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Abstract
Following the success of pre-training paradigm in
the natural language domain, a flurry of table pre-
training frameworks have been proposed and have
achieved new state-of-the-arts on various down-
stream tasks such as table question answering, table
type recognition, column relation classification, ta-
ble search, and formula prediction. Various model
architectures have been explored to best leverage
the characteristics of structured tables, especially
specially-designed attention mechanisms. More-
over, to fully exploit the supervision signals in un-
labeled tables, diverse pre-training objectives have
been designed and evaluated, for example, denois-
ing cell values, predicting numerical relationships,
and learning a neural SQL executor. This survey
aims to provide a review of model designs, pre-
training objectives, and downstream tasks for table
pre-training, and we further share our thoughts on
existing challenges and future opportunities.

1 Introduction
Tables are widely used to organize and present data in vari-
ous document types and database systems such as webpages,
spreadsheets, PDFs, and MySQL, gaining increasing atten-
tion from the research community. Following the success of
large-scale pre-training in natural language (NL), a flurry of
research works have been proposed to leverage unlabeled ta-
bles for self-supervised pre-training and achieve promising
results in table type classification [Wang et al., 2021c], cell
type classification [Gol et al., 2019; Wang et al., 2020], ta-
ble question answering (QA) [Herzig et al., 2020; Yin et al.,
2020], table search [Wang et al., 2021b], entity linking [Deng
et al., 2020], column type identification [Chen et al., 2019;
Guo et al., 2020], table augmentation [Deng et al., 2020;
Iida et al., 2021], formula prediction [Cheng et al., 2021],
etc. On the one hand, similar to NL that has already proved
the success of large-scale pre-training, tables have dense se-
mantics stored in textual headers, captions, and notes. On

(a) A hierarchical matrix web table in Wikipedia

(b) An entity table in Wikipedia
(c) A relational PDF table in 

[Devlin et al., 2018]

(d) A matrix spreadsheet table

Figure 1: Examples of real-world web, PDF, and spreadsheet tables.

the other hand, different from NL, tables have distinct infor-
mation (intuitive formats, well-organised numerical values,
formulas, etc.) and various structures (relational tables, en-
tity tables, matrix tables, forms, etc.), and thus require special
model architectures and pre-training objectives to achieve op-
timal results.

To best leverage table characteristics while maintaining
capabilities to understand text within/out of tables, various
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Tabular Language Models (TaLMs) are proposed for table
pre-training. For example, TaBERT [Yin et al., 2020] en-
coded tables and text by concatenating a row-wise trans-
former with column-wise vertical attention layers, pre-trained
with Masked Language Models (MLM) and Masked Column
Prediction (MCP), and achieved SOTA results on benchmarks
of table QA. TaPas [Herzig et al., 2020] pioneeringly pro-
posed an end-to-end table-text joint reasoning framework us-
ing transformers without explicitly generating logical forms
for table QA, and TaPas also employed MLM for pre-training.
TURL [Deng et al., 2020] was the first work to learn entity
representations from relational tables to enhance table knowl-
edge matching and table augmentation, and it restricted each
cell to aggregating information from the located row and col-
umn via masked attention. TUTA [Wang et al., 2020] then
extended the success of table pre-training to generally struc-
tured tables using tree-based attention and tree-based posi-
tional encoding based on a novel unified bi-tree structure.
TUTA achieved new SOTA results on five table structure un-
derstanding datasets. Far different from previous pre-training
objectives, TaPEx [Liu et al., 2021] explored to learn a neural
SQL executor and demonstrated surprising effectiveness on
table-text joint reasoning. Recently, UnifiedSKG [Xie et al.,
2022] explored to directly fine-tune T5 on 21 datasets across
6 tasks and achieved promising and even SOTA results.

We believe that the structured table provides a distinct per-
spective to explore frontier neural architectures and inspire
new research directions. Since the table often interacts with
programming languages such as SQLs and spreadsheet for-
mulas, it additionally spawns cross-domain applications such
as semantic parsing [Yu et al., 2018], logic-to-text [Chen et
al., 2020], and formula prediction [Chen et al., 2021]. In
this paper, we first introduce preliminaries of table types,
table structures, cell information, and table corpora in Sec-
tion 2. Then we give a comprehensive review of table mod-
eling architectures, table pre-training objectives, and down-
stream tasks in Sections 3,4,5. At last, we share our vision on
table pre-training in Section 6.

2 Preliminaries

Tables can be roughly categorized into three forms: well-
structured tables, semi-structured tables, and unstructured ta-
bles. Database tables are well structured with an ordinarily-
defined relational schema so that precise support execution
of formal languages such as SQL and R. In contrast, semi-
structured tables are usually human-crafted with markup
languages or end-user tools such as HTML code, Latex code,
spreadsheets, and Word documents. They have flexible struc-
tures but lack meta-information to record them and thus chal-
lenge precise and automatic information retrieval. Image ta-
bles are even unstructured because they only record raw
RGB information, e.g., scanned tables from books, screen-
shots of web tables, and even handwritten drafts. They need
to be digitized before any higher-level information retrieval.

In this paper, we mainly focus on semi- and well-structured
tables. We neglect image tables because they have distinct
visual challenges and are desirable to be discussed separately.

2.1 Table Structure
Tables are flexible with various structures, including rela-
tional tables, entity tables, matrix tables, layout tables, forms,
etc. They also have orientations (horizontal/vertical) and hi-
erarchies (flat/hierarchical). As shown in Figure 1, the struc-
ture of a flat relational table is definite and straightforward
in a database-like form, wherein each row is a record, each
column is a field, and there is no hierarchy. An entity table
simply records an entity and its attributes. A matrix table has
both horizontal and vertical orientations. In fact, there are
various categorization methodologies on the table structure,
which are summarized in detail by [Zhang and Balog, 2020].

2.2 Cell Information
Typically, a cell is the intersection of one row and one column
in a table. And multiple cells can be merged into a larger
cell that occupies multiple rows and columns. Cells are basic
units to record text, numerical values, formats, formulas, etc.

1) Text. Text is a critical component in the table to record
meta information in headers, notes, and captions, as well as
data region cells. Texts in tables are basically in NL but often
have short lengths and concise meanings to meet the space
restriction in documents.

2) Numerical values. A large proportion of cells store nu-
merical values. Unlike text, numerical values could have
arithmetical relationships, such as sum and proportion, and
statistical characteristics, such as distribution and trend.

3) Visual formats. Tables have various intuitive formats to
present the table structure or content, such as border, align-
ment, background color, and font [Dong et al., 2020].

4) Formulas. In several popular end-user tools such as Ex-
cel and Google Sheet, spreadsheet formulas are used to store
the logical and numerical relationships between cells.

5) Other elements such as hyperlinks, images, and icons
can also be inserted into a cell. A table can even be nested in
Word documents by inserting sub-tables into individual cells.

2.3 Existing Large Table Corpus
Web Tables Large corpora include WDC Web Table Cor-
pus 1 (233M tables), Dresden Web Tables Corpus [Eberius et
al., 2015] (174M tables), WebTables [Cafarella et al., 2008]
(154M tables), and WikiTables (1.6M tables). More details
are summarized by [Zhang and Balog, 2020].

Spreadsheet Tables FUSE [Barik et al., 2015] included
249,376 web-crawled spreadsheets. [Chen and Cafarella,
2013] obtained 410,554 Excel files from 51,252 Internet do-
mains TUTA [Wang et al., 2021c] collected 13.5 million
spreadsheet files from 1.75 million web sites.

CSV Tables GitTables [Hulsebos et al., 2021] collected
1M+ tables from CSV files in GitHub repositories. Tables
in GitTables are similar with typical database tables.

Other Kinds of Tables TableArXiv 2 contains 341,573 ta-
bles extracted from scientific publications on arxiv.org.

1http://webdatacommons.org/framework/
2http://boston.lti.cs.cmu.edu/eager/table-arxiv/
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3 Model
Since two-dimensional information is crucial for understand-
ing table structures, many neural architectures have been pro-
posed to jointly capture structure and semantic information.
Table2Vec [Zhang et al., 2019] adopted skip-gram neural net-
work models to train word embeddings with row/column pop-
ulation. CNNs [Dong et al., 2019; Chen et al., 2019] were
adapted to capture spatial information in two-dimensional ta-
bles. Bidirectional RNNs and LSTMs have been widely used
to capture the order of rows/columns [Nishida et al., 2017;
Gol et al., 2019; Fetahu et al., 2019; Kardas et al., 2020].
Later works explored graph neural networks for table un-
derstanding and question answering [Zayats et al., 2021;
Zhang et al., 2020; Koci et al., 2018; Du et al., 2021].
While CNNs, RNNs, and GNNs have been widely used for
table modeling, few adopted them for large-scale table pre-
training (except a CNN-based TCN [Wang et al., 2021a]).
The main reason is that most of them train (or directly
consume) token/word embeddings separately from the
CNN/RNN/GNN model, thus restricting models’ capabili-
ties in understanding cell texts together with table structures.

Recently, a flurry of works explored to use transformer-
based language models (LMs) for table pre-training, and
we call them Tabular Language Models (TaLMs), e.g.,
TaPas [Herzig et al., 2020], TaBERT [Yin et al., 2020],
TURL [Deng et al., 2020], TUTA [Wang et al., 2021c],
Tabnet [Arik and Pfister, 2021], VIME [Yoon et al., 2020],
KGPT [Wang et al., 2021b], RPT [Tang et al., 2021],
StruG [Deng et al., 2021], TabTransformer [Huang et al.,
2020], GraPPa [Yu et al., 2020], GAP [Shi et al., 2021],
BRIDGE [Lin et al., 2020], TABBIE [Iida et al., 2021],
TaPEx [Liu et al., 2021], ForTaP [Cheng et al., 2021],
MATE [Eisenschlos et al., 2021], STTP [Xing and Wan,
2021], GTR [Wang et al., 2021b], TableFormer [Yang et
al., 2022], and FLAP [Authors, 2021]. The advantage of
using transformers is that they can pre-train semantic and
structural representations jointly and inherit the text under-
standing power of existing NL pre-trained models such as
BERT, BART [Lewis et al., 2020], and T5 [Raffel et al.,
2020]. Works like UnifiedSKG [Xie et al., 2022] and
TableGPT [Gong et al., 2020], while without table-specific
pre-training, directly fine-tuned LMs on table tasks and
achieved promising and even SOTA results, demonstrating
that pre-training is transferable from text to tables, e.g.,
in linguistic and world knowledge aspects. Considering that
using transformer-based TaLMs is a common choice for table
pre-training, in the following subsections, we dig deeper
into TaLMs on sequence serialization, input embedding, the
encoder and decoder architecture, the attention mechanism,
and model efficiency.

3.1 Tabular Sequence Serialization
TaLMs require a sequence of tokens to be the model input like
LMs. A straightforward yet common method is to linearize
raw tables row by row. Most works such as TaPas, MATE,
TableFormer, TUTA, and TURL, performed in this way. In
TaPEx, the table is also linearized row by row but it addi-
tionally inserts several special tokens to indicate table com-
ponents such as [HEAD] and [ROW] representing the region

of table headers and rows respectively. TABBIE linearized
tables by rows and columns separately for two transformers.y
TableGPT distinctly adapted a template-based table serializa-
tion way on relatively simple tables. Experiments conducted
by UnifiedSKG showed that putting external text (like ques-
tions) ahead of tables could help T5 to generalize better on
tabular tasks. [Li et al., 2021] directly encoded markup lan-
guages like NL. Some works linearized a specific part of a
table, e.g., TaBERT [Yin et al., 2020] linearized most rele-
vant rows to the input utterance, and StruG and GraPPa only
took headers as input without data cells.

3.2 Input Featurization and Embedding
Cell Text Encoding Most table pre-training methods tok-
enized cell text using WordPiece and learned token embed-
dings [Devlin et al., 2018], such as TaBERT, TaPas, MATE,
StruG, TableFormer, TUTA, ForTaP, and TABBIE. Some
works also used the BPE tokenization following Roberta [Liu
et al., 2019] or BART [Lewis et al., 2020] , e.g., GraPPa
and TaPEx. TURL was initialized by TinyBERT [Jiao et
al., 2020] and additionally learned embeddings based on an
entity vocabulary. Rather than directly using the vocabulary
parsed from NL corpora, TUTA constructed a table-specific
vocabulary using WordPiece based on large table corpora and
merged it with BERT’s vocabulary.

Positional Encoding Following NL pre-trained models,
most TaLMs embedded 1D sequential positions in the seri-
alized tabular sequence, e.g., TaPas, MATE, StruG, GraPPa,
and TaPEx. Some other works divided the whole sequence
into multiple pieces and counted positions in each piece sep-
arately: TUTA treated each cell as an independent piece and
locally encoded positional information of tokens inside a cell;
TURL regarded the table caption and the header as two sepa-
rate pieces, then it used two local positional encodings.

Tables also have two-dimensional row/column and hierar-
chical information. Works such as TaPas, MATE, and TUTA,
learned column/row embeddings based on column/row IDs
and showed increased performance. However, considering
hierarchical structures, as Figure 1 (c) shows, column/row
encoding results in limited representation capability. TUTA
further devised explicit/implicit tree-based positional embed-
dings to jointly encode the spatial and hierarchical positions
and showed significant effectiveness on generally structured
tables. However, it has not proved helpful for downstream
tasks that only involve flat and relational tables.

Numerical Encoding A large number of numerical values
are distributed in tables and challenge BERT-based models
to learn optimal representations since these methods simply
tokenized and encoded numerical values in the same way as
NL text. It corrupts the original recording structure of num-
bers into fragments and introduces difficulties in number rep-
resentation [Thawani et al., 2021]. Explorations on learning
better number representations have surged in the NLP field
recently [Thawani et al., 2021], while few works attempted
in tabular data. TaPas and MATE devised a unique rank em-
bedding for column-wise number comparison, bringing im-
provements on answering comparatives or superlative ques-
tions. FLAP added extra feature encoding to indicate whether
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Encoder TaPas, TaBERT, TURL, TUTA, StruG, GraPPa, MATE, DoT,
ForTaP, TableFormer, TABBIE, BRIDGE, etc.

Encoder+Decoder KGPT, RPT, TaPEx, GAP, STTP, FLAP, UnifiedSKG, etc.

Decoder TableGPT, etc.

Table 1: Encoder and decode architectures of TaLMs.

the text summary mentioned the value. TUTA distinguished
numerical values from pure text via embedding over four dis-
crete numerical features: magnitude, precision, the first digit,
and the last digit. It is highly desirable to explore more nu-
merical embedding methods in future works, e.g., in arith-
metical and statistical perspectives.

Format Encoding Formats contain valuable hints about ta-
ble structures and data highlights, but only a few TaLMs con-
sidered them. E.g., TUTA learned format embeddings to-
gether with the transformer backbone to distinguish whether
a cell has merge, border, font bold, font color, and fill color.

3.3 Encoder and Decoder Architecture

Existing table pre-training models mainly inherit the archi-
tectures from language models such as BERT, GPT-2 [Rad-
ford et al., 2019], and BART. Depending on the focused
downstream tasks, these models adopted different compo-
nents, i.e., encoders or decoders, as summarized in Table 1.
Most of them adopted the encoder part of transformers simi-
lar to BERT, including TURL, StruG, TaPas, GraPPa, MATE,
TUTA, ForTap, and TableFormer. Typically, a single encoder
is applied on the sequential inputs constructed from tables
and associated texts, if any, to learn the contextual represen-
tations of the inputs. Additional modules such as classifica-
tion layers are applied to the encoder for downstream tasks.
Some works even employed more than one encoder to cap-
ture the structural information of tables. TaBERT stacked
column-wise self-attention layers on the row-wise encoder.
TABBIE employed two encoders to encode the table row-
wise and column-wise separately, then aggregated the rep-
resentations obtained from both encoders. DoT [Krichene
et al., 2021] also used two encoders, one acting as a prun-
ing model to select the most relevant tokens from the input
and the other one used for performing specific tasks. An-
other branch of TaLMs used an encoder-decoder architec-
ture to better enable sequence generation tasks such as table-
to-text. KGPT used two alternative encoders, a GNN-based
graph encoder and a transformer-based sequential encoder;
each can be combined with a transformer decoder. RPT also
adopted the encoder-decoder model, similar to a BERT model
combined with a GPT model. TaPEx and UnifiedSKG im-
plemented the encoder-decoder (text-to-text) model based on
BART and T5, respectively, for downstream tasks such as
text-to-SQL parsing, table-based QA, and table fact verifi-
cation. STTP [Xing and Wan, 2021] focused on table-to-
text generation by fine-tuning BART on table-structure-aware
self-supervised tasks. Instead of pre-training, TableGPT di-
rectly fine-tunes the GPT-2 decoder to take advantage of its
contextual knowledge learned from linguistic corpora.

Dense Self attention TaPas, TaPEx, etc.
Self attention with attention bias TableFormer

Sparse

Serial row/column attention layers TaBERT
Parallel row/column attention layers TABBIE
Parallel row/column attention heads MATE
Joint row/column attention TURL
Joint bi-tree-based attention TUTA
Joint layout-based graph attention GTR
Joint knowledge-triple-based graph attention KGPT

Table 2: Attention mechanisms of TaLMs.

3.4 Structure-based Attention

The attention mechanism is essential for TaLMs to compute
contextual representations [Vaswani et al., 2017]. Besides
many of them that directly adopt self-attention, e.g., TaPas,
StruG, GraPPa, and TaPEx, a series of structure-based atten-
tion mechanisms have been proposed to better leverage the
tabular structure, as summarized in Table 2.

Self-attention may introduce a lot of irrelevant and even
noisy contexts and have lots of unnecessary computa-
tions [Wang et al., 2021c], while table structures can be
leveraged towards precise and efficient attention. In Ta-
ble 2, “dense” means all inputs in the table are visible in
self-attention, while “sparse” means only parts of the table
are visible. TaBERT learned tabular representations serially
by first producing row-wise encoding with a transformer and
then column representation with vertical attention layers us-
ing row-wise encodings as inputs. TURL designed a re-
stricted attention mechanism in which each token/entity at-
tends to tokens in the same row/column. TUTA proposed
joint bi-tree-based attention, which took in both spatial and
hierarchical information from tables. More specifically, for a
structured table, TUTA defines cell coordinates and cell-to-
cell distance from a bi-dimensional tree generated from the
table. The bi-tree-based attention is restricted to attending
tokens within the tree-based distance threshold. Cell embed-
ding in TABBIE is an average of its row and column em-
beddings, where row/column embeddings are separately cal-
culated by row/column transformers. MATE used different
types of attention heads, i.e., row attention head and column
attention head, which are restricted to attending tokens in the
same row and column (query tokens can attend to all tokens).
GTR, which mainly focused on table retrieval, transformed a
table into a tabular graph and used joint layout-based graph
attention similar to the graph transformer to capture struc-
tural information. The graph transformer in KGPT enforced
to use the structure (knowledge triple) as a hard constraint of
attention, e.g., in the first encoder layer, each node was re-
stricted to attend to tokens in its located knowledge triple.
Tabnet [Arik and Pfister, 2021] applied a sequential atten-
tion mechanism to generate an interpretable feature selec-
tion mask during each decision step. Rather than hard atten-
tion masking, TableFormer proposed to use soft attention bi-
ases when computing attention scores between two structural
components. Structure-based attention not only improves
model performance but potentially benefits model efficiency,
and we will introduce it in Section 3.5.
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3.5 Model Efficiency
Most TaLMs are inefficient at dealing with long sequences
due to the quadratic complexity of self-attention [Vaswani
et al., 2017; Tay et al., 2020]. Unfortunately, tables from
webs and spreadsheets usually contain dozens of rows or
columns, posing a significant challenge to the memory and
computational efficiency [Eisenschlos et al., 2021]. A naive
way [Herzig et al., 2020; Liu et al., 2021] is truncating the
input by a maximum sequence length, but it may lose critical
information. So there emerge many other strategies:
Input selection One intuitive way is to filter the important
part of the table before feeding them to the model. TaBERT
extracted content snapshot, the most relevant table rows to
the NL sentence(s) regarding n-gram overlap ratio. Sim-
ilarly, TaPas with intermediate pre-training [Eisenschlos et
al., 2020] ranked columns by Jaccard coefficient between
the NL and each column tokens. The model was twice as
fast to train as TaPas while achieving similar performance.
TUTA randomly sampled out 50% text cells and 90% nu-
meric cells during pre-training since spreadsheets are usually
large while limited semantics are introduced by similar data
cells. Instead of using heuristics to prune inputs, DoT pre-
sented a model with two transformers: a pruning transformer
selected top-K tokens, and a task-specific transformer took
them as inputs. The architecture was two times faster to train,
while the memory bottleneck depended on the size of the
pruning transformer. A small or medium-size pruning trans-
former was usually enough to achieve comparative perfor-
mance with large-size TaPas, but falls behind on more chal-
lenging datasets like WTQ [Pasupat and Liang, 2015]. While
input selection is effective for tasks with table-text joint input
like table QA and fact verification, it may fail for tasks that
(1) all cells are required to be predicted, e.g., cell type clas-
sification; (2) table is the only input, e.g., table-to-text and
formula prediction.
Input splitting An alternative way is to split a large ta-
ble into multiple chunks and feed chunks separately into the
model. TUTA split the table into chunks containing the same
header row(s) and non-overlapped data rows in its down-
stream task, cell type classification [Dong et al., 2019]. For
formula prediction, SpreadsheetCoder [Chen et al., 2021]
(not a pre-training method but a typical case) split the target
table by chunks with N = 3 adjacent table rows/columns.
The chunks were encoded by a BERT [Devlin et al., 2018]
encoder and then aggregated by convolutional layers. Split-
ting the input table allows encoding all table cells, while it
costs more time due to multiple inferences of the encoder and
is thus not used by most table pre-training methods.
Sparse attention MATE leveraged the sparse attention
of table encoding by an efficient implementation to reduce
memory cost. In MATE, row and column attentions were
designed for different attention heads, implemented follow-
ing ETC [Ainslie et al., 2020] by dividing the input into a
global part G attending to and from everything and a local
part attending to G and tokens within a radius R. The model
scaled linearly concerning memory (8, 000 tokens at most)
and speed with this efficient attention implementation. Note
that though sparse attention based on table structure is widely

adopted by TaLMs, they mainly aimed to improve perfor-
mance (e.g., accuracy) instead of efficiency. Replacing these
sparse attentions with efficient implementations can largely
mitigate the memory issue: ForTaP used the TVM [Chen et
al., 2018] framework to compile a CUDA kernel to imple-
ment sparse tree-attention in TUTA, and the maximum input
sequence length was up to 8,000 tokens.

4 Pre-training Objectives
The pre-training objectives of TaLMs fall into two categories:
Denoising autoencoder and task-specific objectives. Follow-
ing the idea of Masked Language Modeling (MLM) [Devlin
et al., 2018], many objectives adopt self-supervised labels for
a TaLM to remove synthetic noises as autoencoder. Mean-
while, a variety of other pre-training objectives take inspira-
tions from specific downstream tasks to design new supervi-
sions. The former apply self-supervised learning and denoise
the table itself, and the latter build supervision according to
external supervision signals or specific tasks.

4.1 Denoising Autoencoder Objectives
For denoising autoencoder objectives, TaLMs take partially
corrupted inputs and recover the original ones. Most TaLMs
applied token-level MLM on tabular sequences in the same
way as NL sequences. More advanced denoising objectives
considered the table structure such as cell and column.
Token-level Most pre-training models used token MLM
[Devlin et al., 2018] by masking the input tokens at random
and then predicting those masked tokens. TaPas, MATE, and
TableFormer followed the standard MLM procedure to ran-
domly mask 15% of tokens. Larger ratio was taken by TURL
(20%) and TUTA (30%) to make recovering more challeng-
ing. Certain restrictions could also be applied on what tokens
to mask. E.g., MLM used in TaBERT only masked tokens in
external NL context, and MLM used in TURL and GraPPa
masked both NL context and table headers.
Cell-level (1) Masking and recovery. A cell could corre-
spond to one or multiple token(s) in the tabular sequence.
Slightly different masking strategies were designed. TUTA
used a whole-cell masking strategy to capture relationships
of cells. Cell Value Recovery (CVR) in TaBERT applied the
span-based prediction objective to deal with multiple value
tokens. In TCN, each token represented a cell, and 10% cells
were masked for recovery from the set of cell values. (2)
Cell cloze. TUTA sampled cell positions based on the bi-tree
structure as candidate choices. At each position, TUTA was
encouraged to retrieve its corresponding cell string. (3) Clas-
sifying cell corruption. TABBIE corrupted cells in two ways,
frequency-based and intra-table cell swapping.
Column-level Masked Column Prediction (MCP) was in-
troduced by TaBERT to recover the names and data types of
masked columns. GAP proposed to recover columns names
using column values or the input utterance. Both of them as-
sumed that tables were vertically-oriented and relational.

4.2 Task-specific Objectives
To achieve SOTA performances on downstream task(s), de-
noising objectives might not be enough. Then task-specific
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Task Description Model
Table question answering Given a table and a question in NL, output an answer. TaPas, TaBERT, StruG, GraPPa, TaPEx, GAP, MATE,

The question-answer pair should be supported by the table. ForTaP, BRIDGE, TableFormer, UnifiedSKG

Table fact verification Verify whether a textual hypothesis holds based on the given table. MATE, TableFormer, UnifiedSKG

Table-to-text Generate textual description(s) from the given table. KGPT, TableGPT, FLAP, STTP, UnifiedSKG

Table type classification Classify the table into different structural types. TUTA

Cell type classification Identify cell structural types in the table. TUTA, ForTaP

Column type Associate a column in a table with the KB type of entities it contains. TURL, TABBIE, TCN
&relation classification Associate a pair of columns in a table with the KB relation that

holds between each pair of entities in a given row of the columns.

Table augmentation Expand the table with additional data. TURL, TABBIE

Formula prediction Predict a spreadsheet formula for the target cell in the table. ForTaP

Entity linking Find phrases of text, called mentions, in cells and TURL
associate each with its referent entity.

Table search Retrieve semantically relevant tables based on NL queries. GTR

Data preparation Include six subtasks: data discovery, data validation, data filtering, RPT
data structuring, data enrichment, and data cleaning.

Machine learning applications Various tasks using categorical or continuous features stored Tabnet, VIME, TabTransformer
in tabular format, e.g., the competitions held by Kaggle and KDD Cup.

Table 3: Downstream task evaluation for table pre-training. In this table, we try to cluster some similar tasks, e.g.,column type&relation
classification and a series of tasks of data preparation. We also merge sub-tasks like logic-to-text, into main tasks like table-to-text.

objectives were proposed and proved to be highly effective.

Objectives by Downstream Tasks
In this section, representative objectives are grouped by tasks.
Definitions of the downstream tasks can be found in Table 3.

Table QA and text-to-SQL There are a variety of works
on table QA and text-to-SQL, and we list some representa-
tive ones here. A critical technical component of text-to-SQL
is the alignment between text and tables. GraPPa designed
an objective: given an NL sentence and table headers, pre-
dicting whether a column appears in the SQL query and what
operation is triggered. StruG used several grounding tasks of
text-to-SQL as objectives, including selecting columns men-
tioned in sentences, finding cell values from sentences, and
mapping column-value. TaPEx proposed to learn a novel
neural SQL executor given a table and a synthesized exe-
cutable SQL query. PReasM [Yoran et al., 2021] synthesized
at scale question-paragraph pairs that required different rea-
soning skills to enhance numerical reasoning abilities. GAP
learned to compose complex SQL on tables.

Table fact verification Entailment check is highly related
with QA. [Eisenschlos et al., 2020] used an intermediate pre-
training objective of synthetic table fact checking targeting
both real-world table fact verification and table QA. TaPEx,
as described above, also showed benefits for table fact check.

Entity linking TURL proposed a Masked Entity Recovery
objective by masking a certain percentage of entity cells and
then recovering the linked entity based on surrounding en-
tity cells and table metadata. It helped the model capture the
factual knowledge embedded in the table content and the as-
sociations between table metadata and table content.

Table type classification and table search TUTA provided
each table with text segments and was pre-trained to retrieve
the corresponding tables using text segments.

Numerical reasoning ForTaP proposed to predict numer-
ical reference and numerical calculation relationships, and
aimed to benefit all related tasks involving table numerical
reasoning, e.g., table QA and formula prediction.

Objectives by Data Sources
The above objectives are possible with human-created and
machine-synthesized data on different sources of tables.

Human-created Human-created data usually show higher
quality than web-crawled ones which might require careful
prepossessing for their size, diversity and noises. It is com-
mon to manually add extra labels for existing dataset. E.g.,
ToTTo, a well-labeled dataset for table-to-text with NL de-
scriptions and corresponding web tables, was used by StruG
for pre-training. Also, human-created labels can be collected
in smart ways. E.g., ForTaP extracted existing formulas from
a large web-crawled spreadsheet corpus and extracted numer-
ical reference and calculation relationships from them for pre-
training. And large fine-grained labeled datasets were also
used for pre-training, e.g., ToTTo, a well-labeled dataset for
table-to-text with NL descriptions and corresponding web ta-
bles, was used by StruG for pre-training.

Machine-synthesized Synthesized data are more targeted
and controllable, but require careful designs to ensure mean-
ingfulness and diversity. GraPPa proposed an SCFG (syn-
chronous context-free grammar) and applied it to synthesize
sentence-SQL pairs over tables. [Eisenschlos et al., 2020]
created counterfactual and synthetic statements for existing
Wikipedia tables: For the counterfactual ones, it got ta-
bles and sentences from Wikipedia as positive examples and
created minimally differing refuted examples; For the syn-
thetic ones, it built table-dependent statements by synthesiz-
ing them from the pre-defined probabilistic CFG (context-
free grammar). TaPEx randomly selected tables from the

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5431



Natural language

Table

Programming 
language

Visual table detection 
Cell segmentation
Automatic formatting
…

Table QA

Table-to-text

Entity linking

Table search

…

Semantic parsing

Logic-to-text

…
Vision

Formula suggestion
…

Visual document QA

…

(Composed by texts, 
numerical values, visual 
formats, formulas, …)

Table type classification
Cell type classification

Figure 2: Downstream task categorization by domains.

training set of WIKITQ [Pasupat and Liang, 2015] and in-
stantiated SQL templates to synthesize table-SQL pairs.

5 Downstream Tasks
As shown in Figure 2, tasks of table understanding often have
intersections with domains like NL, programming language,
and computer vision, and thus prefer different capabilities of
table modeling. For example, table question answering is a
prevalent cross-domain task that requires models to under-
stand tables and NL questions jointly, and to enable robust
reasoning over tables, semantic parsing becomes a widely-
studied task of parsing NL questions to programming lan-
guages such as SQLs, logical forms, or python code. We
think that classifying tasks by domains presents a fresh per-
spective to future works on multi-modal modeling, but it is
not an absolutely strict or static categorization, e.g., table
QA can involve programming languages via semantic pars-
ing [Yin et al., 2020], while it can also use end-to-end pre-
diction [Herzig et al., 2020] without explicitly using a pro-
gramming language. Tasks can also be categorized by their
scenarios in addition to domains, e.g., data preparation rep-
resents a range of tasks for data preparation. The machine
learning application covers various benchmarks or competi-
tions where features and labels are stored in a tabular form.

In Table 3, due to space limitation, we only list downstream
tasks that have been evaluated by existing TaLMs. Nonethe-
less, it is highly desirable for future work to explore more
tasks such as table format generation [Dong et al., 2020], data
analysis [Zhou et al., 2020], and table error detection [Huang
and He, 2018; Zhang et al., 2021].

6 Conclusion and Discussion
This paper presents a review of model architectures, objec-
tives, and downstream tasks of table pre-training. Although
the “pre-training and fine-tuning” paradigm has demonstrated
its success on many table tasks, there still are key challenges
(opportunities) for future research:
Combining Diverse Bi-dimensional Cell Features Effec-
tively Tables are arranged in two-dimension, including not

only text but also quantities, visual formats, hyperlinks, and
even spreadsheet formulas, it is non-trivial to learn high-level
representations from such diverse and raw information. It
particularly challenges existing language models that directly
consume a flat sequence. Should tables be linearized like
NL text? How to maintain and combine the structural, tex-
tual, formatting, and numerical information in a most effec-
tive way is still an open challenge.
Universal Framework for Downstream Tasks Almost all
TaLMs only focus on one or two downstream tasks (as shown
in Table 3) so that they have sufficient flexibility on model de-
signs (e.g., Section 4.2) to achieve the best performance. But
it is desirable to unify the advantages of existing methods and
support various downstream tasks simultaneously like what
BERT and GPT did in the NL domain. However, the di-
versity of table downstream tasks presents a significant chal-
lenge, e.g., entity linking and formula prediction and entity
linking may need far different feature sets, sampling mech-
anisms, and model capabilities. It’s a highly demanding di-
rection to explore a universal framework by integrating the
advantages of different TaLMs.
Visualizing, Probing, and Comparing What Aspects
TaLMs Learned from Table Pre-training Attention lay-
ers in transformers are often challenged for being opaque.
In the NL domain, to uncover linguistic and world knowl-
edge learned by pre-trained LMs, there exist attentive works
on studying the outputs of pre-trained LMs on carefully
designed input sentences [Linzen et al., 2016], examin-
ing the internal vector representations of pre-trained LMs
through methods such as probing tasks [Adi et al., 2016;
Belinkov et al., 2017], and visualizing attention maps of a
pre-trained LMs [Bahdanau et al., 2014; Vig, 2019; Rogers
et al., 2020]. Later works even studied and probed attention
layers head-by-head and found substantial syntactic informa-
tion captured in BERT [Clark et al., 2019]. Some TaLMs
claimed their abilities on table-text joint reasoning (TaPas,
TaBERT, TaPEx, ...), table structure understanding (TUTA,
TableFormer, ...), and numerical reasoning (ForTaP, ...), but
there still lack attentive works on visualizing, probing, and
comparing these intangible pre-trained TaLMs.
Consistency and Discrepancy Between LMs and TaLMs
Recently, UnifiedSKG explored to directly fine-tune T5 on
21 datasets across 6 tasks. On the one hand, the frontier
LM (T5) could easily achieve promising or even SOTA re-
sults on table tasks, demonstrating a strong relationship be-
tween text and tables, e.g., in linguistic and world knowledge
aspects. On the other hand, without table-specific model de-
sign and pre-training, it still fell behind TaLMs with table pre-
training on WikiTQ (-8.2%) and SQA (-12.1%); even larger
margins may exist on untested tasks, such as formula pre-
diction. It shows the necessity of table-specific pre-training,
e.g., in structural and reasoning aspects. (1) Is the initializa-
tion from advanced LMs necessary for table pre-training? (2)
When zero-shot LMs are large enough (considering that GPT-
3 has not been fully exploited on table tasks yet), do existing
table pre-training strategies still have performance gains? (3)
During table pre-training, how to best inherit the knowledge
from LMs while exploit table-specific capabilities?
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