Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Reinforcement Learning for Cross-Domain Hyper-Heuristics

Florian Mischek , Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling,
TU Wien
{florian.mischek, nysret.musliu } @ tuwien.ac.at

Abstract

In this paper, we propose a new hyper-heuristic
approach that uses reinforcement learning to auto-
matically learn the selection of low-level heuristics
across a wide range of problem domains. We pro-
vide a detailed analysis and evaluation of the al-
gorithm components, including different ways to
represent the hyper-heuristic state space and reset
strategies to avoid unpromising areas of the solu-
tion space. Our methods have been evaluated using
HyFlex, a well-known benchmarking framework
for cross-domain hyper-heuristics, and compared
with state-of-the-art approaches. The experimental
evaluation shows that our reinforcement-learning
based approach produces results that are compet-
itive with the state-of-the-art, including the top
participants of the Cross Domain Hyper-heuristic
Search Competition 2011.

1 Introduction

Hyper-heuristics are an example of a high-level problem-
independent approach that have been applied recently suc-
cessfully to different problem domains (see recent surveys,
e.g. [Burke ef al., 2019]). The aim of hyper-heuristics is to
automate the design of heuristic methods based on a com-
bination of low-level heuristics. Although various hyper-
heuristics have been proposed over the last two decades, the
Cross-Domain Heuristic Search Challenge (CHeSC) 2011
[Burke et al., 2011] in hyper-heuristics intensified signifi-
cantly the research in this area. This competition attracted
considerable attention and various methods have been pro-
posed including an approach that uses reinforcement learn-
ing. Although several other approaches have been pro-
posed in recent years, the methods proposed in this com-
petition still provide the best solutions for several problem
domains. The reinforcement learning based hyper-heuristic
approach [Di Gaspero and Urli, 2012] that was submitted
to the CHeSC competition could not compete with the top
ranked approaches and was outperformed by more than half
of approaches that were submitted to the competition. There-
fore, an interesting research question is if it is possible to de-
velop reinforcement learning hyper-heuristic approaches that
are competitive with the state-of the art approaches. Such an

4793

investigation is important, as reinforcement learning methods
provide a general framework for hyper-heuristics and improv-
ing such solutions has an impact on several problem domains
that include important NP-hard problems.

The main contribution of this paper are:

* We provide a new hyper-heuristic approach using rein-
forcement learning. Our approach includes several in-
novative ideas including different feature combinations
to represent the state space and a reset mechanic com-
bined with learning low-level heuristic weights to avoid
getting stuck in unpromising areas of the search space.

We deeply investigate various methods of reinforcement
learning and give a systematic evaluation of these meth-
ods and their main components.

Our methods are compared to the state of the art hyper-
heuristics using the CHeSC competition rules. Our ap-
proach is placed in the top 3 hyper-heuristics and im-
proves upon previous approaches that used reinforce-
ment learning. This shows that reinforcement learning
is a very well suited paradigm for hyper-heuristics.

2 Cross-Domain Optimization
Hyper-Heuristics

For the CHeSC hyper-heuristic competition, researchers had
to develop (selection) hyper-heuristics that perform well on a
wide range of different problem domains. The problem do-
mains were provided, including a set of low-level heuristics
which are partitioned into four different types: mutation, ruin
and recreate, local search, and crossover operators.

An important feature of the problem setting is the domain
barrier (see Figure 1) that limits the information passed be-
tween hyper-heuristic and problem domain to ensure that the
former cannot exploit domain-specific information. Hyper-
heuristics can apply low-level heuristics to candidate solu-
tions, both of which are referenced by indices only. In return,
the problem domain provides the new objective function for
that solution after the application.

The problem domains used for the CHeSC are the max-
imum satisfiability problem (MaxSAT), bin packing (BP),
flow shop (FS), personnel scheduling (PS), the traveling
salesman problem (TSP), and the vehicle routing problem
(VRP). Of these, the latter two as well as some of the bench-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Hyper-heuristic Problem domain

—

‘ Instance representation ‘

Select low-level heuristic
. . . . El’ S, Sk
i to apply to a solution j J
and store result in k

‘ Low-level heuristics hq,...,hy, ‘

—

‘ Solution memory sq,...,Smn ‘

Determine acceptance /
rejection of result

f(sk)

‘ Objective function f(s) ‘

Domain barrier

Figure 1: In HyFlex, the domain barrier limits the interchange of
information between problem domains and hyper-heuristics to en-
sure domain-independence. Hyper-heuristics only know indices of
low-level heuristics and candidate solutions and are provided with
the objective function resulting from applying a low-level heuristic
to a solution.

mark instances for the other four domains, were hidden from
the participants before the competition.

The competition was won by [Misir et al., 2012], who com-
bined several adaptive mechanisms to select low-level heuris-
tics, determine acceptance of results and configure search pa-
rameters. The runner up [Hsiao et al., 2012] used a self-
adaptive Variable Neighborhood Search (VNS) with alternat-
ing shaking and local search phases. A similar cycle of di-
versification and intensification, plus an adaptive move ac-
ceptance criterion was also used by [Larose, 2011], based
on an approach by [Meignan et al., 2010]. Both Larose and
Meignan et al. learn operator weights conditional on the pre-
viously applied operators, which are incremented each time a
cycle finds an improved solution. In general, most approaches
include one or several adaptive components, which change
their behaviour in response to the progress of the search.

The competition entry by [Di Gaspero and Urli, 2012] con-
taining a study of reinforcement learning approaches for this
problem, achieved the 16th place. A revised and extended al-
gorithm described in that paper and developed after the com-
petition would have improved this result to the 13th place.

The hyper-heuristics developed for the CHeSC were imple-
mented using the HyFlex framework [Ochoa et al., 2012al.
Since then, HyFlex has become a popular framework for
hyper-heuristics. Different authors have used it to develop
and evaluate their own hyper-heuristics, such as a tensor-
based hyper-heuristic [Asta and Ozcan, 2015], a population-
based Monte-Carlo tree search [Sabar and Kendall, 2015],
and most recently an approach using solution chains simi-
lar to those used in this paper, though with no or only very
limited learning [Chuang, 2020]. Other authors proposed ex-
tensions to the framework [Ochoa et al., 2012b], or added
additional problem domains [Adriaensen et al., 2015].

3 Reinforcement Learning for Heuristic
Selection

A typical view of the reinforcement learning (RL) setting
contains several interlocking components: An agent interacts

4794

T14

Figure 2: Example trajectory showing several solution chains. The
vertical placement of a solution corresponds to its objective value,
lower is better. Each chain ends either by finding a new best known
solution (x7, x14) or a reset (after x3, 9, and x12).

with an external environment by selecting and executing one
of a set of available actions. It can then observe the new state
of the environment and obtains a certain reward. The agent’s
goal is to maximize the total sum of rewards achieved. To
achieve that goal, it can use the observations made to update
its own beliefs about the environment. In our case, these be-
liefs are modeled as state-action values, estimates of the ex-
pected long-term reward achieved due to performing a certain
action while the environment is in a certain state. These esti-
mates are used by the agent’s policy to select the next action.

This view translates naturally to the cross-domain opti-
mization problem of the CHeSC, with the hyper-heuristic in
place of the agent interacting with an environment in the form
of a combination of a problem domain and a current candidate
solution. The actions available to the agent are the low-level
heuristics of the problem domain', which are applied to the
current solution. For other components, we investigated sev-
eral options, which are described later in this section.

One disadvantage of indiscriminately following this strat-
egy is that most low-level heuristics are stochastic and will
often result in worse solutions (in particular for mutations).
While this might be beneficial and even necessary for escap-
ing local optima and reaching new areas of the solution space,
it can also lead towards unpromising areas from which it may
be difficult to return. To avoid getting stuck in those areas, we
decided to keep track of the best solution found so far during
the search and periodically reset the current solution back to
this best known solution. In effect, this splits the trajectory of
the search into several chains of solutions, which either end
with a new best known solution or a reset back to the starting
point (see Figure 2).

A further modification we made was to use amplification
of low-level heuristics, as they had a large impact on the so-
lution quality in [Chuang, 2020] and also our preliminary ex-
periments. Amplification is a technique that adds additional
actions available to the hyper-heuristic. Each of these actions
corresponds to repeated applications of a specific low-level
heuristic for 10ms, where worse solutions are immediately
rejected.

"For the purpose of this paper, we do not use the crossover oper-
ators as we only work on a single solution.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3.1 State Representation

An agent’s internal representation of the environment’s state
should capture all relevant information necessary to make an
informed decision about the next action. However, the do-
main barrier of HyFlex hides most of this information, so we
necessarily have to use features of the search history, such as
applied low-level heuristics and observed rewards, to repre-
sent our states. For our analysis, we chose to use a modu-
lar approach that allows us to study the impact of different
feature combination. A state s = (f1, fa,..., fn) is a tu-
ple of n feature values f; € F;, where F; is the set of pos-
sible values for that feature. The whole state space is then
S=F xFyx---xF,.
We have investigated the following features:

Last heuristic (LH). The index of the last heuristic applied
(or —1 for the first heuristic in a chain).

Last heuristic type (LHT).
the last heuristic.

Tail length (TLz). The number of heuristics remaining in
the current chain before a reset. An intuitive example why
this may be useful is that we probably do not want to apply
mutations as the last heuristic in a chain, as these operators
are unlikely to result in an immediate improvement and the
result will likely be thrown out in the reset afterwards. To
keep the cardinality of this feature low, all tail lengths equal
to or greater than the parameter x are treated as equivalent.

As above, but using the type of

Recent improvement (RIw). This binary feature captures
long term performance by keeping track of whether an im-
provement was found within the last w chains. A long time
without improvement may signal that a shift to more ex-
ploratory operators would be useful.

3.2 Action Selection Policy

The policy used to select the next action based on the current
state-action values estimates has to serve a dual purpose of
both maximizing rewards by selecting actions that have high
estimates and improving the current estimates by setting up
new observations for less frequently used heuristics.

A necessary condition for the state-action value estimates
to converge to the true values is that all actions are eventually
chosen infinitely often (assuming infinite run time). A popu-
lar class of policies that satisfy this condition are e-policies,
which select uniformly among all action with probability ¢
and follow another policy otherwise.

As the base policy we have investigated two different op-
tions:

e-greedy. Selects the action with the highest current value
with probability (1 — €).

e-softmax. Performs roulette-wheel selection, where the
weight of each action is equal to its state-action value.

A variant of these policies have ¢ decreasing over the
course of the run, as the state-action value estimates get closer
to their true values. This helps in maximizing the total re-
wards if the problem is mostly stationary, i.e. the true values
do not change (a lot) over time.

4795

3.3 Rewards

Given that we want to find a solution of minimum objective
value, it would be natural to use the change in objective func-
tion after applying a low-level heuristic as the reward, as was
done by [Di Gaspero and Urli, 2012]. However, this does
not consider the fact that bad solutions will be rejected at the
end of each chain, resulting in an objective value change of 0.
Also, it would heavily penalize low-level heuristics like muta-
tions which often lead to much worse solutions that however
enable subsequent heuristics to find further improvements.
For these reasons we decided to give out rewards only at the
end of each solution chain, and a reward of O if the chain is
reset without improvement. For the case that the the chain is
successful (i.e. a new best known solution was found), we
studied the following variants:

Constant reward (1). We award a constant reward of 1
each time a chain is successful.

Total objective delta (> Ao). The reward is the difference
in objective function between the previous and the new best
known solution.

Delta per total time (% i(t’). This reward also accounts for

the time taken to find the improvement by scaling the objec-
tive delta by the total time taken by all heuristics in the chain.

Delta per self time (ZA:tAO). Alternatively, we can also con-

sider only the time taken by the last heuristic in the chain
(which is the one that found the improved solution), assum-
ing that the setup by the other heuristics before was necessary
and shorter setups would not necessarily have resulted in an
improvement.

3.4 State-Action Value Update Rule

The estimates for the state-action values have to include not
only rewards observed directly as a result of applying an ac-
tion, but also future rewards that follow further down the line.
There are several techniques how we can calculate these es-
timates and update them after making observations, to bring
them closer towards their true values. For this paper, we have
evaluated four different popular update rules, following defi-
nitions by [Sutton and Barto, 2018].

Given a set of observed rewards, their mean value is the
maximum-likelihood estimate for the expected value of the
actual reward distribution. Monte-Carlo (MC) learning
accordingly calculates the state-action values ¢(s,a) as the
mean of all observed rewards from performing action a in
state s, which are stored in a list called Returns(s,a). Let
the current episode with 7' + 1 steps be represented as a list
of 3-tuples (s, at, ;) denoting the state at step ¢, 0 < ¢ < T,
the action taken, and the reward observed, respectively. For
each step 0 < t < T, we append v/ ~!ry to Returns(s, a;)
and define q(s¢, a;) as average(Returns(sg, at)).

v € [0,1] is a discount factor, to reflect the fact that more
recent heuristics are likely to have a stronger influence on the
result than those far earlier in the chain. In this paper, we use
v = 0.8, based on the results of preliminary experiments.

Instead of learning only at the end of each episode, we can
already update our state-action values after each individual

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

action, by using our current estimates about the expected fu-
ture rewards, which we already have represented by the state-
action value of the successor state and action. Accordingly,
this technique is called SARSA (state-action-reward-state-
action”) and the update of g(s¢, a;) is performed after choos-

ing q(s¢41,a¢41):

q(se,ar) < q(s¢,a¢) + a(re +vq(si415 ar1) — q(Se,ar))
(1)

This makes use of the learning rate parameter o, which de-
termines the magnitude of the update. « is applied to the
difference (or estimation error) between the current estimate
q(st,a;) and the sum of the observed reward r; and the dis-
counted expected future reward (yq(s¢+1, a¢+1)). In our eval-
uation, we have considered both constant learning rates and
rates that decrease over time, either linearly or exponentially,
to account for the fact that the more observations we have
gathered, the less we want single recent observations to de-
rail our presumably good estimates.

A close variant of SARSA is Q-learning. While SARSA
uses the state-action value of the actually chosen subsequent
action, Q-learning assumes that at least eventually the policy
will converge towards greedy selection given that this pol-
icy will maximize rewards if the true state-action values are
known. Following this assumption, Q-learning uses the state-
action value of the (estimated) best action for the successor
state to update the estimate of the current action. This leads
to the following update function, applied after each action
once the reward and successor state are observed:

q(se,ar) < q(se, ae) +alry + 7y max q(ser1,a) — q(se, ae))
)

Of course, in practice we do not use the greedy policy, as
we need to continuously update our estimates for all state-
action values in the limited time available. A hybrid approach
between SARSA and Q-learning is Expected-SARSA (E-
SARSA), which takes into account the probabilities 7(a|s)
of choosing each action a under the current policy = when in
state s. The expectation of the state-action values with respect
to 7 is then used in the update function as follows:

E(t) = m(alsi1)a(si41,a) 3)

a

q(se,ar) < q(se,ar) + a(ry + YE(t) — q(s,a0)) (D

3.5 Solution Chain Length

The length of each solution chain, i.e. the number of heuris-
tic applications without improvement before the chain is re-
set, is an important parameter. Determining the solution
chain length involves a trade-off between sampling many
short chains, which may miss improvements further down the
chain, and few longer chains, which may waste large amounts
of time if they do not result in an improvement.

In this paper, we assume that the length of each chain is
known in advance and fixed at the start of the chain.

For a simple policy that selects uniformly among all low-
level heuristics, [Chuang, 2020] prove that selecting the solu-
tion chain lengths according to Luby’s sequence [Luby et al.,

4796

1993] provides both some theoretical optimality guarantees
and results in good performance in practice. This sequence is
defined as follows:

. 2k—1 ifi=2F—-1
E[Z] = . k—1 . k—1 . k (5)
Lli—2"14+1] if2F1<i<2v -1
L=1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,...) (6)

Each time an improvement is found, the sequence should
be restarted from its beginning. To avoid overly long chains
that take up a considerable part of the overall available time,
the sequence is also restarted after it reaches a value of 1024.

4 Evaluation

We implemented our approaches as hyper-heuristics in the
HyFlex framework and evaluated them on the benchmark
instances provided for the six original HyFlex problem do-
mains. The source code for our implementation is available
for download at https://gitlab.tuwien.ac.at/florian.mischek/
hyper-heuristics-public.

The experiments were performed each using a single thread
of a computing cluster with 10 nodes of 24 cores, an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 252 GB RAM.
On this hardware, the benchmarking tool provided for the
CHeSC determined that a time limit of 392s corresponds to
the 10 minutes available on the original competition machine.

4.1 Component Analysis

To analyze the effects of each algorithm component on the
performance, we compared the different variants to a base-
line configuration that performed well in preliminary exper-
iments. This baseline configuration uses a state representa-
tion consisting of the last heuristic and the tail length up to a
maximum length of 5 (LH+TLS), a 0.2-greedy action selec-
tion policy, constant rewards for improved solutions, a learn-
ing rate of 0.1 where required, and Luby’s sequence to deter-
mine chain lengths. We repeated all experiments with the four
update rules (MC, Q-learning, SARSA, E-SARSA) and per-
formed 10 runs per instance, using the 10 early instances for
the four problem domains known in advance of the CHeSC
(MaxSAT, BP, FS, and PS). To make objective values of dif-
ferent problem domains comparable, we normalized them to
the range [0 — 1] as follows [Di Gaspero and Urli, 2012]:
Onorm = M @)
Omaz — Omin
Omaz and o,,;, are the worst and the best objective value
achieved for each instance, respectively.

First we compared the performance of the baseline con-
figuration under the four update rules (Figure 3). Both MC
learning and E-SARSA found results of comparable quality,
slightly better than SARSA and Q-learning. Although the
differences look small, due to this being normalized objective
values they can actually translate to significant improvements
for some problem domains - particularly under the CHeSC
scoring system, which awards points for relative rank com-
pared to the other competitors instead of absolute values.

https://gitlab.tuwien.ac.at/florian.mischek/hyper-heuristics-public
https://gitlab.tuwien.ac.at/florian.mischek/hyper-heuristics-public

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

o R
0.8 1 Mean values
[
=
5 0.6 1
(9]
Z
o
°
g 0.4
©
£
o
0.2
Z () () ¢
0.0 1 LJQ - T T
MC Q-learning SARSA E-SARSA

Figure 3: Normalized objective values for different state-action
value update rules. The dotted line shows the median value of MC
learning.

For the remaining components, the effect of different con-
figurations was mostly independent of the chosen update rule.
For this reason, the figures and analysis presented below show
combined results for all four update rules.

Figure 4 shows a comparison of different state represen-
tations. It can be seen that the choice of features does not
result in drastic changes to the overall results. Surprisingly,
even a configuration that does not distinguish between differ-
ent states at all and learns a single value estimate for each
low-level heuristic globally does not perform worse than the
baseline configuration. However, the configurations using
only the last heuristic applied (LH) or only the type of the
last heuristic (LHT) perform slightly better than this.

Differentiating whether the hyper-heuristic found recent
improvements with a window size of 10 (RI10) further im-
proves the results by a small margin, both with and without
tail length. This window size seems particularly well suited
to model medium-term memory, as we did not find any simi-
lar improvement and sometimes even worse results with both
longer and shorter window sizes. We also did an experiment
comparing different cutoff-values for the maximum differen-
tiated tail length, but found no significant effect on the results.

The effect of different action selection policies is shown
in Figure 5. Both e-greedy and e-softmax produced similar
results to each other, but a difference can be seen regarding
the choice of €. While a minimum value of ¢ is required to
achieve good results, lower values tend to perform slightly
better if € remains constant over the course of the runtime.
This is not the case for variants with decreasing €, which show
consistent performance over the whole value range.

Compared to other components, the choice of the solution
chain length turned out to be crucial to achieve good results
(see Figure 6). Both chains of constant length 1 and chains
of infinite length (until an improvement is found or time runs
out, no resets) result in particularly bad performance. While
chains of longer constant lengths provide better results, fol-
lowing Luby’s sequence turned out to be clearly better than
any of the evaluated alternatives.

A small improvement can also be achieved by assigning
rewards equal to the total objective delta divided by the time

4797

1.0 1 o —— Mean values
e
o C] o
o o) ° [¢]
0.8 A
(]
2
5
3
= 0.6 1
o
el
(9]
N
© 0.4 1
£
o
=

Niajajujafagays

1Y 1 o) Q Q
B R\
< W

o\

&xg\ N

Figure 4: Normalized objective scores for state representations with
different feature combinations: Tail length (TLS), last heuristic
(LH), type of last heuristic (LHT), recent improvements (RI10).
The dotted line shows the median of the baseline configuration
(TL5+LH). The rightmost entry is a configuration that does not dis-
tinguish separate states at all.

taken by the last heuristic in the chain (Figure 7). This fol-
lows the intuition that heuristics which find good solutions
fast should be prioritized.

Finally, we also compared different learning rates for Q-
learning, SARSA, and E-SARSA but found no significant dif-
ferences between different values for a and no general trend
towards higher or lower values.

4.2 Final Evaluation

The analysis of the previous section indicates that the follow-
ing configuration is likely to perform for a hyper-heuristic:

A state representation of LH+H10, with a 0.1-softmax policy

with decreasing ¢ and rewards of %ig. The solution chain

length follows Luby’s sequence and state-action values are
updated via MC learning.

In the following, we denote this configuration as RL.
We evaluated our approach on all six domains contained in
HyFlex, using the same set of benchmark instances that were
used for the CHeSC. To compare the results with others, we
used the same scoring scheme as for the competition, award-
ing points per instance according to the ranking following the
Formula 1 system [Burke ef al., 2011]. If RL had been par-
ticipated in the competition, it would have achieved second
place (see Table 1), ahead of the approaches by [Hsiao er al.,
2012] and by [Larose, 2011].

We also compare with the more recent approach by
[Chuang, 2020], who also used repeated solution chains fol-
lowing Luby’s sequence. The thesis describes four differ-
ent algorithms, which differ in the heuristic selection pol-
icy: Uniform selects uniformly among all low-level heuris-
tics. The other three do the same in a warm-up period. After-
wards, Pruning removes low-level heuristics which were not
successful at all, Frequency subsequently selects low-level-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

—— e-greedy
¢ 0.28 1 e-greedy decr
‘8 —f— e-softmax
g 0.26 —— &-softmax decr
©
N
= 0.24 A
©
£
e |
c 0.22
§ 4\LU ‘ i —
= 0.20 1 ‘

00 01 02 03 04 05 06 0.7 08 09 1.0
Epsilon

Figure 5: Mean normalized objective value for different policies at
different values of €. Softmax with ¢ = 0 led to numerical stability
issues on some instances and is thus not included. The thin vertical
lines denote the 95% confidence interval of the mean.

1.01 o o —— Mean values

T

Luby 1 2 4 8 16 ®

Figure 6: Normalized objective scores for different solution chain
lengths. The dotted line shows the median of the baseline configu-
ration (Luby).

heuristics according to their frequency of success, and Bi-
gram does the same also considering the previously applied
heuristic. Note that the three latter policies perform only a
single learning step at the end of the warm-up period and do
not change afterwards. Unfortunately, the source code of the
algorithms was not available, so we re-implemented them ac-
cording to the description in [Chuang, 2020] and evaluated
them on our own machine. The results can be seen in Ta-
ble 2. Clearly, while solution chains with resets in cases of
no improvement are an important factor for the success of the
approach (see previous section), RL is able to improve upon

Rank Method Reference Score
1 AdapHH [Misireral,2012] 170.10
2 RL 126.60
3 VNS-TW [Hsiao et al.,2012] 125.10
4 ML [Larose, 2011] 118.50

Table 1: Top 4 approaches if RL had been a CHeSC participant.

4798

o 8 —— Mean values
0.8 1
[
2
@ 0.6
Qo
o
o
M
©
E
2 0.2
0.0 1 ;; r_l_<| |>_I_
Constant Sho 200 2o
&t Sat

Figure 7: Normalized objective scores for different reward schemes.
The dotted line shows the median of the baseline configuration (Con-
stant).

Method Rank Score
RL 2 126.60
Uniform 6 80.10
Pruning 4 96.00
Frequency 6 81.20
Bigram 5 84.95

Table 2: Comparison of results for RL with the re-implementation of
algorithms from [Chuang, 2020]. Shown are the rank and total score
the respective algorithm would have achieved if it had participated
in the CHeSC.

simpler action selection policies with no or limited learning.

5 Conclusions

In this paper, we have described a new hyper-heuristic ap-
proach for cross-domain optimization that models the solver
as a reinforcement learning agent. The hyper-heuristic learns
selection weights for the low-level heuristics and features
strategic resets to avoid getting stuck in regions of the search
space that do not yield good solutions. We have compared
several different variants of the algorithm components and
empirically shown that good choices for the representation
of the state space, the reward model, the decision policy and
most importantly the length of solution chains between re-
sets allow reinforcement learning to produce high-quality so-
lutions. The experimental evaluation shows that our approach
would be placed among the top participants of the CHeSC
hyper-heuristic competition and improves upon both earlier
work using reinforcement learning and an approach using a
similar reset mechanic but with no or limited learning.

For the future, it would be interesting to investigate the
function approximation approach for reinforcement learning.
Additionally, it would be conceivable to define a similarity
metric for different states and distribute the observed rewards
also to similar states for more robust results.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Acknowledgments

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

References

[Adriaensen et al., 2015] Steven Adriaensen, Gabriela
Ochoa, and Ann Nowé. A benchmark set extension and
comparative study for the hyflex framework. In 20715
IEEE Congress on Evolutionary Computation (CEC),
pages 784-791, 2015.

[Asta and Ozcan, 2015] Shahriar Asta and Ender Ozcan. A
tensor-based selection hyper-heuristic for cross-domain
heuristic search. Information Sciences, 299:412-432,
2015.

[Burke et al., 2011] Edmund K. Burke, Michel Gendreau,
Matthew Hyde, Graham Kendall, Barry McCollum,
Gabriela Ochoa, Andrew J. Parkes, and Sanja Petrovic.
The cross-domain heuristic search challenge — an interna-
tional research competition. In Carlos A. Coello Coello,
editor, Learning and Intelligent Optimization, pages 631—
634, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Burke et al., 2019] Edmund K. Burke, Matthew R. Hyde,
Graham Kendall, Gabriela Ochoa, Ender Ozcan, and
John R. Woodward. A Classification of Hyper-Heuristic
Approaches: Revisited, pages 453—477. Springer Interna-
tional Publishing, Cham, 2019.

[Chuang, 2020] Chung-Yao Chuang. Combining Multiple
Heuristics: Studies on Neighborhood-base Heuristics and
Sampling-based Heuristics. PhD thesis, Carnegie Mellon
University, 2020.

[Di Gaspero and Urli, 2012] Luca Di Gaspero and Tommaso
Urli. Evaluation of a family of reinforcement learning
cross-domain optimization heuristics. In Youssef Hamadi
and Marc Schoenauer, editors, Learning and Intelligent
Optimization, pages 384-389, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[Hsiao et al., 2012] Ping-Che Hsiao, Tsung-Che Chiang,
and Li-Chen Fu. A vns-based hyper-heuristic with adap-
tive computational budget of local search. In 2012 IEEE
Congress on Evolutionary Computation, pages 1-8, 2012.

[Larose, 2011] Mathieu Larose. A hyper-heuristic for the
chesc 2011. Report submitted for the CHeSC competition,
2011.

[Luby et al., 1993] Michael Luby, Alistair Sinclair, and
David Zuckerman. Optimal speedup of las vegas algo-
rithms. Information Processing Letters, 47(4):173-180,
1993.

[Meignan ef al., 2010] David Meignan, Abderrafiaa
Koukam, and Jean-Charles Créput. Coalition-based
metaheuristic: a self-adaptive metaheuristic using rein-
forcement learning and mimetism. Journal of Heuristics,
16(6):859-879, 2010.

4799

[Misir ez al., 2012] Mustafa Misir, Katja Verbeeck, Patrick
De Causmaecker, and Greet Vanden Berghe. An intelli-
gent hyper-heuristic framework for chesc 2011. In Youssef
Hamadi and Marc Schoenauer, editors, Learning and In-
telligent Optimization, pages 461-466, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[Ochoa et al., 2012a] Gabriela Ochoa, Matthew Hyde, Tim
Curtois, Jose A. Vazquez-Rodriguez, James Walker,
Michel Gendreau, Graham Kendall, Barry McCollum, An-
drew J. Parkes, Sanja Petrovic, and Edmund K. Burke.
Hyflex: A benchmark framework for cross-domain heuris-
tic search. In Jin-Kao Hao and Martin Middendorf, editors,
Evolutionary Computation in Combinatorial Optimiza-
tion, pages 136-147, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[Ochoa et al., 2012b] Gabriela Ochoa, James Walker,
Matthew Hyde, and Tim Curtois. Adaptive evolutionary
algorithms and extensions to the hyflex hyper-heuristic
framework. In International Conference on Parallel
Problem Solving from Nature, pages 418—427. Springer,
2012.

[Sabar and Kendall, 2015] Nasser R. Sabar and Graham
Kendall. Population based monte carlo tree search hyper-
heuristic for combinatorial optimization problems. Infor-
mation Sciences, 314:225-239, 2015.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

	Introduction
	Cross-Domain Optimization Hyper-Heuristics
	Reinforcement Learning for Heuristic Selection
	State Representation
	Action Selection Policy
	Rewards
	State-Action Value Update Rule
	Solution Chain Length

	Evaluation
	Component Analysis
	Final Evaluation

	Conclusions

