
Deep Interactive Surface Creation from 3D Sketch Strokes

Sukanya Bhattacharjee∗ , Parag Chaudhuri
Department of Computer Science and Engineering, IIT Bombay

{sukanyabhat, paragc}@cse.iitb.ac.in

Abstract
We present a deep neural framework that allows
users to create surfaces from a stream of sparse 3D
sketch strokes. Our network consists of a global
surface estimation module followed by a local sur-
face refinement. This facilitates in the incremental
prediction of surfaces. Thus, our proposed method
works with 3D sketch strokes and estimate a sur-
face interactively in real time. We compare the pro-
posed method with various state-of-the-art methods
and show its efficacy for surface fitting. Further, we
integrate our method into an existing Blender based
3D content creation pipeline to show its usefulness
in 3D modeling.

1 Introduction
Artists have always sought ways to express the world around
us in their creations. One of the most common ways of
artistic expression has been sketching. Sketching on a 2D
medium has been explored by generations of artists over cen-
turies. New digital media has made expressing ideas in 3D
possible. However, the interaction mechanisms for mod-
elling in 3D are difficult to learn. In this work we present
a method to translate sketch strokes to 3D surface patches.
Our method allows an artist to sketch one or more strokes
in 3D space. A deep neural network, which is designed to
learn from a stream of sparse sketch strokes, predicts a sur-
face patch from these strokes. Since several tools exist for
modelling in 3D, we present a method which complements
them by interactively refining existing 3D models of objects .
We demonstrate this showing interactive surface in-painting
during model creation, where an incomplete portion in a 3D
model is completed by sketching. In classical surface in-
painting, the scope of any creative or artistic input towards in-
painting is severely restricted [Lui et al., 2012; Verdera et al.,
2003; Sahay and Rajagopalan, 2015; Zhong and Qin, 2016;
Bendels et al., 2006; Harary et al., 2014] and the desired sur-
face is realized through the control handles post in-painting.
Our method can be used to utilize the creative input from the
user through the sketch strokes in creating a more desirable
surface for in-painting.

∗Contact Author

The problem of 3D sketch to surface generation is closely
related to the problem of scattered data approximation, where
the strokes can be perceived as a sparse set of samples from
the surface which would pass through them. Classically, this
is solved by regression methods like least squares optimiza-
tion, fitting with radial basis functions or cubic spline inter-
polation. Another way to look at this problem is to treat the
stroke points as point clouds and then use existing techniques
to create a surface from it. However, we show in the paper,
both these methods produce sub-optimal results, owing to the
sparsity and irregularity of the strokes. We propose a deep
neural network StPNet, which incrementally creates a sur-
face from a sequence of strokes. We consider patch based
3D models as these are commonly encountered in modelling
pipelines. With our method, both a missing or an existing
patch can be in-painted using strokes, replacing the existing
patch in the latter case. In both the cases, the core challenge
is to produce a surface which approximates the strokes well
and blends smoothly with the existing structure. We test our
method in an existing interactive 3D content creation pipeline
by implementing it as a plugin to Blender [Blender, 2017].
We show that we can quickly edit 3D surface models while
using Blender’s the Grease Pencil [Leung and Lara, 2015] 3D
sketching tool

Our main contributions are:

• An end-to-end trained network for incrementally fitting
a 3D surface patch to a stream of incoming 3D strokes.

• An interactive method for surface in-painting in a given
patch based 3D model using sketch strokes as input.

We discuss related concepts and literature in Section 2.
We describe our method with its various components in Sec-
tion 3. The training approach including the dataset prepara-
tion is covered in Section 4. Section 5 is dedicated to the
description of various experiments and their results.

2 Related Work
There is a lot of prior work that deals with 3D modeling from
sketches. In [Nealen et al., 2007], the authors present a 2D
sketching interface inspired from [Igarashi et al., 1999], in
which a 3D model can be created and edited using control
curves that define surface geometry. A 3D model guided
sketching method to build a layered model on top of a base

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4908

Figure 1: Overview of StPNet architecture: (1) Global surface estimate takes the 3D sketch strokes (with optional neighboring patch
boundaries for blending) and produces its 3D surface approximation. (2) Local surface estimate refines the predicted 3D surface to incorporate
the changes in shape with each incoming stroke. (3) An additional post processing step stitches the predicted 3D surface with the neighboring
patches.

model is presented in [De Paoli and Singh, 2015]. The gen-
erated curve primitives are represented using a graph where
loops indicate a surface modelled as a three or four sided
Coons patch [Coons, 1967]. Smirnov et al. [Smirnov et al.,
2019] construct 3D models for some categories of man made
objects by using a CNN to infer a series of parametric sur-
faces that fit onto a template model for the given 2D sketch.
Xu et al. [Xu et al., 2018] devise a different approach for
3D sketching that is guided by a reference 3D model. The
reference model is used to determine the sketching plane for
the 3D strokes. Rosales et al. [Rosales et al., 2019] compute
manifold surface strips from the sketches drawn in a VR plat-
form. A survey by Bhattacharjee and Chaudhuri [Bhattachar-
jee and Chaudhuri, 2020] presents more details on various
aspects of sketch based content creation including 3D mod-
elling. In more recent work, Wang et al. [Wang et al., 2022]
develop an interface using a PDE based geometric modeling
to obtain C0 continuous patches from vertex frames modified
in real time.

Geometric deep learning based techniques also have found
favour for surface fitting in recent times. Yang et al. propose
an auto-encoder that trains on point cloud data [Yang et al.,
2018]. A graph-based layer is added to PointNet [Qi et al.,
2017] to emphasize local structures. A folding-based decoder
then deforms a 2D grid onto the underlying 3D object surface
representing the point cloud. Sharma et al. [Sharma et al.,
2020] device an end-to-end neural network that decomposes a
3D point cloud into geometric primitives like spheres, cones,
cylinders and B-spline surfaces by segmenting the point cloud
using DGCNN [Wang et al., 2019] and then predicting the
parameter values corresponding to the primitive type for that
segment. In [Mehr et al., 2019], a 3D shape editing tool is
proposed that uses both sketch strokes and control handles. It
uses a series of CNN based autoencoders that learn each con-
nected component of a disconnected manifold and then infer
the 3D surface by deforming a pre-learned 3D template spe-
cific to each connected component. A detailed survey on ge-
ometric deep learning for point clouds can be found in [Guo
et al., 2020].

However, these methods either lack in processing an in-
coming stream of 3D free-form strokes and create plausible
3D surfaces, or approximate viable 3D surfaces from a sparse
and irregular set of points as shown in our experiments.

3 Method
The core challenge in our problem is handling sparse and
irregular set of 3D points. As opposed to this, the existing
methods are designed to handle dense and regular(uniformly
spaced) set of 3D points. We need a method that can trans-
late an irregular and sparse structure to a more regular and
dense one such that significant shape features and changes in
them with the incoming strokes can be extracted. We propose
an end-to-end neural network model StPNet, which can fit a
Bézier patch to an incoming stream of 3D sketch strokes such
that it can support interactive in-painting while overcoming
these challenges. We represent the inferred 3D patches as
bicubic Bézier surface as they offer a good trade-off between
ease of processing and versatility in representing various sur-
face shapes.

The input to the model is a sequence of strokes S =
{sk}Nk=1 such that sk = {pi}ni=1 where pi = (x, y, z) is a
point in 3D space. The model outputs a patch B that is repre-
sented by its control points {ck}.

3.1 StPNet: Patch Fitting on 3D Strokes
The network aims at fitting a 3D bicubic Bézier surface to a
sequence of incoming sketch strokes. As noted in [Sharma et
al., 2020], predicting the control grid corresponding to a para-
metric surface from a network is more robust as compared to
predicting the surface directly. Thus, we choose to predict
the control grid corresponding to the output surface from our
model and then compute the surface from it.

Our network consists of the following modules: (i) an ini-
tial global surface estimation and a subsequent (ii) local fea-
ture based surface estimation (Figure 1). The initial surface
estimator consists of a series of fully connected layers to
predict a starting estimate of the patch corresponding to the
strokes input till then. This is done to translate the given in-
put, which is essentially non-uniformly spaced over the 3D
space, into a more uniformly spaced structure to improve the
performance of the convolution layers that follow next. The
output of this block is fed to the global feature based surface
estimator which comprises of ResNet [He et al., 2016] based
layers. The ResNet block refines the initial surface such that it
fits to all the strokes given till that point of time while trying
to capture the overall shape that the strokes represent. This
forms the global solution which fits all the input strokes from

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4909

scratch. Since the sketch strokes are added in an incremen-
tal manner, there is a local characteristic associated with the
estimation as the sketch progresses. We leverage this prop-
erty by passing the output of the global surface estimator to
the local feature based surface estimator, which consists of a
LSTM layer. This takes into account the surface fitted to the
previous strokes and predicts the current surface. The average
of these two surfaces is taken as the final output from the net-
work while training. This is done to give equal weightage to
the features learned by both the estimators. The surface esti-
mated finally at the end of the entire network, which includes
both the global and local surface estimators, is considered as
output at test time.

3.2 Blending StPNet: Smooth Joining of Patches
A surface patch has to join smoothly with adjoining patches,
so that it can be used as part of a more complex object models.
In order to achieve this, we find the common boundaries from
the adjacent patches. For this, we maintain a global graph
based data structure of all the patches from the object. As
the strokes are sketched, we find its four closest neighbors.
We maintain a local octree based structure to determine the
relative orientation of these neighbors to the input strokes.
These boundaries along with the input strokes are given to
our network to produce a patch which nearly blends to the
rest of the object. To ensure smooth connectivity, we stitch
the boundaries of the predicted patch to the corresponding
ones from the adjacent patches.

4 Training
4.1 Dataset
Estimating a surface from a set of strokes is an under-
constrained problem, with a wide range of mathematically
valid but unrealistic solutions. We would want our model to
predict meaningful surfaces from strokes, for which an ob-
vious choice would be to subject the model to a supervised
training on a wide range of realistic surfaces.

We use the SplineDataset given in [Sharma et al., 2020]
derived from the ABC dataset [Koch et al., 2019]. We extract
the B-spline surfaces from the dataset, convert them to bicu-
bic Bézier surfaces and sample random strokes from these
surfaces. We call this dataset as ABCSpline dataset. (Train-
Valid-Test: 25K-1K-6K) We also generate a dataset with the
boundary strokes (4) for the surfaces from the SplineDataset,
which we refer to as the boundABCSpline dataset. We use
Geomdl NURBS [Bingol and Krishnamurthy, 2019] library
to create the bicubic Bézier surfaces from the predicted con-
trol points. We randomly sample strokes of varied lengths on
a surface and on its boundaries. We empirically fix the num-
ber of strokes sampled from the interior of a surface patch to
16.

Preprocessing
We downsample the number of points from each stroke to 20
for simpler processing by the model. We fit a cubic 3D Bézier
curve to each stroke in the datapoint for smoothing out jitter
in the input strokes. Empirically, we found that smoothing
the curves improves the performance of the network. We ran-
domly shuffle the order of the interior strokes to make the

(a) ABCSpline (b) boundABCSpline

Figure 2: Plots to show variation of error of various baselines and
our method in the predicted surface with ground truth with given
number of strokes on two datasets.

model stroke order agnostic. Our network is by design lim-
ited to take atmost 16 (or 20, in case boundaries are added)
strokes. The network takes a fixed input size long enough
to accommodate 16 (or 20) strokes. However, in the incre-
mental sketching process, when all 16 (or 20) strokes are not
present, we need to signal the network the same. Towards
this, apart from 3 dimensions for stroke coordinates, we add
another channel of a multi-hot vector which has 1s for the
entries which have a sampled stroke point.

4.2 Loss Functions
The loss function needs to measure the difference between
the ground truth surface and the two predicted surfaces, one
from each global and local feature based surface estimations.
We give equal weights to both of them to enforce learning
from both feature sets. We use a modified one sided Cham-
fer distance [Barrow et al., 1977] for this purpose, as used
in [Sharma et al., 2020]. The L2 norm is replaced with a
variant of Lα-norm inspired from [Barron, 2019].

Lsurf =
∑
S∈D

1

|S|
∑
x∈P

||x− x̂||α (1)

Here, S denotes a surface in dataset D, and x is a point sam-
pled from the predicted surface P and x̂ is a point sampled
from ground truth surface S such that they correspond to the
same grid point in UV space. ||.||α denotes the α norm be-
tween two 3D points and |.| denotes the size of a set. We use
α = 1 which represents a smoothed L1 norm. The α norm
helps account for lack of information about regions on the
surface patch from which no input strokes are present (due to
sparsity of input).

5 Experiments and Results
We describe various experiments performed to compare our
method to the baselines along with the analysis of the results.

We use both sided Chamfer distance [Yang et al., 2018] as
given below to measure the accuracy of our method, as com-
pared to various baselines, using the test datasets mentioned
in Section 4.1.

d = max{ 1

|S|
∑
x∈S

min
x̂∈Ŝ

||x− x̂||2,
1

|Ŝ|

∑
x̂∈Ŝ

min
x∈S

||x̂− x||2}

(2)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4910

We compute this distance for 3.6K points sampled from the
predicted surface Ŝ and ground truth surface S, and report
the average values in our results. The hyperparameters used
are as follows - learning rate: 0.0005, weight decay (Adam):
5e-06, batch size: 32, epochs: 100. The details of the net-
work architecture is given in the following format - Block
name: [(Input dim-Output dim), (Activation)](other info).
The global surface estimation module- FC4: [(n*20*4, 512),
lrelu-0.2], [(512, 432), lrelu-0.2], [(432, 432), lrelu-0.2],
[(432, 12*12*3), lrelu-0.2], followed by Resnet: [((3600,4),
(1000)), -](Resnet18), [(1000,4*4*3),-](FC). The local sur-
face estimation module- LSTM: [(48,48), -](number of lay-
ers=1), [(48,48),-](FC). Here, n is number of strokes, lrelu-
0.2 is leaky relu with negative slope 0.2. The surface genera-
tor computes the Bézier surface using the control points and
knot vectors.

5.1 Patch Fitting Evaluation
We use the methods given in [Sharma et al., 2020] (PsN),
[Yang et al., 2018] (FdN) and cubic spline surface interpola-
tion (Spline Optim (SOp)) from Geomdl library [Bingol and
Krishnamurthy, 2019] as baselines. We train the first two
baselines with the same datasets and set-ups as ours. For
a better comparison between our method which is specifi-
cally designed for streaming input of strokes, we equip these
methods with our loss function and the initial surface estima-
tion networks too (see Section 3.1). We call this variant of
Parsenet as modParsenet (mPsN) and that of Foldingnet as
modFoldingnet (mFdN). We report the quantitative results in
Table 1 (Top half) and qualitative comparisons in Figures 3
and 4.

Also, to show the improvement in approximation of the
surface with each added stroke, we compare the error of the
surfaces predicted from fewer strokes with ground truth sur-
face. Figure 2 shows the error plots of stroke by stroke output
surfaces, and Figure 5 shows how the patches evolve with ad-
ditional strokes.

Method Boundary
strokes

Initial
surface Loss α Error

Spline Optim ✗ - - 0.2639
Parsenet ✗ ✗ 2 0.1510
modParsenet ✗ ✓ 1 0.0683
Foldingnet ✗ ✗ 2 0.0141
modFoldingnet ✗ ✓ 1 0.0495
StPNet ✗ ✓ 1 0.0096
Spline Optim ✓ - - 0.1317
Parsenet ✓ ✗ 2 0.1235
modParsenet ✓ ✓ 1 0.0306
Foldingnet ✓ ✗ 2 0.0051
modFoldingnet ✓ ✓ 1 0.0041
StPNet ✓ ✓ 1 0.00035

Table 1: Comparison between various methods and our method
on ABCSpline and boundABCSpline datasets for a Bézier sur-
face patch fitting. Loss: α=2:original Chamfer loss, α=1:modified
Chamfer loss. The percentage improvement of our method over the
best performing baselines: ABCSpline: 31.91%, boundABCSpline:
91.46%

(a) Input (b) SOp (c) PsN (d) mPsN

(e) FdN (f) mFdN (g) StPNet (h) GT

Figure 3: Qualitative results for patch fitting on ABCSpline dataset.
(a) input strokes (b)-(g) represent predicted patch from the men-
tioned methods. (b) cubic interpolation [Bingol and Krishna-
murthy, 2019] (c) parsenet [Sharma et al., 2020] (d) modParsenet
(e) foldingnet [Yang et al., 2018] (f) modFoldingnet (g) StPNet (our
method) (h) Ground truth patch.

(a) Input (b) SOp (c) PsN (d) mPsN

(e) FdN (f) mFdN (g) StPNet (h) GT

Figure 4: Qualitative results for patch fitting on boundABCSpline
dataset. (a) input strokes (b)-(g) represent predicted patch from the
mentioned methods. (b) cubic interpolation [Bingol and Krishna-
murthy, 2019] (c) parsenet [Sharma et al., 2020] (d) modParsenet
(e) foldingnet [Yang et al., 2018] (f) modFoldingnet (g) StPNet (our
method) (h) Ground truth patch.

(a) Input (b) n=1 (c) n=5 (d) n=10 (e) n=16 (f) GT

(a) Input (b) n=4 (c) n=8 (d) n=12 (e) n=20 (f) GT

Figure 5: Evolution of the predicted surface from StPNet with in-
creasing number of input strokes (n is the the number strokes). Top
row: ABCSpline, Bottom row: boundABCSpline

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4911

Boundary
strokes

Initial
surface est

Global
feature est

Local
feature est

Error

✗ ✓ ✗ ✗ 0.0150
✗ ✓ ✓ ✗ 0.0116
✗ ✓ ✓ ✓ 0.0096
✓ ✓ ✗ ✗ 0.00095
✓ ✓ ✓ ✗ 0.00038
✓ ✓ ✓ ✓ 0.00035

Table 2: Ablation study of various components of StPNet on ABC-
Spline and boundABCSpline datasets for single Bezier surface patch
fitting.

Method Boundary
strokes

Initial
surface Loss α Error

Spline Optim ✗ - - 0.1732
Parsenet ✗ ✗ 2 0.0867
modParsenet ✗ ✓ 1 0.0428
Foldingnet ✗ ✗ 2 0.0135
modFoldingnet ✗ ✓ 1 0.0313
StPNet ✗ ✓ 1 0.0110
Spline Optim ✓ - - 0.1050
Parsenet ✓ ✗ 2 0.0722
modParsenet ✓ ✓ 1 0.0263
Foldingnet ✓ ✗ 2 0.0100
modFoldingnet ✓ ✓ 1 0.0098
StPNet ✓ ✓ 1 0.0069

Table 3: Ablation study on ABCSplineClosed and boundABC-
SplineClosed datasets for single Bézier surface patch fitting. Loss:
α=2:original Chamfer loss, α=1:modified Chamfer loss. The per-
centage improvement of our method over the best performing
baselines: ABCSplineClosed: 18.52%, boundABCSplineClosed:
29.59%

We compare the improvement in our approximation when
the boundary strokes are explicitly sketched at the beginning
and the inner stroke details are filled subsequently. Table 1
(bottom half) and Figure 4 show these results. As part of
the ablation study, we compare the performance of various
components of our network separately as well in Table 2.

Although we train our network with open surfaces, we also
check performance of our method on closed surfaces. For
this, we use a dataset of randomly chosen 200 closed surfaces
from the same SplineDataset, and call it as closedABCSpline
(boundclosedABCSpline) dataset. We split the closed surface
into open surfaces and join appropriately. We test our method
and the baselines on both the ABCSplineClosed and bound-
ABCSplineClosed datasets (see Table 3 and Figures 6 and 7).

We use a synthetic dataset of randomly generated 6K 3D
bicubic Bézier surfaces to test the efficacy of our model to
generalize to other datasets. We call this dataset as RBST
(boundRBST) dataset. We also check the improvement in
result when finetuning is employed. See Figure 8 for results.

5.2 Interactive Surface Creation
Synthetically Sampled Sketch Strokes
To evaluate the performance of our network for the surface in-
painting task on patch based 3D models, we use the models
from the Utah tea set.

(a) Input (b) SOp (c) PsN (d) mPsN

(e) FdN (f) mFdN (g) StPNet (h) GT

Figure 6: Qualitative results for patch fitting on ABCSplineClosed
dataset. (a) input strokes (b)-(g) represent predicted patch from the
mentioned methods. (b) cubic interpolation [Bingol and Krishna-
murthy, 2019] (c) parsenet [Sharma et al., 2020] (d) modParsenet
(e) foldingnet [Yang et al., 2018] (f) modFoldingnet (g) StPNet (our
method) (h) Ground truth patch.

(a) Input (b) SOp (c) PsN (d) mPsN

(e) FdN (f) mFdN (g) StPNet (h) GT

Figure 7: Qualitative results for patch fitting on boundABC-
SplineClosed dataset. (a) input strokes (b)-(g) represent predicted
patch from the mentioned methods. (b) cubic interpolation [Bin-
gol and Krishnamurthy, 2019] (c) parsenet [Sharma et al., 2020] (d)
modParsenet (e) foldingnet [Yang et al., 2018] (f) modFoldingnet
(g) StPNet (our method) (h) Ground truth patch.

(a) Input (b) StPNet (c) StPNet (FT) (d) GT

Figure 8: Qualitative results for finetuning to fit patches on RBST
and boundRBST datasets. (a) input sketch strokes (b) predicted
patch from StPNet (c) predicted patch from fine tuned StPNet (d)
Ground truth patch. Top row: RBST, Bottom row: boundRBST

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4912

(a) Input (b) GT (c) StPNet (d) Error map

Figure 9: Qualitative results for editing patch fitting on utah teaset
models. (a) Incomplete model with input strokes (b) Patches in or-
ange are ground truth for missing patches (c) Patches in lavender are
predicted patches for the missing patches (d) Point-wise error be-
tween predicted and ground truth missing patches. Top row: Teapot,
Middle row: Teacup, Bottom row: Teaspoon.

Model Teapot Teacup Teaspoon
Average error 0.0350 0.0094 0.0035

Table 4: Average error between the predicted and ground truth
patches for the Utah tea set models. Average bounding box dimen-
sion: teapot: [1.391, 1.154, 0.627], teacup: [0.659, 0.312, 0.635],
teaspoon: [0.123, 0.303, 0.056]]

We extract the bicubic patches from the extended set of
classic Utah teapot models [Torrence, 2006] and sample
strokes on these patches. We randomly remove patches from
these models and validate our results by predicting these
missing patches in the models. See Figure 9 for the results
and Table 4 for average error between the ground truth and
predicted patches.

Interactive (Real-time) Sketch Strokes
We implement a Blender plug-in to validate our method for
in-painting 3D patch based models interactively. We show
examples of adding new patches with different stroke input in
Figure 10. See the supplementary video for the full process.

5.3 Results and Analysis
We see from the various experiments in previous subsections
that our method significantly improves the surface approxi-
mation accuracy as compared to existing methods. The initial
surface estimation facilitates our method as well as the base-
lines to perform better. The global feature extraction cap-
tures the overall structure of the surface and features such as
inner surface curvatures from given strokes. The local fea-
ture extraction helps in capturing how the surface changes

Figure 10: Results of in-painting in real time. Top row: Input stroke
on incomplete object, Bottom row: Output surface with the object

with incoming strokes, compensating the ambiguity caused
by sparsity of input. As we can see from Table 2, StPNet
with local feature extraction performs better than one with
the global feature extraction network only. Without the lo-
cal feature extraction module, the set-up resembles a non-
streaming case where there is no notion of previous output
from the network. The major advantage of our method is
that it can work well with very few strokes and produce vi-
able solutions. We also observe that when boundary strokes
are added, the performance of all the methods improve. This
shows that these strokes hold significantly important features
both for approximating surfaces and blending the patch with
other adjoining patches. Our method is able to approximate
the closed surfaces without training separately on these sur-
faces, which reduces the dependency on having a dataset of
closed surfaces. We also see that our method is able to capture
the shape of the surfaces for newer datasets and the accuracy
further improves when finetuning is employed. For interac-
tive surface in-painting, we see that in case of both synthetic
and real sketch input blending StPNet is able to produce ac-
curate and visually consistent results. The estimated patches
in case of real strokes follow the stroke shapes, which can
reduce the effort by the user in further modifying the patch.
This can also help in completing patch based models which
have a rough but sparsely filled structure in place.

6 Conclusion
We propose a deep neural network based framework that
allows for interactive surface estimation from 3D sketch
strokes. We demonstrate how this can be used in an exist-
ing 3D content creation pipeline in Blender for in-painting
of patch based 3D models. We outperform various existing
neural and non-neural methods for scattered data interpola-
tion, showing the efficacy of our method. The stability of our
method with a sparse set of strokes can prove to be handy
when an artist wants to quickly repair a 3D model. We in-
tend to further improve our network to reduce dependency
on explicitly determining the boundaries of adjacent patches
by enabling the network to adapt to its neighborhood auto-
matically. Also, extending the method to other classes of 3D
objects like organic shapes (e.g., human faces) is a direction
for improvement. In future work, we also want to explore the
use of our network in creation of 3D models from scratch.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4913

References
[Barron, 2019] Jonathan T Barron. A general and adaptive

robust loss function. In Proc. of CVPR, pages 4331–4339,
2019.

[Barrow et al., 1977] Harry G Barrow, Jay M Tenenbaum,
Robert C Bolles, and Helen C Wolf. Parametric corre-
spondence and chamfer matching: Two new techniques
for image matching. Technical report, Sri International AI
Center, 1977.

[Bendels et al., 2006] Gerhard H Bendels, Michael Guthe,
and Reinhard Klein. Free-form modelling for surface in-
painting. In Proc. of the 4th International Conference on
Computer graphics, Virtual Reality, Visualisation and In-
teraction in Africa, pages 49–58, 2006.

[Bhattacharjee and Chaudhuri, 2020] Sukanya Bhattachar-
jee and Parag Chaudhuri. A survey on sketch based
content creation: from the desktop to virtual and aug-
mented reality. In Computer Graphics Forum, volume 39,
pages 757–780. Wiley Online Library, 2020.

[Bingol and Krishnamurthy, 2019] Onur Rauf Bingol and
Adarsh Krishnamurthy. NURBS-Python: An open-source
object-oriented NURBS modeling framework in Python.
SoftwareX, 9:85–94, 2019.

[Coons, 1967] Steven A Coons. Surfaces for computer-aided
design of space forms. Technical report, MIT Cambridge
Project MAC, 1967.

[De Paoli and Singh, 2015] Chris De Paoli and Karan Singh.
Secondskin: sketch-based construction of layered 3d mod-
els. ACM Trans. on Graphics, 34(4):126, 2015.

[Guo et al., 2020] Yulan Guo, Hanyun Wang, Qingyong Hu,
Hao Liu, Li Liu, and Mohammed Bennamoun. Deep learn-
ing for 3d point clouds: A survey. IEEE TPAMI, 2020.

[Harary et al., 2014] Gur Harary, Ayellet Tal, and Eitan
Grinspun. Context-based coherent surface completion.
ACM Trans. on Graphics, 33(1):1–12, 2014.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. of CVPR, pages 770–778, 2016.

[Igarashi et al., 1999] Takeo Igarashi, Satoshi Matsuoka, and
Hidehiko Tanaka. Teddy: a sketching interface for 3d
freeform design. In SIGGRAPH, pages 409–416. ACM,
1999.

[Koch et al., 2019] Sebastian Koch, Albert Matveev, Zhong-
shi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo.
Abc: A big cad model dataset for geometric deep learn-
ing. In Proc. of CVPR, pages 9601–9611, 2019.

[Lui et al., 2012] Lok Ming Lui, Chengfeng Wen, and Xian-
feng Gu. A conformal approach for surface inpainting.
arXiv preprint arXiv:1212.0981, 2012.

[Mehr et al., 2019] Eloi Mehr, Ariane Jourdan, Nicolas
Thome, Matthieu Cord, and Vincent Guitteny. Disconet:
Shapes learning on disconnected manifolds for 3d editing.
In Proc. of CVPR, pages 3474–3483, 2019.

[Nealen et al., 2007] Andrew Nealen, Takeo Igarashi, Olga
Sorkine, and Marc Alexa. Fibermesh: designing freeform
surfaces with 3d curves. In ACM SIGGRAPH 2007 papers,
pages 41–50. ACM, 2007.

[Qi et al., 2017] Charles R Qi, Hao Su, Kaichun Mo, and
Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proc. of CVPR,
pages 652–660, 2017.

[Rosales et al., 2019] Enrique Rosales, Jafet Rodriguez, and
Alla Sheffer. Surfacebrush: from virtual reality draw-
ings to manifold surfaces. ACM Trans. on Graphics,
38(4):96:1–96:15, 2019.

[Sahay and Rajagopalan, 2015] Pratyush Sahay and AN Ra-
jagopalan. Geometric inpainting of 3d structures. In Proc.
of CVPR Workshops, pages 1–7, 2015.

[Sharma et al., 2020] Gopal Sharma, Difan Liu, Subhransu
Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, and
Radomı́r Měch. Parsenet: A parametric surface fitting net-
work for 3d point clouds. In Proc. of ECCV, pages 261–
276. Springer, 2020.

[Smirnov et al., 2019] Dmitriy Smirnov, Mikhail Bessmelt-
sev, and Justin Solomon. Deep sketch-based modeling
of man-made shapes. arXiv preprint arXiv:1906.12337,
2019.

[Torrence, 2006] Ann Torrence. Martin newell’s original
teapot. In ACM SIGGRAPH 2006 Teapot, pages 29–es.
2006.

[Verdera et al., 2003] Joan Verdera, Vicent Caselles,
Marcelo Bertalmio, and Guillermo Sapiro. Inpainting
surface holes. In Proc. of ICIP, volume 2, pages II–903.
IEEE, 2003.

[Wang et al., 2019] Yue Wang, Yongbin Sun, Ziwei Liu,
Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds.
ACM Trans. On Graphics, 38(5):1–12, 2019.

[Wang et al., 2022] Shuangbu Wang, Yu Xia, Lihua You,
Hassan Ugail, Alfonso Carriazo, Andres Iglesias, and Jian-
jun Zhang. Interactive pde patch-based surface modeling
from vertex-frames. Engineering with Computers, pages
1–19, 2022.

[Xu et al., 2018] Pengfei Xu, Hongbo Fu, Youyi Zheng,
Karan Singh, Hui Huang, and Chiew-Lan Tai. Model-
guided 3d sketching. IEEE TVCG, pages 2927–2939,
2018.

[Yang et al., 2018] Yaoqing Yang, Chen Feng, Yiru Shen,
and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proc. of CVPR, pages 206–215,
2018.

[Zhong and Qin, 2016] Ming Zhong and Hong Qin. Surface
inpainting with sparsity constraints. CAGD, 41:23–35,
2016.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI, the Arts and Creativity

4914

	Introduction
	Related Work
	Method
	StPNet: Patch Fitting on 3D Strokes
	Blending StPNet: Smooth Joining of Patches

	Training
	Dataset
	Loss Functions

	Experiments and Results
	Patch Fitting Evaluation
	Interactive Surface Creation
	Results and Analysis

	Conclusion

