
Efficient Budgeted Graph Search

Jasmeet Kaur1 , Nathan R. Sturtevant1,2
1Department of Computing Science, University of Alberta, Canada

2Alberta Machine Intelligence Institute (Amii)
jasmeet8@ualberta.ca, nathanst@ualberta.ca

Abstract
Iterative Budgeted Exponential Search (IBEX) is a
general search algorithm that can limit the number
of re-expansions performed in common problems
like iterative-deepening tree search and search with
inconsistent heuristics. IBEX has been adapted into
a specific tree algorithm, Budgeted Tree Search
(BTS), which behaves like IDA* when f-cost lay-
ers grow exponentially, but keeps the worst-case
guarantees when this does not hold. The analo-
gous algorithms on graphs, Budgeted Graph Search
(BGS), does not have these same properties. This
paper reformulates BGS into Efficient Budgeted
Graph Search (BGSe) showing how to implement
the algorithm so that it behaves identically to A*
when the heuristic is consistent, and retains the
best-case performance otherwise. Experimental re-
sults validate the performance of BGSe on a range
of theoretical and practical problem instances.

1 Introduction
A∗ is a popular search algorithm used to solve the shortest
path problem. It uses a heuristic function to guide the search
and its behavior depends on the properties of this heuristic
function [Hart et al., 1968]. A∗ with an admissible and con-
sistent heuristic is optimal in terms of the number of node
expansions [Dechter and Pearl, 1985]. In the worst-case sce-
nario, if the heuristic is inconsistent, it can do O(2N) node
expansions of N distinct nodes [Martelli, 1977].

Previous work [Martelli, 1977; Bagchi and Mahanti, 1983;
Mero, 1984] addressed this with modified versions of A∗ to
lower the worst-case performance to O(N2). Bidirectional
pathmax (BPMX) has also been shown to improve the worst-
case bound of O(N2) on some practical problems [Zhang et
al., 2009; Felner et al., 2011]. Recent work on Budgeted
Graph Search (BGS) [Helmert et al., 2019] shows how to
improve this by performing O(N log(C∗)) node expansions
in total, where N is the number of necessary expansions re-
quired to solve the problem.

The current version of BGS, however, has three flaws.
First, BGS often performs Θ(N log(C∗)) node expansions
even when the heuristic is consistent, resulting in very poor
performance relative to A*. Second, BGS repeatedly restarts

its search from scratch, something that can be avoided in
practice to further improve performance. Finally, BGS breaks
ties towards low g-cost, which results in poor tie-breaking.

In this paper, we describe BGSe an efficient reformulation
of BGS that addresses all of these issues. It improves the
best-case performance of BGS with consistent heuristics. It
also provides an efficient way to re-use the data structures by
not discarding all of the information about the nodes that the
search has seen.

We show that BGSe performs identical to A∗ when using
consistent heuristics or when there are only a few node re-
expansions. But, when the inconsistency is severe, it still only
does O(N log(C∗)) expansions. We validate these theoreti-
cal claims experimentally showing performance on a broad
range of problems. Finally, we define a class of conserva-
tive algorithms that only expand states with f(n) ≤ C∗, and
show that, under some assumptions, conservative algorithms
perform Ω(N2) expansions.

2 Background
This paper considers search problems defined by
{sinit, Sgoal, succ, c, h}. In this definition sinit is the
initial state and Sgoal is the set of goal states. The full state-
space, S, is defined implicitly by the successor function,
succ that maps each state s to a finite set of successor states
and a cost function, c that determines the c(s, s′) of reaching
a successor state s′ from state s. The operation of generating
successor states for a given state is called a node expansion.

Let h∗(s) be the minimal cost path that reaches a goal state
from state s. The heuristic function, h : s → [0,∞] is an
estimate of h∗(s). A heuristic is said to be admissible if never
overestimates the cost of state s to the goal state. In other
words, h(s) ≤ h∗(s). It is said to be consistent if h(s) ≤
h(s′) + c(s, s′) for all pairs of states (s, s′). A heuristic that
does not follow this property is said to be inconsistent [Felner
et al., 2011]. The set of problems with admissible heuristics
(both consistent and inconsistent) are called IAD.

A path in the state space is a sequence of k states, π =
(πi)

k
1 where π1 = sinit and the cost of this path is g(π) =∑k−1

1 c(πi, πi+1). A solution is a path that ends in any one
of the goal states. The objective of the search algorithm is to
find a path with minimum cost, which is defined as C∗.

In order to discuss various algorithms, we must clearly de-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4761

1 1
4 4S

A

B G
0

5

0 0

Figure 1: Search problem from S to G where A* re-expands state
B twice.

fine which states must be expanded in order to solve a prob-
lem. There are some details of this definition that go beyond
what can be discussed here; we follow the definition used
in recent work on this topic [Helmert et al., 2019]. Let Π
be the set of all possible paths and recall that S is all pos-
sible states. Then the set of necessarily expanded states is
N = {s ∈ S : ∃π∈Π:πk=s(maxi<k(g(πi) + h(πi))) ≤ C∗}.
That is, N is all states on paths that do not contain a state s
with f(s) > C∗. When it is clear from context, we also use
N as shorthand for |N | for simplicity. In the worst case, all
states in N must be expanded to find and prove the optimal-
ity of the solution. But, there do exist instances where tie-
breaking or heuristic propagation [Mero, 1984] could reduce
the number of expansions needed in practice. The proofs later
in the paper are not impacted by either tie-breaking or heuris-
tic propagation, so we do not explore this issue further here.

2.1 A* with Inconsistent Heuristics
A* is a best-first search algorithm that orders expansions by
f(n) = g(n)+h(n), where g(n) is the current minimum cost
path known from the initial state to state n and h(n) is the
heuristic estimate of state n. By breaking ties among states
with equal f towards states with larger g, A* is often able to
achieve much better than worst-case performance.

A* maintains an OPEN list and a CLOSED list. It selects a
node n from the OPEN list with the best f(n) value, expands
it and adds it into the CLOSED list starting with state sinit.
This process continues until a goal state from Sgoal is found
or no nodes are available for expansion, at which point the
search reports no solution. The complete pseudo-code to A*
is in Algorithm 1.

If the complexity of a search algorithm is measured by the
number of node expansions performed, A* with an admis-
sible and consistent heuristic has been proven to be optimal
[Dechter and Pearl, 1985]. If the heuristic is admissible but
not consistent, A* can end up re-expanding nodes that have
already been place in CLOSED. Figure 1 shows how an in-
consistent heuristic can result in a node re-expansion. In this
example, edges are marked with their costs and heuristic val-
ues are placed next to nodes. When node S is expanded,
nodes B and A are put into the OPEN list with f -cost val-
ues of 4 and 6, respectively. Node B is expanded next and
placed in CLOSED. When node A is expanded, a better path
to node B is discovered, and it is put back into the OPEN
list for re-expansion. B is then expanded a second time be-
fore the optimal path to G is found. Martelli (1977) showed
that inconsistency can lead to O(2N) node expansions in the
worst-case. In general, A* can have poor performance when
the shortest paths have higher heuristics, and the longer paths
have lower heuristics – meaning that the heuristic is mislead-

Algorithm 1 A∗(costl, rel, nl)
1: while !OPENf .empty() do
2: curr ← OPENf .pop()
3: currF ← curr.g + curr.h
4: if isGoalState(curr) then
5: solutionPath← ExtractPath(curr)
6: solutionCost← currF
7: return
8: end if
9: if isReopened(curr) then

10: reexpanions← reexpanions+ 1
11: if reexpanions ≥ rel then
12: return [f ,∞]
13: end if
14: else
15: if nodes ≥ nl then
16: return [f ,∞]
17: end if
18: nodes← nodes+ 1
19: end if
20: CLOSED.insert(curr)
21: for each succ of curr do
22: succC ← curr.g + c(curr, succ)
23: if succC < succ.g then
24: succ.g ← succC
25: succ.parent← curr
26: end if
27: if succC + succ.h > costl then
28: if f > succC + succ.h then
29: f ← succC + succ.h
30: end if
31: end if
32: OPENf .insert(succ)
33: end for
34: end while
35: return [f ,∞]

ing. But, some forms of inconsistency can be helpful [Felner
et al., 2011]. Variants of A* such as B [Martelli, 1977], C
[Bagchi and Mahanti, 1983], and B’ [Mero, 1984] reduce the
worst-case to O(N2) expansions by temporarily ignoring the
heuristic and prioritizing states only by g-cost.

2.2 Breadth-first Heuristic Search
Breadth-first heuristic search (BFHS) [Zhou and Hansen,
2006] takes a different approach from A*. Instead of ordering
expansions by f -cost, it orders expansions by g-cost. It then
uses a cost limit to delay the expansion states that have f -cost
above the cost limit. The cost limit can be iterative raised until
an optimal solution is found. BFHS was originally designed
to reduce the size of OPEN in cases where there are fewer
states with a given g-cost than f -cost. But, because BFHS
orders states by g-cost, it will not expand a state more than
once per iteration. In the worst case every node could both
have a unique f -cost and lead to a shorter path to all pre-
viously expanded nodes (excluding sinit), requiring Θ(N2)
total expansions.

If we had an oracle that providedC∗ as the initial cost limit,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4762

Algorithm 2 BFHS(costl, rel, nl)

1: while !OPENg.empty() do
2: if isGoalState(curr) then
3: solutionPath← ExtractPath(curr)
4: solutionCost← currF
5: return solutionCost
6: end if
7: if nodes ≥ nodeLimit then
8: return f
9: end if

10: nodes← nodes+ 1
11: CLOSED.insert(curr)
12: for each succ of curr do
13: succC ← curr.g + c(curr, succ)
14: if succC < succ.g then
15: succ.g ← succC
16: succ.parent← curr
17: end if
18: if succC + succ.h > costl then
19: OPENf .insert(succ)
20: if f > succC + succ.h then
21: f = succC + succ.h
22: end if
23: else
24: OPENg.insert(succ)
25: end if
26: end for
27: end while
28: return f

BFHS would perform Θ(N) expansions. For instance, in Fig-
ure 1 if the cost limit was 6, BFHS would expand A, B, and
then G. But, with an initial cost limit of 4, BFHS would still
expand B prior to A, and thus be forced to later re-expand B.

BFHS can avoid re-expansions in the face of inconsistency,
with two limitations to overcome. The first limitation is tie-
breaking in the last layer. BFHS will tend to break ties to-
wards expanding the goal last. Practically speaking, if there
are many states with f(s) = C∗, this penalty could be signif-
icant. The second issue is that C∗ is not known. Running a
BFHS with every consecutive f value until C∗ is reached can
perform poorly, but Iterative Budgeted Exponential Search
(IBEX) [Helmert et al., 2019] improves this significantly.
The pseudo-code BFHS is in Algorithm 2.

2.3 IBEX and Budgeted Graph Search
Algorithms like A*, IDA*, and BFHS search from low to
high f -costs, and search every f -cost to completion before
searching with a larger f -cost. IBEX improves the worst-
case performance of these algorithms by growing the search
cost exponentially, using a budget to limit the expansions if
the f -cost gets too large.

IBEX divides the search into iterations. From one iteration
to the next, it requires that the number of nodes expanded
grows by a constant factor, giving overall exponential growth.
This ensures that the cost of each iteration is amortized into
the cost of the final iteration that finds the goal. In an iteration,
IBEX asks an oracle to provide the f -cost that will result in a

Iteration Step Curr. f Target f Exp. Target Exp.

2 Init 9 [9,∞) 500 -
3 Init 10 [10,∞) 580 1000-4000
3 Exp. 20 [11,∞) 800 1000-4000
3 Exp. 40 [21,∞) 4000∗ 1000-4000
3 Bin. 30 [21, 40) 3500 1000-4000
4 Init 31 [31,∞) 3800 7000-28000
4 Exp 62 [32,∞) 25000 7000-28000
5 Init 63 [63,∞) 27000 7000-28000

Table 1: BFHS searches performed as part of an IBEX search.

target number of node expansions. The oracle is implemented
by an exponential search algorithm [Bentley and Yao, 1976].
IBEX performs one or more searches in each iteration. BGS
describes IBEX using a budgeted BFHS as the underlying
search algorithm, while BTS describes IBEX using a cost-
limited DFS as the underlying search algorithm.

We illustrate the behavior of BGS in Table 1. Each row in
the table corresponds to a complete BFHS search, and each
row is labeled with the iteration in which the search takes
place and the maximum f -cost that will be expanded. To
begin, we assume BGS just completed iteration 2, searching
with an f -cost of 9 and performing 500 node expansions. In
iteration 3, BGS needs to ensure that the node expansions
grow by a constant factor. BGS allows a range of growth, in
this case 2x-8x. For iteration 3, BGS asks its oracle to find
a target f -cost which results in 1000-4000 node expansions,
which we call the budgeted number of expansions.

In this problem we assume all f -costs are integers, so
BGS’s oracle begins by performing a BFHS with a f -cost
limit of 10. BFHS only expands 580 nodes, which is lower
than the budget. Next, BGS will begin to increase the f -cost
used in the search exponentially. In this example BGS mul-
tiplies the previous f -cost by two. Thus, its next search is
with f -cost 20, knowing that the target f -cost, is in the range
[11,∞). This search requires 800 expansions, which is still
below the budget. The target f -cost is then known to be in
the range [21,∞). The next search uses f -cost 40, but does
not complete before performing 4000 expansions. Once 4000
expansions have been performed, the budget is exceeded, and
no further expansions are needed to know that the f -cost is
too large. This is a important mechanism to limits the cost of
the search.

At this point the target f -cost is in the range [21, 40), and
BGS can perform a binary search to find the f -cost that per-
forms the budgeted number of expansions. A search with f -
cost of 30 requires 3500 expansions, which is within the bud-
get. The oracle then returns the target f -cost to BGS. BGS
will then request the next target f -cost from the oracle, and
the oracle will begin searching with a f -limit of 31. In itera-
tion 4, the search finds a target f -value during the exponential
search, and does not need the binary search. These iterations
continue until the goal is found.

If the target f -cost for an iteration is t, and the maximum
budget is b, each iteration requires O(log(t)) steps, with each
step having cost no greater than b. Because the budget grows
exponentially, the running time is dominated by the last iter-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4763

Algorithm 3 BGSe()

1: solutionPath← {}
2: solutionCost←∞
3: OPENg ← {}
4: OPENf ← {}
5: CLOSED← {}
6: budget← 0
7: i← [h(initialState),∞]
8: while solutionCost > i.lower do
9: f ← Oracle(budget)

10: i← i ∩ Search(f,∞,∞)
11: nextCost← i.lower
12: budget← size of the tree
13: end while
14: return

ation which has at most log(C∗) steps, each with cost O(N),
for total worst-case running time Θ(N log(C∗).

A naive implementation of BGS improves the worst-case
efficiency of A*, but does not maintain the best-case effi-
ciency with consistent heuristics. Thus, in this paper we pro-
pose an efficient version of BGS and call it Efficient Budgeted
Graph Search, BGSe.

There are three sources of inefficiency in BGS. First, BGS
always uses an exponential search to find the target f -cost,
even when it is unnecessary (e.g. because no re-expansions
will be required). Second, BGS breaks ties towards low g-
cost in the BFHS, which can result in poor performance in
the last layer. Finally, BGS does not maintain data structures
such as OPEN and CLOSED between iterations, resulting in
extra overhead. In the appendix, IBEX suggested using A*
and reverting to BGS when re-expansions are encountered.
Our approach is both more general and robust as it can return
to A* if there are only few re-expansions at one point during
the search.

3 Efficient BGS
BGSe improves BGS by only using an exponential search
when necessary to avoid the worst-case behavior of previ-
ous algorithms. The following changes are made in BGSe:
(1) BGSe begins each iteration by expanding states in the A*
order of low to high f -cost. This is like A*, but is limited
to searching with a single f -cost. (2) BGSe explicitly counts
re-expansions. When the number of re-expansions exceeds
a provided limit it switches to expanding from low to high
g-cost. (3) BGSe maintains all states in data structures be-
tween calls to BFHS to avoid unnecessary re-expansions. (4)
We implement heuristic propagation (BPMX) [Felner et al.,
2011] for undirected domains in BGSe.

This section uses pseudo-code to describe BGSe in detail.
Algorithm 3 is the high-level code for BGSe using an oracle,
which is found in Algorithm 4.

To assist the reader in understanding the structure of the
pseudo-code and the approach, we trace the behavior of BGSe
with a consistent and inconsistent heuristic, describing some
of the details of why BGSe works efficiently. For simplifica-
tion of the pseudo-code, we do not explicitly handle detecting
the goal or returning the optimal path.

Algorithm 4 Oracle(budget)
1: fcurrent ← 0
2: while nodesReexpanded ≤ k × budget do
3: fcurrent ← i.lower
4: i← i ∩ AStar(i.lower, k × budget,∞)
5: if nodesExpanded ≥ c1× budget then
6: nodesReexpaned← 0
7: return fcurrent

8: end if
9: end while

10: if nodesExpanded ≥ c1× budget then
11: nodesReexpaned← 0
12: return fcurrent

13: end if
14: // Exponential Search
15: δ ← 1
16: while (i.upper 6= i.lower & !(nodesExpanded ≤ c1 ×

budget) do
17: δ = δ ∗ γ
18: nextCost = i.lower ∗ δ
19: i← i ∩ Search(nextCost,∞, c2× budget)
20: end while
21: if nodesExpanded < c2× budget then
22: return i.lower
23: end if
24: // Binary Search
25: while (i.upper 6= i.lower & !(c1 × budget ≤

nodesExpanded ≤ c2× budget) do
26: nextCost = (i.lower + i.upper)/2
27: i← i ∩ Search(nextCost,∞, c2× budget)
28: end while
29: if nodesExpanded ≤ c1× budget then
30: return i.upper
31: else
32: return nextCost
33: end if

3.1 BGSe with (Near-)Consistent Heuristics
In case of a consistent heuristic, BGSe will begin by calling
the oracle (BGSe line 9), asking for the target f -cost that dou-
bles the number of node expansions.

Because no states are ever re-expanded with a consistent
heuristic, the oracle will loop from lines 2 – 9, repeatedly
calling A* on line 4, until the number of nodes expanded
meets the budget. The variable i contains the current inter-
val [i.lower, i.higher] that bounds the target f -value. When
a f -value is found that meets or exceeds the budget, the target
f -cost is returned.

BGSe then passes this f -cost to the search procedure (Al-
gorithm 5). This procedure runs BFHS with the target f -
cost. The search procedure takes all states from OPENf that
have f -cost less than the target f -value, and places them on
OPENg . However, when the heuristic is consistent, all of
these states will already have been expanded by A*. Thus,
there will be no states in OPENf with this property.

BGSe repeats this process until the goal is found. Because
the heuristic is consistent, BGSe will only call A* through the
oracle, and have the same overall performance as A*.

If the heuristic is inconsistent, but does not perform many
re-expansions, the bound in line 2 of the Oracle (k × budget
for some constant k) will allow a constant number of re-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4764

Algorithm 5 Search(costl, rel, nl)
1: currF ← 0
2: while !OPENf .empty() and currF ≤ costl do
3: curr ← OPENf .front()
4: currF ← curr.g + curr.h
5: if currF ≤ costl then
6: OPENg.insert(OPENf .pop())
7: end if
8: end while
9: next← BFHS(costl, rel, nl)

10: while !OPENg.empty() do
11: OPENf .insert(OPENg.pop())
12: end while
13: return [next,∞]

expansions. This parameter for BGSe will be evaluated in
the experimental results.

3.2 BGS with Inconsistency
If there is significant inconsistency in the heuristic, the budget
for re-expansions will be exceeded in line 2 of the Oracle, and
the code will continue.

There are some subtleties in the implementation. For in-
stance, it is possible that the last call to A* simultaneously
exceeded the re-expansion limit, but also found the target f -
cost. This is handled in line 10, which returns the target f -
cost. This f -cost has not been searched completely, but the
remainder of the search will be done with BFHS in BGSe line
10. Otherwise, the oracle will now use the exact same proce-
dure as IBEX, an exponential search followed by a binary
search, to find the target f -value

Also note that it is possible that there is no target f -cost
which corresponds to a number of node expansions that is
within the budget. In this case the binary search in the Oracle
will return the minimum f -cost which is guaranteed to result
in node expansions that are above the budget, since the f -
cost which is below the budget has already been searched to
completion without finding the goal. This f -cost will then
be searched in its entirety by the call to BFHS in line 10 of
BGSe.

3.3 Algorithmic Complexity
Our formulation of BGSe means that it has the same perfor-
mance as A* when the heuristic is consistent. However, we
need to ensure that we have not compromised the efficiency
with these modifications.

The primary modification is that the oracle begins by re-
peatedly running A* in lines 2 to 9. At this point in the
search, the oracle is looking for the target f -cost that falls
within the budget. It can make at most log(C∗) calls to the
the search procedure and the node expansions performed in
each call will be bounded by the budget. Within our formu-
lation, BGSe essentially makes one set of additional searches
which are also bounded by the same budget. If these searches
are successful (e.g. they do not require a significant number
of re-expansions), the log overhead is avoided. If they are un-
successful, only a constant overhead is added to the search.

The other point for maintaining the correctness of BGSe is
that no successor will ever be discarded; these are saved for

possible later expansions.

4 Theory
IBEX and its variants expand states with f(n) > C∗ in or-
der to improve the performance of search with inconsistent
heuristics. In unidirectional search with a consistent heuris-
tic, and with the exception of tie-breaking for states with
f(n) = C∗, there is no admissible algorithm which expands
fewer states than A* [Dechter and Pearl, 1985]. In unidi-
rectional search with inconsistent heuristics, however, no sin-
gle algorithm can have the best performance on all problems
[Mero, 1984]. There are some problems where, due to the in-
consistency of the heuristic, performing expansions of states
with f(n) > C∗, could lead to the discovery of heuristic in-
formation that, when propagated to other states, reduces the
number of states with f(n) ≤ C∗, thus reducing the total
number of expansions required to solve the problem.

Thus, there is a distinction between unidirectional algo-
rithms that expand states with f(n) > C∗ and those that do
not. While A* may perform Θ(2N) expansions of N states,
and B and B’ may perform Θ(N2) expansions of N states,
IBEX requires at most Θ(N logC∗) expansions.

The question addressed here is whether it is necessary to
expand states with f(n) > C∗ in order to improve on the
previous Θ(N2) best case. We show that all unidirectional
algorithms which only expand states with f(n) ≤ C∗ must
expand Ω(N2) states in the worst case, where N is the num-
ber of necessarily expanded states, as defined previously.

4.1 Assumptions
The analysis here applies to unidirectional algorithms that
meet three properties (admissible, strongly DXBB, and con-
servative) when run on problem instances in IAD.

Algorithms are admissible if they find optimal solutions
[Hart et al., 1968; Martelli, 1977; Dechter and Pearl, 1985]
when a solution exists. Note that admissibility of an algo-
rithm is different that the admissibility of a heuristic. For
instance, Dijkstra’s algorithm is admissible with any heuris-
tic, A* is only admissible with admissible heuristics, and BS*
[Kwa, 1989] is only admissible with a consistent heuristic.

Algorithms are deterministic, expansion-based black-box
(DXBB) if they are not randomized and can only gain infor-
mation about the problem being solved through the use of a
black-box expansion function [Eckerle et al., 2017]. The re-
sults here require a slightly stronger version of DXBB.

Definition 1. An algorithm is strongly DXBB if it is DXBB
and additionally, information about shorter paths or better
heuristics (e.g. through BPMX) is only propagated to neigh-
boring states (previously expanded or otherwise), and only by
expansion operations.

Strongly DXBB algorithms are excluded from the use of
alternate data structures that might be used to substitute dif-
ferent operations for node expansions. This would exclude,
for instance, the possibility of dynamically performing con-
tractions [Geisberger et al., 2008] on the graph of expanded
states during search. All current algorithms that we are aware
of that are DXBB are also strongly DXBB.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4765

1

5

5

1

4

6

1

3

7

1

2

8

1

1

9

0

0

2

0

2

0

2

0

2

0

S

m

t0 g0 t1 g1 t2 g2 t3 g3 t4 g4

b0

g0

b1

g1

b2

g2

b3

g3

b4

g4

0

0

5 0 6 0 7 0 8 0 9 0

0

0

0

0

0

0

0

0

0

0

Figure 2: Example demonstrating that Ω(N2) expansions are re-
quired when states with f(n) > C∗ are not expanded.

Definition 2. An algorithm is conservative if it only expands
a state n if it has proven that f(n) = g(n) + h(n) ≤ C∗.

Note that definition of conservative relies on the current
g(n), which may not be the optimal g-cost from the start. A*
and IDA* are conservative algorithms, but Dijkstra’s algo-
rithm is not, because it ignores heuristic values.

The structure of the proof relies on the propagation of in-
formation that is required to ensure the algorithm is both ad-
missible and conservative. By identifying the states that must
be expanded to prove f(n) ≤ C∗ for a given state, it is pos-
sible to put a lower bound on the expansions required.

4.2 Problem Structure
The proof is based on the problem in Figure 2, which is de-
rived from previous published examples [Mero, 1984]. Pre-
vious work showed the performance of algorithms B, and B’
on a similar problem, but did not generalize this to other al-
gorithms. Figure 2 is an instance (for k = 5) of a general
problem that can be scaled for any k to have 4k + 2 nodes,
and requires Ω(k2) expansions by any conservative, admissi-
ble, and strongly DXBB algorithm.

The structure of the problem is as follows. Every state la-
beled gi is a potential goal state, but gk−1 is the actual goal.
These are states that must be expanded by any admissible al-
gorithm to prove that they are not the goal and to maintain the
conservative property. There are two separate states labeled
gi. These can be considered to be the same state reachable by
two different directed edges; in fact all gi could be the same
state. But, we draw these explicitly to make the example as
straightforward as possible.

There is a start state S at the top, which connects to 5 (k)
states at the top, labeled t0 through t4 with h(ti) = k + i.
Each ti is connected by a directed edge cost h(ti) to a gi and
to the middle state, m, with a directed edge cost k − i. This
middle state connects to a directed chain of bottom states b0
through b4. These are connected to gi by an edge with cost 0
and to their next neighbor on the chain with an edge cost 2.
The heuristic from states t1 . . . t4 to m is inconsistent.

As a reminder, the f -cost of a state s is defined by the
current-best g-cost plus the h-cost of s, as opposed to the
shortest path from S to s, which could be smaller. Thus, ex-
panding a state that currently has f(n) > C∗ would mean an

algorithm is not conservative, even if state n might later be
discovered to have f(n) ≤ C∗ for some alternate path to n.
This is because the definition of conservative requires that the
algorithm prove that f(n) ≤ C∗ prior to each expansion.

Lemma 1. LetA be any algorithm which is admissible, con-
servative, and strongly DXBB.A must perform a minimum of
i expansions after expanding ti−1 and before expanding ti on
the k-state generalization of Figure 2.

Proof. We prove this by induction using two properties. First,
that there are at least i expansions after ti−1 and before ti,
and second that when ti is about to be expanded f(bi) >
f(ti). In this proof we will ignore the gi states, except when
showing that the potential existence of these states forces the
expansion of a ti or bi state.

Base case. For the base case we need to show that at least
1 expansion is performed after expanding t0 and before ex-
panding t1. Initially, by definition, f(t0) = k + 1 and
f(t1) = k + 2, and all other states that can be expanded by
a DXBB algorithm (are generated from the start state) have
larger f -cost. Because A is conservative, it must expand all
states with f = k + 1 before expanding f(t1). Thus, it must
minimally expandm and b0, which both have f = k+1. This
demonstrates the first property.

After expanding b0, it is the case that f(b1) = g(b0) + 2 =
f(t0) + 2, and f(t1) = f(t0) + 1. Thus the second property
holds because f(b1) > f(t1).

Recursive case. We now assume that after expanding ti−1

and before expanding ti a total of i states have been expanded.
We further assume that f(bi) > f(ti). Then, we need to
show that at least i+1 expansions will be performed after the
expansion of ti and before the expansion of ti+1.

First, A must eventually expand ti after expanding ti−1.
If it does not, we could change the goal to gi, and then A
would not be admissible. Either because it does not find the
solution, or if A expands gi through bi without updating the
path through ti, it would find the solution with suboptimal
cost.

After expanding ti, A must continue expanding down the
chain of states from ti to bi, finding a shorter path to m along
the way, as all of these states have the same f -cost. It can-
not expand a state tj for j > i because A is conservative and
these states have larger f -cost. It must expand the entire chain
of states to propagate the improved g-cost from m to bi be-
cause A is strongly DXBB. Finally, because it is admissible,
it must expand bi in case the goal is below bi at gi. Once this
sequence of expansions is complete, A will have expanded
states b0 · · · bi states (i+1 total) while propagating the shorter
path cost from ti to bi. As in the base case, it is the case that
f(bi+1) = g(bi) + 2 = f(ti) + 2 and f(ti+1) = f(ti) + 1,
thus f(bi+1) > f(ti+1).

Lemma 2. Let A be any algorithm which is conservative,
admissible, and strongly DXBB. A must perform Ω(k2) ex-
pansions on the k-state generalization of Figure 2.

Proof. Due to Lemma 1, A must expand at least i + 1 states
between expanding ti and ti+1. Thus, if the goal is placed in
state gk, it must perform a minimum of

∑k
i=1 i expansions,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4766

A*
BGS
BGSe

N
od

e
Ex

pa
ns

io
ns

0

5,000

10,000

15,000

Instance Size
0 100 200 300 400 500

Figure 3: A comparison between A*, BGS, and eBGS on an artifi-
cially constructed worst-case graph.

which means that the total number of expansions is Ω(k2).

Theorem 3. All unidirectional algorithms which are admis-
sible, conservative, and strongly DXBB have worst-case com-
plexity Ω(N2) on problems in IAD, where N is the number of
must-expand states.

Proof. The k-state generalization of Figure 2 is in IAD and
has N = 3k + 2 must-expand states. Thus, by Lemma 2,
any such algorithm will require Ω(N2) expansions to find the
optimal solution.

It follows from this that there are three possible routes to
improving the worst-case search performance with an incon-
sistent heuristic. IBEX and its variants relax the conservative
requirement and expand states with f(n) > C∗ in order to
reduce the worst-case running time. It is an open question
whether an algorithm can achieve similar gains by relaxing
the strongly DXBB requirement. A bidirectional case an al-
gorithm could improve performance in our example by ex-
panding m in the backwards direction, but this is unlikely
to generalize. Because the necessary conditions for bidirec-
tional search are significantly more complex [Eckerle et al.,
2017], this is also left as an open question.

5 Experiments
While our improved implementation of BGS maintains the
same worst-case performance as BGS, the constant factors in
an implementation can have a large impact. The experimental
result here show that BGSe has the same performance as A*
when the heuristic is consistent, and much better performance
when the heuristic is inconsistent.

We used the C++ code from the open-source HOG2 repos-
itory1 for the baseline algorithms and testing. Our code for
BGSe that is used to run these experiments is available in the
same repository. All experiments are run on a 3.4Ghz Intel
Core i7 machine with 16GB of RAM.

Worst-Case Evaluation. The first experiment is run on a
graph similar to Figure 2, which corresponds to the example
used in previous experimental results with BGS [Helmert et
al., 2019]. The structure of the problem is the same, but all

1https://github.com/nathansttt/hog2/tree/PDB-refactor

Algorithm Avg. Expansions Avg. Time (ms)

BGS 22,993 10.3
BGSe 6,700 4.1
A* 6,700 3.5

Table 2: Expansions and time required to solve Dragon Age: Origin
benchmark problems with a consistent heuristic.

edge costs fromm to the goal are 1, and all gi nodes are omit-
ted. This experiment is designed to show that, in the worst
case, BGSe maintains its improvements over A*, and also
improves over the unoptimized implementation of BGS. The
results of this experiment are found in Figure 3. The x-axis
is the size of the instance created, and the y-axis is the total
number of node expansions performed. The instance sizes
tested runs from 3 (8 total nodes) to 500 (1002 total nodes).
The re-expansions budget for BGSe is set to 0*budget, but the
results are indistinguishable for 1*budget.

We expect A* to perform Θ(k2) expansions on an instance
size k, which can be clearly seen from the top black line. The
general implementation of BGS improves over this signifi-
cantly. BGSe shows improvement over BGS primarily be-
cause it does not throw away OPEN and restart from scratch
in each iteration.

Consistent Heuristic Evaluation. Next, we look at stan-
dard pathfinding problems with a consistent heuristic. In
these experiments we test problems from Dragon Age: Ori-
gins [Sturtevant, 2012] with the octile heuristic to measure the
difference between A*, BGS, and BGSe. We tested BGSe
on all maps and show results for all problems in the map
den601d. We compare the average node expansions and
running time to solve these problems in Table 2. The value
of parameters c1, c2, and γ are 2, 8, and 2 respectively for
all experiments. For BGSe, we used a re-expansion budget of
1*budget in this case. BGS requires 3x the node expansions
of A*, while BGSe performs an identical number of expan-
sions to A*. Our implementation is slightly slower than A*
because it is optimized for visualization, debugging, and cor-
rectness.

Inconsistent Heuristic Evaluation. In our first experiment
we looked at the worst case for an inconsistent heuristic
where the heuristic is adversarial, but this is not the typical
use case for inconsistent heuristics. Inconsistent heuristics
are more likely to be used as a result of compression or ran-
domization [Felner et al., 2011].

So, we experiment with the compressed differential heuris-
tic [Felner et al., 2011; Goldenberg et al., 2011; Goldenberg
et al., 2017]. This heuristic is primarily designed to avoid
the space overhead of storing many memory-based heuristics
[Goldberg and Harrelson, 2005; Sturtevant et al., 2009]. We
build a differential heuristic with 10 pivots, but compress it so
that each state can only access a single one of these heuristics.
This approach works well in practice when combined with
bidirectional pathmax (BPMX), which propagates heuristic
values between neighboring states during expansion.

The results of running the same problems from Table 2, ex-
cept with an improved heuristic, are found in Table 3. While

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4767

Algorithm Avg. Expansions 95% Interval

A* 30,788 ±2, 169
BGS 25,452 ±1, 295
BGSe(1*budget) 12,650 ±568
BGSe(5*budget) 21,079 ±1197
BGSe(0*budget) 9,414 ±307
A* [BPMX] 1,829 ±94
BGSe(1*budget) [BPMX] 1,887 ±98
BGSe(5*budget) [BPMX] 1,871 ±97
BGSe(0*budget) [BPMX] 8,496 ±319

Table 3: Expansions and time required to solve Dragon Age: Origin
benchmark problems with an inconsistent heuristic.

BGS does better than A*, and BGSe does better than BGS, it
would be more efficient to use the octile heuristic in practice.
However, with BPMX this is not the case. The results for
BGSe are shown for three different values of the parameter
k (Algorithm 2). Increasing the re-expansion budget allows
BGSe to behave more like A*, and BGSe with BPMX does
only a few node expansions more than A*.

From these experiments as a whole we conclude that BGSe
with a re-expansion budget of 1*budget provides reasonable
performance across both inconsistency experiments.

6 Conclusion and Discussion
This paper has introduced BGSe, which keeps the behavior
of A* when the heuristic is consistent, but retains the best-
case performance of BGS when the heuristic is inconsistent.
Thus, unlike the default BGS implementation previously de-
scribed, BGSe is suitable for use on all problems. We ad-
ditionally have shown that broader IBEX framework has an
improved worst-case bound because it is not conservative. It
is an open question whether there exist bidirectional search or
non-DXBB algorithms that could provide similar worst-case
performance.

References
[Bagchi and Mahanti, 1983] Amitava Bagchi and Ambuj

Mahanti. Search algorithms under different kinds of
heuristics—a comparative study. Journal of the ACM
(JACM), 30(1):1–21, 1983.

[Bentley and Yao, 1976] Jon Louis Bentley and Andrew
Chi-Chih Yao. An almost optimal algorithm for un-
bounded searching. Information processing letters,
5(SLAC-PUB-1679), 1976.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A*. Journal of the ACM (JACM), 32(3):505–536, 1985.

[Eckerle et al., 2017] Jürgen Eckerle, Jingwei Chen, Nathan
Sturtevant, Sandra Zilles, and Robert Holte. Sufficient
conditions for node expansion in bidirectional heuristic
search. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2017.

[Felner et al., 2011] Ariel Felner, Uzi Zahavi, Robert Holte,
Jonathan Schaeffer, Nathan Sturtevant, and Zhifu Zhang.

Inconsistent heuristics in theory and practice. Artificial
Intelligence, 175(9-10):1570–1603, 2011.

[Geisberger et al., 2008] Robert Geisberger, Peter Sanders,
Dominik Schultes, and Daniel Delling. Contraction hi-
erarchies: Faster and simpler hierarchical routing in road
networks. In International Workshop on Experimental and
Efficient Algorithms, pages 319–333. Springer, 2008.

[Goldberg and Harrelson, 2005] Andrew V Goldberg and
Chris Harrelson. Computing the shortest path: A search
meets graph theory. In SODA, volume 5, pages 156–165.
Citeseer, 2005.

[Goldenberg et al., 2011] Meir Goldenberg, Nathan R.
Sturtevant, Ariel Felner, and Jonathan Schaeffer. The
compressed differential heuristic. In AAAI Conference on
Artificial Intelligence, pages 24–29, 2011.

[Goldenberg et al., 2017] Meir Goldenberg, Ariel Felner,
Alon Palombo, Nathan Sturtevant, and Jonathan Schaef-
fer. The compressed differential heuristic. AI Communi-
cations, 30(6):393–418, 2017.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, 1968.

[Helmert et al., 2019] Malte Helmert, Tor Lattimore, Levi
H. S. Lelis, Laurent Orseau, and Nathan R. Sturtevant. It-
erative budgeted exponential search. International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

[Kwa, 1989] James BH Kwa. Bs: An admissible bidirec-
tional staged heuristic search algorithm. Artificial Intelli-
gence, 38(1):95–109, 1989.

[Martelli, 1977] Alberto Martelli. On the complexity of ad-
missible search algorithms. Artificial Intelligence, 8(1):1–
13, 1977.

[Mero, 1984] Laszlo Mero. A heuristic search algorithm
with modifiable estimate. Artificial Intelligence, 23(1):13–
27, 1984.

[Sturtevant et al., 2009] N. R. Sturtevant, A. Felner,
M. Barer, J. Schaeffer, and N. Burch. Memory-based
heuristics for explicit state spaces. International Joint
Conference on Artificial Intelligence (IJCAI), pages
609–614, 2009.

[Sturtevant, 2012] Nathan R. Sturtevant. Benchmarks for
grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games, 4(2):144–148, 2012.

[Zhang et al., 2009] Zhifu Zhang, Nathan R Sturtevant,
Robert Holte, Jonathan Schaeffer, and Ariel Felner. A*
search with inconsistent heuristics. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence, 2009.

[Zhou and Hansen, 2006] Rong Zhou and Eric A Hansen.
Breadth-first heuristic search. Artificial Intelligence,
170(4-5):385–408, 2006.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4768

	Introduction
	Background
	A* with Inconsistent Heuristics
	Breadth-first Heuristic Search
	IBEX and Budgeted Graph Search

	Efficient BGS
	BGSe with (Near-)Consistent Heuristics
	BGS with Inconsistency
	Algorithmic Complexity

	Theory
	Assumptions
	Problem Structure

	Experiments
	Conclusion and Discussion

