appendix C.1.

We then visualize the mel-spectrograms generated by the
above systems in Fig.4. We can see that SyntaSpeech
can generate mel-spectrograms with realistic pitch contours
(which result in expressive prosody) and rich details in fre-
quency bins (which result in natural sounds). In conclusion,
our experiments demonstrate that SyntaSpeech could synthe-
size expressive and high-quality audio.

4.3 Ablation Studies
Syntactic Graph Encoder
We first analyze the effectiveness of the syntactic graph en-
coder to improve prosody from the perspective of training
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(a) GT (b) FastSpeech 2 (c) PortaSpeech (d) SyntaSpeech

Figure 4: Visualizations of the mel-spectrograms generated by different TTS systems. The corresponding text is ”has never been surpassed”.
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Figure 5: The duration predictor loss curves of several methods in
LJSpeech. Adv denotes multi-length adversarial training, GDP de-
notes using graph encoder in duration predictor, CG denotes using
complete graph instead of the syntactic graph (SG).

objectives. The learning curves of duration predictor loss4

in LJSpeech are shown in Fig.5. We observe that introducing
a graph encoder in the duration predictor (GDP) could signif-
icantly improve the convergence. And SyntaSpeech, which is
equivalent to (PortaSpeech + Adv. + GDP + GPF), where
GPF denotes using graph encoder in the prior flow, could
further improve the performance. We also demonstrate that
the improvement is brought by the syntactic information, as
replacing the syntactic graph with the complete graph in Syn-
taSpeech leads to a similar curve to PortaSpeech. We put
more objective evaluations in Appendix C.2.

We then perform CMOS evaluation to demonstrate the ef-
fectiveness of syntactic graph encoder in SyntaSpeech to im-
prove prosody prediction. The results are shown in Table.3.
We can see that CMOS-P drops when removing graph en-
coder in duration predictor (- GDP) or prior flow (- GPF),
and replacing syntactic graph with complete graph (- SG +
CG) leads to the largest CMOS-P degradation. A similar ex-
periment that tests CMOS-Q can be found in Appendix C.3,
in which we find that syntactic graph encoder has fewer im-
pacts on the audio quality.

Adversarial Training
To demonstrate the effectiveness of adversarial training, we
perform a CMOS test on PortaSpeech/SyntaSpeech with the
multi-length adversarial training and the post-net. As can be

4The duration predictor loss is the mean squared error between
the logarithmic predicted word-level duration and the ground truth.

Settings LJSpeech Biaobei LibriTTS

SyntaSpeech 0.000 0.000 0.000

- GDP −0.131 −0.092 −0.119
- GPF −0.069 −0.118 −0.059
- GDP - GPF −0.152 −0.142 −0.168
- SG + CG −0.160 −0.109 −0.188

Table 3: CMOS-P comparisons for ablation studies.

Settings LJSpeech Biaobei LibriTTS

PortaSpeech 0.000 0.000 0.000
- PN + Adv. 0.071 0.088 0.050

SyntaSpeech 0.000 0.000 0.000
- Adv. + PN −0.060 −0.166 −0.039

Table 4: CMOS-Q comparisons for ablation studies. PN denotes
post-net in PortaSpeech, and Adv means our adversarial training.

seen in Table.4, both in PortaSpeech and our SyntaSpeech,
multi-length adversarial training achieves better audio quality
(CMOS-Q) than the flow-based post-net. We also compare
the COMS-P, as can be found in Appendix C.4, in which we
find that adversarial training also has slight improvements on
the audio prosody.

5 Conclusion

In this paper, we proposed SyntaSpeech, a syntax-aware and
generative adversarial text-to-speech model. SyntaSpeech
builds the syntactic graph from the dependency tree of the raw
text, then extracts valuable syntactic information with graph
convolution on the syntactic graph to improve the prosody
prediction in the NAR-TTS model. We also introduced multi-
length adversarial training to improve the audio quality and
simplify the model architecture. We have demonstrated the
performance and generalization ability of SyntaSpeech on
three datasets (English, Chinese, and multi-speaker, respec-
tively) and conducted comprehensive ablation studies to ver-
ify the effectiveness of each component in our model. For
future work, we will explore the potential of syntax-aware
models in other tasks, such as voice conversion and singing
voice generation.
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