
Survey on Efficient Training of Large Neural Networks
Julia Gusak1,* , Daria Cherniuk1,* , Alena Shilova2,* ,

Alexandr Katrutsa1,5 , Daniel Bershatsky1 , Xunyi Zhao3 , Lionel Eyraud-Dubois3 ,
Oleh Shliazhko4 , Denis Dimitrov4 , Ivan Oseledets1,5 , Olivier Beaumont3

1Skolkovo Institute of Science and Technology, Russia
2Inria, University of Lille - CRIStAL, France

3Inria, University of Bordeaux, France
4Sber, Russia

5AIRI, Moscow, Russia
{y.gusak, daria.cherniuk, a.katrutsa, d.bershatsky2, i.oseledets}@skoltech.ru,
{alena.shilova, xunyi.zhao, lionel.eyraud-dubois, olivier.beaumont}@inria.fr,

{olehshliazhko, den.dimitrov}@gmail.com

Abstract
Modern Deep Neural Networks (DNNs) require
significant memory to store weight, activations, and
other intermediate tensors during training. Hence,
many models don’t fit one GPU device or can be
trained using only a small per-GPU batch size. This
survey provides a systematic overview of the ap-
proaches that enable more efficient DNNs training.
We analyze techniques that save memory and make
good use of computation and communication re-
sources on architectures with a single or several
GPUs. We summarize the main categories of strate-
gies and compare strategies within and across cate-
gories. Along with approaches proposed in the lit-
erature, we discuss available implementations.

1 Introduction
Modern trends in the development of Deep Learning (DL)
and Artificial Intelligence (AI) technologies involve the use
of Deep Neural Networks (DNNs) to solve various problems
of image, video, audio, natural language processing, content
generation in the form of images or text in a given style and
subject, etc.

The question we address in this survey is the following:
given your model (which you do not want to rewrite) and your
computation platform (which you do not want to change),
what are the generic approaches that can allow you to per-
form the training efficiently? For training to be efficient, it
must be feasible (the data must fit in memory), it must exploit
the computational power of the resources well (the arithmetic
intensity of the operations must be sufficient) and, in the par-
allel case, it must not be stalled by large data exchanges be-
tween the nodes. Profiling tools can identify hardware bot-
tlenecks that will determine which strategies described in this
survey can be used to solve the problems of arithmetic inten-
sity, memory and large data exchanges.

∗equal contribution

We consider that the training is performed on nodes, each
consisting of a multicore CPU and some GPUs/TPUs. The
CPU usually has a large enough memory (typically a few hun-
dreds GB) to store model parameters, optimizer states, and
activations, unlike the GPUs, which have a limited memory
(typically a few dozens GB) and are connected to the CPU
memory through a PCIe bus (typically a few GB/s).

The present survey covers generic techniques to cope with
these limitations. If the computation cannot be performed a
priori because the model, the optimizer states, and the activa-
tions do not fit in GPU/TPU memory, there are techniques to
trade memory for computation (re-materialization) or for data
movements to CPU(activation and weight offloading), and it
is also possible to compress the memory footprint by approxi-
mating optimizer states and gradients (compression, pruning,
quantization). The use of parallelism (data parallelism, model
parallelism, pipelined model parallelism) can also make it
possible to distribute the memory requirements over several
devices. If the arithmetic intensity of the computations is not
sufficient to fully exploit the GPUs and TPUs, it is gener-
ally because the size of the mini-batch is too small, and then
the above techniques can also enable increasing the size of
the mini-batch. Finally, if the communications, typically in-
duced by the use of data parallelism, are too expensive and
slow down the computation, then other forms of parallelism
can be used (model parallelism, pipelined model parallelism)
and the compression of the gradients can allow limiting the
volumes of exchanged data.

In this survey, we explain how these different techniques
work, we review the literature to evaluate and compare the
proposed approaches, and we analyze the frameworks that
allow implementation of these techniques (almost) transpar-
ently. The different techniques that we consider, and their
influence on communications, memory and computing effi-
ciency are depicted in Table 1.

According to our taxonomy, we distinguish the following
methods based on their purpose: reducing the memory foot-
print on a GPU is discussed in Section 2, the use of parallel

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5494

Method # of
GPUs

Approx.
computations

Communication costs per iteration
activation values / weight values /

activation grads / weight grads

Batch size per
GPU increase?

of FLOP
per iteration

No data parallelism 1 baseline baseline baseline baseline
Rematerialization ≥ 1 ✗ = / = = / = ✓ ↑
Offloading:

activations ≥ 1 ✗ ↑ / = = / = ✓ =
weights ≥ 1 ✗ = / ↑ = / ↑ or = ✓ =
tensors in GPU cache ≥ 1 ✗ ↑ or = / ↑ or = = / ↑ or = ✓ =

Approx. gradients:
lower-bit activation grad.** ≥ 1 ✓ ↓ / = = / = ✓ ↓ or =
approx. matmul** ≥ 1 ✓ ↓ / = = / = ✓ ↕
lower-bit weight grad** ≥ 1 ✓ = / = = / ↓ ✓ ↓ or =

Data parallelism* > 1 ✗ baseline ✗ =
Partitioning:

optim. state > 1 ✗ = / ↑ = / = ✓ =
+ gradients > 1 ✗ = / ↑ = / = ✓ =
+ parameters > 1 ✗ = / ↑ = / = ✓ =

Model parallelism* > 1 ✗ ↑ / = ↑ / ↓ ✓ =
Pipeline parallelism > 1 ✓/ ✗ ↑ / = ↑ / ↕ ✓ =
∗We assume that updates are performed synchronously. If updates are asynchronous then for both data and model parallelism fewer gradients
contribute to epoch update and number of epochs till convergence might be increased.
∗∗Communication channel in this case is a bus between a processing unit and a memory bank.

Table 1: Methods to train large neural networks. ↑ and ↓ correspond to the increase and decrease comparing to the baseline above. FLOP is
floating-point operations.

training for models that do not fit on a GPU is considered
in Section 3, and the design of optimizers developed to train
models stored on multiple devices is addressed in Section 4.

2 Memory Usage Reduction on a Single GPU
During the forward pass, neural networks store the activations
necessary to perform backpropagation. In some cases, these
activations can consume a substantial amount of memory,
making training infeasible. There are two main approaches
to reducing that memory footprint: rematerialization (also
called checkpointing) and offloading. Tables 2 and 3 depict
an overview of these groups of methods.

2.1 Rematerialization of Activations
Rematerialization is a strategy that only stores a fraction of
the activations during the forward pass and recomputes the
rest during the backward pass. Rematerialization methods
can be distinguished by what computational graphs they are
dealing with. The first group comes from Automatic Dif-
ferentiation (AD), they find optimal schedules for homoge-
neous sequential networks (DNNs whose layers are executed
sequentially and have the same computational and memory
costs). The second group concentrates on transition model
such as heterogeneous sequential networks (DNNs may be
any sequential neural networks consisting of arbitrarily com-
plex modules, e.g. CNNs, ResNet, some transformers),
which adjust solutions from AD to heterogeneous settings.
The final group focuses on general graphs, but this prob-
lem becomes NP-complete in the strong sense and thus can
be solved optimally only with ILP, otherwise approximately
with various heuristics.

For homogeneous sequential networks, the binomial ap-
proach was proven to be optimal in [Grimm et al., 1996] and
implemented in REVOLVE [Griewank and Walther, 2000].
Compiler-level techniques have been proposed in [Siskind
and Pearlmutter, 2018] to make it applicable to fully arbi-
trary programs. This results in a divide-and-conquer strat-
egy, which, however, assumes that computations can be inter-
rupted at arbitrary points, making it unsuitable for GPU com-
putations. In the case of heterogeneous computation times
and homogeneous memory costs the optimal strategy can be
found with dynamic programming [Walther and Griewank,
2008]. A direct adaptation of results for homogeneous chains
was applied to RNNs in [Gruslys et al., 2016].

[Beaumont et al., 2019] considered the most general case
of heterogeneous sequential DNNs. This paper proposed a
new modeling of the problem directly inspired by the data
dependencies induced by the PyTorch1 framework. It uses
dynamic programming approach to find the optimal strategy
for linear or linearized chains.

Some methods can perform rematerialization for general
graphs, though the exact approaches are exponentially expen-
sive (see Table 2). For example, [Jain et al., 2020b] proposed
an Integer Linear Program (ILP) to find the optimal remate-
rialization strategy suitable for an arbitrary Directed Acyclic
Graph (DAG) structure. [Kirisame et al., 2020] presented a
cheap dynamic heuristic called Dynamic Tensor Rematerial-
ization (DTR) that relies on scores that encourage discarding
(i) heavy tensors (ii) with a long lifetime and (iii) that can be
easily recomputed.

1https://pytorch.org

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5495

https://pytorch.org

Paper Approach Scope Guarantees Complexity Implementation

[Griewank and Walther, 2000] dynprog hom. seq. optimal O(L2M) REVOLVE[Grimm et al., 1996] closed-form
[Walther and Griewank, 2008] dynprog het. time,

hom. memory
optimal O(L3M) -

[Siskind and Pearlmutter, 2018] divide & conquer compiler - - checkpointVLAD
[Chen et al., 2016] periodic het. seq heuristic - PyTorch
[Gruslys et al., 2016] dynprog RNN - O(L2M) BPTT
[Beaumont et al., 2019] dynprog het. seq optimal w/

assumptions
O(L3M) Rotor

[Jain et al., 2020b] ILP any optimal NP-hard CheckMaterational LP heuristic O(EL) vars
& constraints

[Kusumoto et al., 2019] dynprog any - O(T22L)) Recomputesimplified dynprog heuristic O(TL2)
[Kumar et al., 2019] tree-width decomposi-

tion
any bounded 2O(w)L +

O(wL logL)
-

[Kirisame et al., 2020] greedy (priority scores) any heuristic - DTR

Table 2: Comparison of rematerialization strategies. We use dynprog to refer to dynamic programming solutions, while simplified dynprog
corresponds to dynamic programming that solves relaxed problems relying on simplifying assumptions. The complexity is expressed with
respect to number of modules (layer or group of layers) L, memory on GPU M , no-checkpoint execution time T , E is the number of
dependencies between layers, i.e. number of activations (E = Θ(L) in linear case, E = O(L2) in general) and w is a treewidth of the
computational graph.

Support in popular open-source frameworks. Machine
learning framework PyTorch provides two options for check-
pointing: the user explicitly defines which activations to store
or uses a periodic strategy based on [Chen et al., 2016].
Checkmate2, written in TensorFlow3, accepts user-defined
models expressed via the high-level Keras interface. Frame-
work Rotor4 allows the algorithm from [Beaumont et al.,
2019] to be used with any PyTorch DNN implemented with
the nn.Sequential container.

2.2 Offloading of Activations
Offloading (also called Memory Swapping) is a technique that
saves GPU memory by offloading activations to CPU mem-
ory during forward pass and prefetching them back into GPU
memory for the corresponding backward computation.

Due to the limited bandwidth of the PCI bus between the
CPU and the GPU, the choice of which activations to transfer
and when to do it must be optimized. Authors of vDNN [Rhu
et al., 2016] followed a heuristic effective for CNNs by of-
floading only the inputs of convolutional layers, though it
does not generalize well to general DNNs. [Le et al., 2018]
considered the activations life-cycle to choose the candidates
for offloading and used graph search methods to identify
the instants when to insert offload/prefetch operations. Au-
toSwap [Zhang et al., 2019] decides which activations to of-
fload by assigning each variable a priority score. SwapAd-
visor [Huang et al., 2020] used a Genetic Algorithm (GA)
to find the best schedule (execution order of the modules)
and memory allocation; it relied on Swap Planner to decide
which tensors to offload (based on their life cycle) and when

2https://github.com/parasj/checkmate
3https://www.tensorflow.org
4https://gitlab.inria.fr/hiepacs/rotor

to perform offload/prefetch (as soon as possible). Authors
in [Beaumont et al., 2020] made a thorough theoretical anal-
ysis of the problem. They proposed optimal solutions and
extended them in [Beaumont et al., 2021a] to jointly opti-
mize activation offloading and rematerialization. All these
techniques are summarized in Table 3.

Support in popular open-source frameworks. Frame-
work vDNN++5 implemented a technically improved version
of vDNN. TFLMS [Le et al., 2018] was initially released as
a TensorFlow pull request but later got its own repository6. A
branch of the Rotor framework7 provides the implementation
of the combined offloading and rematerialization algorithms
from [Beaumont et al., 2021a].

2.3 Offloading of Weights
A lot of methods mentioned earlier are also suitable for of-
floading weights as they rely on universal techniques applica-
ble to any tensors, for example, TFLMS, AutoSwap or Swa-
pAdvisor. L2L (layer-to-layer) [Pudipeddi et al., 2020] keeps
a single layer in GPU memory, which results in a significant
reduction in the memory cost of the network. Granular CPU
offloading [Lin et al., 2021] extends this approach and keeps
a part of the network in GPU when there is enough memory.
Their experiment shows that offloading only the first half of
the network can significantly reduce the training time. ZeRO-
Offload [Ren et al., 2021] managed to reduce the high com-
munication overhead by introducing the one-step Delayed Pa-
rameter Update (DPU) method. In ZeRO-Offload, only the
gradients are offloaded to the CPU to update the weights and

5https://github.com/shriramsb/vdnn-plus-plus
6https://github.com/IBM/tensorflow-large-model-support
7https://gitlab.inria.fr/hiepacs/rotor/-/tree/offload-all-rl

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5496

https://github.com/parasj/checkmate
https://www.tensorflow.org
https://gitlab.inria.fr/hiepacs/rotor
https://github.com/shriramsb/vdnn-plus-plus
https://github.com/IBM/tensorflow-large-model-support
https://gitlab.inria.fr/hiepacs/rotor/-/tree/offload-all-rl

Paper What to offload Scope Features

vDNN [Rhu et al., 2016] all/conv seq, CNN choice between memory/performance effi-
cient kernels for conv

TFLMS [Le et al., 2018] tensors with longer lifetime any rewriting graph with swap in/out; treesearch
with bounds to schedule transfers

AutoSwap [Zhang et al., 2019] tensors with highest priority
scores

any uses bayesian optmization to mix priority
scores; optimizes memory allocation

SwapAdviser [Huang et al., 2020] tensors with longer lifetime any memory allocation and scheduling opera-
tions done with Genetic Algorithm

[Beaumont et al., 2020] chosen by greedy/dynprog het. seq. theoretical analysis, optimality proofs for re-
laxed models

rotor [Beaumont et al., 2021a] chosen by dynprog het. seq. combination of offloading and rematerializa-
tion, optimal w/ assumptions

Table 3: Comparison of offloading strategies.

asynchronous updates are used to overlap communications
between CPU and GPU with forward computation on GPU.

Support in popular open-source frameworks. Deep-
Speed8 implements the extremely aggressive memory man-
agement strategies proposed in ZeRO-Offload [Ren et al.,
2021], which allows a single GPU to train models with more
than 10 billion parameters.

3 Parallelism for Models that Don’t Fit on a
Single GPU

When using Model Parallelism, different layers of a network
are allocated onto different resources, so that the storage of
DNN weights and activations is shared between the resources.
In Model Parallelism (MP), only activations have to be com-
municated and transfers only take place between successive
layers assigned to different processors. Comparison of pa-
pers mentioned in this section is presented in Table 4.

The execution within Model Parallelism can be accelerated
if several mini-batches are pipelined [Huang et al., 2019], and
thus several training iterations are active at the same time.
Once forward and backward phases have been computed on
all these mini-batches, the weights are then updated. This
approach is fairly simple to implement but it leaves com-
putational resources largely idle. The PipeDream approach
proposed in [Narayanan et al., 2019] improves this training
process, by only enforcing that the forward and backward
tasks use the same model weights for a given mini-batch.
Such a weakened constraint on the training process allows
PipeDream to achieve a much better utilization of the pro-
cessing resources, but the asynchronous updates affect badly
the overall convergence of the training in some cases [Li and
Hoefler, 2021].

It has been shown that performing the updates less regu-
larly [Narayanan et al., 2021a] helps limiting weight stale-
ness as well. Alternatively, PipeMare [Yang et al., 2021] pro-
poses to adapt the learning rate and the model weights for
backward depending on the pipeline stage. The last method
achieves the same convergence rate as GPipe, while having
the same resource utilization as PipeDream without storing

8https://github.com/microsoft/DeepSpeed

multiple copies of the weights. Another important issue re-
lated to PipeDream is the need to keep many copies of the
model parameters, which can potentially cancel the benefit of
using Model Parallelism. To address this issue, the methods
to limit weight staleness can be used: in [Narayanan et al.,
2021a] the updates are done so that it is possible to keep only
two versions of the weights (Double-Buffering).

Modeling the storage cost induced by activations in
pipeline approaches is a difficult task [Beaumont et al.,
2021b]. Some pipelines (DAPPLE [Fan et al., 2021],
Chimera [Li and Hoefler, 2021]) use the One-Forward-One-
Backward scheduling (1F1B) to reduce memory consumption
related to activations. It is a synchronous weight update tech-
nique that schedules backward passes of each micro-batch as
early as possible to release the memory occupied by activa-
tions. Gems [Jain et al., 2020a] and Chimera [Li and Hoefler,
2021] implement bidirectional pipelines, where each GPU is
used for two pipeline stages (i and P − i, P is the number of
stages). The design of Gems is mostly concerned with activa-
tions memory: the forward pass of the next micro-batch starts
after the first backward stage of the previous micro-batch
is computed and activations memory is released. Chimera
rather focuses on reducing the computational bubble by start-
ing the forward passes of each pipeline direction simultane-
ously. A resembling approach was taken in [Narayanan et al.,
2021b], where each GPU is assigned more than one pipeline
stages (referred to as the Interleaved Pipeline).

Several papers specifically target challenging topologies.
To solve the problem in the case of high communication
costs and heterogeneous networking capabilities, the authors
of Pipe-torch [Zhan and Zhang, 2019] propose an updated
dynamic programming strategy which assumes no overlap
between computations and communications. HetPipe [Park
et al., 2020] addresses the additional problem of heteroge-
neous GPUs by grouping them into virtual workers and run-
ning pipeline parallelism within each virtual worker, while
relying on data parallelism between workers. Varuna [Athlur
et al., 2021] focuses on ”spot” (low-priority) VMs and builds
a schedule that is robust to network jitter, by performing a
pipelining technique that resembles 1F1B: activation recom-
putations and respective backward passes are scheduled op-
portunistically.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5497

https://github.com/microsoft/DeepSpeed

Paper Parallelism Pipeline Feature Partition Optimization

GPipe [Huang et al., 2019] DP, PP First introduced pipelining -
Megatron-LM [Narayanan et al., 2021b] TP, DP, PP 1F1B, Interleaved Pipeline Heuristic
PipeDream [Narayanan et al., 2019] DP, PP Async Update DynProg for DP, PP
PipeDream-2BW [Narayanan et al., 2021a] DP, PP Async Double-Buffered Update DynProg for DP, PP, Check-

pointing
DAPPLE [Fan et al., 2021] DP, PP 1F1B DynProg for DP, PP
PipeMare [Yang et al., 2021] PP Async Update, LR Reschedul-

ing, Weight Discrepancy Cor-
rection

Splitting weights evenly
between model partitions

Piper [Tarnawski et al., 2021] TP, DP, PP Async Update DynProg for TP, DP, PP, Check-
pointing

HetPipe [Park et al., 2020] DP, PP Parameter Server LinProg for PP
Pipe-torch [Zhan and Zhang, 2019] DP, PP Async Update DynProg for DP, PP, GPU allo-

cation
Varuna [Athlur et al., 2021] DP, PP Opportunistic Backward

Scheduling
Heuristic PP partition,
Bruteforce for DP, PP depth

Gems [Jain et al., 2020a] DP, PP Bidirectional Pipeline -
Chimera [Li and Hoefler, 2021] DP,PP 1F1B, Bidirectional Pipeline Greedy mini-batch size,

Bruteforce for DP, PP depth

Table 4: Comparison of model parallelism strategies. TP, DP, and PP stand for tensor-, data- and pipeline- parallelism respectively.

4 Optimizers for Cross-Device Training
4.1 Zero Redundancy Optimizer
The authors of [Rajbhandari et al., 2020] propose ZeRO
(Zero Redundancy Optimizer) as an implementation of data-
parallelism with reduced memory footprint. The algorithm
has three versions depending on what tensors are partitioned
across devices: Stage 1 (optimizer states), Stage 2 (optimizer
states and gradients), and Stage 3 (optimizer states, gradients
and model parameters). ZeRO works in a mixed precision
regime to reduce the amount of data transferred between de-
vices. Still, Stages 2 and 3 introduce a communication over-
head. In [Ren et al., 2021] authors propose to unite ZeRO and
CPU-side computation of parameter updates within ZeRO-
Offload: gradients are transferred to CPU where copies of
parameters are stored; the update is applied to the copies and
the updated weights are transferred back to GPU.

Support in popular open-source frameworks. An open
source implementation of all ZeRO-* algorithms is available
in the DeepSpeed8 framework.

4.2 Low-Precision Optimizers
To further reduce memory footprint, low-precision optimiz-
ers can be used. These methods use low precision formats to
represent the optimizers states and auxiliary vectors of states.
Also, error compensation techniques are used to preserve the
approximation accuracy of the tracking statistics. [Dettmers
et al., 2021] proposes a method to store statistics of Adam
optimizer in 8-bit while the overall performance remains the
same as when the 32-bit format is used. The key technique to
achieve such a result is blockwise dynamic quantization that
efficiently handles both large and small magnitude elements.
More aggressive precision reduction is presented in [Sun et
al., 2020], where special routines to deal with 4-bit repre-
sentation are developed. In particular, the adaptive Gradient

Scaling (GradScale) method aims to mitigate the issue with
insufficient range and resolution. Moreover, [Li et al., 2021]
combines Adam and 1-bit SGD momentum optimizers in the
large batch setting and proposes communication-efficient al-
gorithm for layerwise adaptive learning rates.

4.3 Acceleration of Convergence
Another way to accelerate training of large deep learning
models is to reduce communication time between nodes
and/or number of required epochs to converge at the appro-
priate local minimum.

Communication costs reduction. Different approaches
have been proposed to compress gradients before transfer-
ring them between computational nodes. In particular, three
classes of such methods are typically discussed: sparsifi-
cation, quantization and low-rank methods. Sparsification
methods only transfer some subset of complete gradient el-
ements and update the corresponding elements in the pa-
rameter vector. This approximation significantly reduces the
communication costs [Alistarh et al., 2019] while the trained
model performance is preserved. Another approach is based
on quantization of transferred gradients, which consists of
transferring only a limited number of bits, reconstructing the
entire gradient vector from them, and updating all elements
of the parameter vector. This approach demonstrates promis-
ing results for some neural networks architectures and ex-
perimental settings [Alistarh et al., 2017]. In particular, re-
cent results in sending only the signs of stochastic gradient
elements [Stich et al., 2018] have been extended to more
complicated Adam optimizer [Tang et al., 2021], where the
non-linear effect of the optimizer states requires additional
investigation of error compensation strategies. Another ap-
proach for communication costs reduction is the low-rank
approach, in which a low-rank approximation of the gradi-
ent is constructed, transferred and used to recover the gradi-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5498

ent in full format before updating the parameter vector. The
low-rank approximation is constructed with the block power
method [Vogels et al., 2019] or with the alternating minimiza-
tion strategy [Cho et al., 2019]. The main difficulty here is
to balance the gains from the reduction of communication
costs with the additional costs induced by the construction
of low-rank approximations. A comprehensive analysis and
numerical comparison of many methods for communication
overhead reduction from the aforementioned classes are pre-
sented in review [Xu et al., 2021].

Large batch training. Another approach to speed up the
convergence of the optimizer is to use a large number of sam-
ples per batch. This training setting leads to a reduction of the
number of iterations in every epoch and a better utilization of
GPU. In [Goyal et al., 2017] authors propose to use a linear
scaling rule to update the learning rate along with the batch
size. This setting stabilizes the optimization process and con-
verges to the same final performance of the model. Note also
that large batch training significantly reduces the variance in
the stochastic gradient estimate. However, study [Keskar et
al., 2016] observes that this feature of the training reduces
the generalization ability of the trained model if other hyper-
parameters remain the same. Therefore, other alternatives to
the linear scaling rule have been considered in further works.

In particular, Layer-wise Adaptive Rate Scaling is com-
bined with SGD [You et al., 2017] (LARS scheme) and Adam
optimizers [You et al., 2019] (LAMB scheme) to adjust the
learning rate in every layer separately. These strategies are
based on the observation of a significant difference in the
magnitude of parameters and gradients in the different lay-
ers, which is natural for deep neural networks. Note that the
memory saving techniques considered in Sections 2 typically
allow the batch size to be increased with little overhead, even
when exceeding the GPU memory capabilities.

5 Conclusion and Further Research
In the survey we have discussed methods that help to train
larger models on a single GPU and do more efficient training
on multiple GPUs. Such methods optimize both the train-
ing of known high-quality large models (e.g., GPT, CLIP,
DALLE) from scratch and the fine-tuning of pre-trained mod-
els for specific and personalized tasks.

Several main factors influence the training of large DNNs:
(i) memory required to store model parameters, activations,
optimizer states(ii) time spent on data exchange (communica-
tion) between computing nodes and its impact on the comput-
ing time on a separate computing node, (iii) parallel efficiency
(percentage of time when GPUs are not idle), (iv) the num-
ber of floating-point operations required to calculate the for-
ward and backward passes for the given model architecture,
dataset, and target functionality, (v) the number of iterations
required to achieve the specified accuracy. The strategies dis-
cussed in Sections 2, 3, and 4 of this survey are applied to
reduce the influence of these factors.

Current research in rematerilization (Table 2) focus on
finding the optimal checkpointing strategy if we have a ho-
mogeneous or heterogeneous sequential model. However,
modern neural networks have a more complex structure -

for example, due to a large number of residual connections.
Currently, optimal rematerialization strategies for each archi-
tecture and input data size are heuristically searched. Fur-
ther research can find theoretically optimal solutions for more
general types of architectures. Rematerialization methods
demonstrated their benefits in reducing memory on one GPU.
Despite that, it is important to combine it with other methods
to achieve significant decrease in memory consumption. For
example, in [Beaumont et al., 2021a] considering the optimal
combinations of offloading and rematerialization (Section 2)
further pushed the performance of both methods. Consid-
ering other combinations, e.g. checkpointing and pipelining
(Section 3), can be a promising further development of both
methods.

In optimization methods (Section 4) there are three main
research directions to adapt them for large model training:
low-precision storage of states and gradients, batch size in-
creasing with learning rate scheduling, compression of trans-
ferred gradients. They demonstrate promising results to train
particular models but, at the same time, they are quite far from
the complete technology. For example, the low precision ap-
proach requires extensive hardware support of the operations
with numbers in a low-precision format, and the compression
scheme for gradient transmission can be efficient only after
the careful setting of the broadcasting environment. Thus,
these approaches require additional research to make them
robust and widespread.

Among the promising directions, we should mention
computations with reduced precision, approximate meth-
ods [Novikov et al., 2022], randomized computations [Ber-
shatsky et al., 2022], and structured NN layers [Hrinchuk et
al., 2020], including those based on tensor factorizations. We
should highlight the importance for these approximate meth-
ods to be additive in the sense that they can be combined and
still provide sufficient enough performance with reasonable
quality degradation.

Finally, it is worth emphasizing the importance of de-
veloping new promising computing architectures that can
speed up elementary machine learning operations (for exam-
ple, matrix-vector multiplication) and low-level optimization
techniques.

Acknowledgments
This work was supported by the Inria Molière International
Associated Team between Skoltech and Inria. The work was
supported by the Analytical center under the RF Govern-
ment (subsidy agreement 000000D730321P5Q0002, Grant
No. 70-2021-00145 02.11.2021).

References
[Alistarh et al., 2017] Dan Alistarh, Demjan Grubic, Jerry

Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-Efficient SGD via Gradient Quantization
and Encoding. In NIPS, 2017.

[Alistarh et al., 2019] Dan Alistarh, Torsten Hoefler, Mikael
Johansson, Sarit Kririrat, Nikola Konstantinov, and Cedric
Renggli. The Convergence of Sparsified Gradient Meth-
ods. In NeurIPS, pages 5973–5983, 2019.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5499

[Athlur et al., 2021] Sanjith Athlur, Nitika Saran, Muthian
Sivathanu, Ramachandran Ramjee, and Nipun Kwatra.
Varuna: Scalable, Low-cost Training of Massive Deep
Learning Models. arXiv:2111.04007, 2021.

[Beaumont et al., 2019] Olivier Beaumont, Lionel Eyraud-
Dubois, Julien Herrmann, Alexis Joly, and Alena Shilova.
Optimal Checkpointing for Heterogeneous Chains: How
to Train Deep Neural Networks with Limited Memory. Re-
search Report RR-9302, INRIA, 2019.

[Beaumont et al., 2020] Olivier Beaumont, Lionel Eyraud-
Dubois, and Alena Shilova. Optimal GPU-CPU Offload-
ing Strategies for Deep Neural Network Training. In Euro-
Par, 2020.

[Beaumont et al., 2021a] Olivier Beaumont, Lionel Eyraud-
Dubois, and Alena Shilova. Efficient Combination of Re-
materialization and Offloading for Training DNNs. In
NeurIPS, 2021.

[Beaumont et al., 2021b] Olivier Beaumont, Lionel Eyraud-
Dubois, and Alena Shilova. Pipelined Model Parallelism:
Complexity Results and Memory Considerations. In Euro-
Par, pages 183–198, 2021.

[Bershatsky et al., 2022] Daniel Bershatsky, Aleksandr
Mikhalev, Alexandr Katrutsa, Julia Gusak, Daniil
Merkulov, and Ivan Oseledets. Memory-Efficient
Backpropagation through Large Linear Layers.
arXiv:2201.13195, 2022.

[Chen et al., 2016] Tianqi Chen, Bing Xu, Chiyuan Zhang,
and Carlos Guestrin. Training Deep Nets with Sublinear
Memory Cost. arXiv:1604.06174, 2016.

[Cho et al., 2019] Minsik Cho, Vinod Muthusamy, Brad Ne-
manich, and Ruchir Puri. GradZip: Gradient Compres-
sion using Alternating Matrix Factorization for Large-
scale Deep Learning. In Workshop on Systems for ML at
NeurIPS’19, 2019.

[Dettmers et al., 2021] Tim Dettmers, Mike Lewis, Sam
Shleifer, and Luke Zettlemoyer. 8-bit Optimizers via
Block-wise Quantization. CoRR, 2021.

[Fan et al., 2021] Shiqing Fan, Yi Rong, Chen Meng,
Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guop-
ing Long, Jun Yang, Lixue Xia, et al. DAPPLE: A
Pipelined Data Parallel Approach for Training Large Mod-
els. In PPOPP, 2021.

[Goyal et al., 2017] Priya Goyal, Piotr Dollár, Ross Gir-
shick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Ky-
rola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Ac-
curate, Large Minibatch SGD. arXiv:1706.02677, 2017.

[Griewank and Walther, 2000] Andreas Griewank and An-
drea Walther. Algorithm 799: Revolve: An Implemen-
tation of Checkpointing for the Reverse or Adjoint Mode
of Computational Differentiation. ACM TOMS, 2000.

[Grimm et al., 1996] José Grimm, Loı̈c Pottier, and Nicole
Rostaing-Schmidt. Optimal Time and Minimum Space-
Time Product for Reversing a Certain Class of Programs.
Technical report, INRIA, 1996.

[Gruslys et al., 2016] Audrunas Gruslys, Rémi Munos, Ivo
Danihelka, Marc Lanctot, and Alex Graves. Memory-
Efficient Backpropagation Through Time. In NIPS, 2016.

[Hrinchuk et al., 2020] Oleksii Hrinchuk, Valentin
Khrulkov, Leyla Mirvakhabova, Elena Orlova, and
Ivan Oseledets. Tensorized embedding layers. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 4847–4860, Online, November
2020. Association for Computational Linguistics.

[Huang et al., 2019] Yanping Huang, Youlong Cheng,
Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen,
Hyouk Joong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui
Wu, and Zhifeng Chen. GPipe: Efficient Training of Giant
Neural Networks using Pipeline Parallelism. In NeurIPS,
2019.

[Huang et al., 2020] Chien-Chin Huang, Gu Jin, and Jinyang
Li. SwapAdvisor: Pushing Deep Learning Beyond the
GPU Memory Limit via Smart Swapping. In ASPLOS,
2020.

[Jain et al., 2020a] Arpan Jain, Ammar Ahmad Awan, As-
maa M. Aljuhani, Jahanzeb Maqbool Hashmi, Quentin G.
Anthony, Hari Subramoni, Dhableswar K. Panda, Raghu
Machiraju, and Anil Parwani. GEMS: GPU-Enabled
Memory-Aware Model-Parallelism System for Distributed
DNN Training. In SC, 2020.

[Jain et al., 2020b] Paras Jain, Ajay Jain, Aniruddha
Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonza-
lez, Kurt Keutzer, and Ion Stoica. Checkmate: Breaking
the Memory Wall with Optimal Tensor Rematerialization.
In MLSys, 2020.

[Keskar et al., 2016] Nitish Shirish Keskar, Dheevatsa
Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On Large-Batch Training for
Deep Learning: Generalization Gap and Sharp Minima.
arXiv:1609.04836, 2016.

[Kirisame et al., 2020] Marisa Kirisame, Steven
Lyubomirsky, Altan Haan, Jennifer Brennan, Mike
He, Jared Roesch, Tianqi Chen, and Zachary Tatlock.
Dynamic Tensor Rematerialization. arXiv:2006.09616,
2020.

[Kumar et al., 2019] Ravi Kumar, Manish Purohit, Zoya
Svitkina, Erik Vee, and Joshua Wang. Efficient Remate-
rialization for Deep Networks. In NeurIPS, 2019.

[Kusumoto et al., 2019] Mitsuru Kusumoto, Takuya Inoue,
Gentaro Watanabe, Takuya Akiba, and Masanori Koyama.
A Graph Theoretic Framework of Recomputation Al-
gorithms for Memory-Efficient Backpropagation. In
NeurIPS, 2019.

[Le et al., 2018] Tung D. Le, Haruki Imai, Yasushi Negishi,
and Kiyokuni Kawachiya. TFLMS: Large Model Support
in TensorFlow by Graph Rewriting. arXiv:1807.02037,
2018.

[Li and Hoefler, 2021] Shigang Li and Torsten Hoefler.
Chimera: Efficiently Training Large-Scale Neural Net-
works with Bidirectional Pipelines. In SC, pages 1–14,
2021.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5500

[Li et al., 2021] Conglong Li, Ammar Ahmad Awan, Han-
lin Tang, Samyam Rajbhandari, and Yuxiong He. 1-
bit LAMB: Communication Efficient Large-Scale Large-
Batch Training with LAMB’s Convergence Speed. arXiv
preprint arXiv:2104.06069, 2021.

[Lin et al., 2021] Junyang Lin, An Yang, Jinze Bai, Chang
Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Yong Li, Wei Lin, et al. M6-10T: A Sharing-Delinking
Paradigm for Efficient Multi-Trillion Parameter Pretrain-
ing. arXiv:2110.03888, 2021.

[Narayanan et al., 2019] Deepak Narayanan, Aaron Harlap,
Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, Phillip B. Gibbons, and Matei Za-
haria. Pipedream: Generalized Pipeline Parallelism for
DNN Training. In SOSP, 2019.

[Narayanan et al., 2021a] Deepak Narayanan, Amar Phan-
ishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
Memory-Efficient Pipeline-Parallel DNN Training. In
ICML, 2021.

[Narayanan et al., 2021b] Deepak Narayanan, Mohammad
Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Pat-
wary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient Large-
Scale Language Model Training on GPU Clusters Using
Megatron-LM. In SC, pages 1–15, 2021.

[Novikov et al., 2022] Georgii Novikov, Daniel Bershatsky,
Julia Gusak, Alex Shonenkov, Denis Dimitrov, and Ivan
Oseledets. Few-Bit Backward: Quantized Gradients of
Activation Functions for Memory Footprint Reduction.
arXiv:2202.00441, 2022.

[Park et al., 2020] Jay H. Park, Gyeongchan Yun, Chang M.
Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi,
Sam H. Noh, and Young ri Choi. HetPipe: Enabling Large
DNN Training on (Whimpy) Heterogeneous GPU Clus-
ters through Integration of Pipelined Model Parallelism
and Data Parallelism. In USENIX ATC, 2020.

[Pudipeddi et al., 2020] Bharadwaj Pudipeddi, Maral Mes-
makhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Train-
ing Large Neural Networks with Constant Memory using
a New Execution Algorithm. arXiv:2002.05645, 2020.

[Rajbhandari et al., 2020] Samyam Rajbhandari, Jeff Rasley,
Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Opti-
mizations toward Training Trillion Parameter Models. In
SC, pages 1–16, 2020.

[Ren et al., 2021] Jie Ren, Samyam Rajbhandari, Reza Yaz-
dani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. ZeRO-
Offload: Democratizing Billion-Scale Model Training.
arXiv:2101.06840, 1 2021.

[Rhu et al., 2016] Minsoo Rhu, Natalia Gimelshein, Jason
Clemons, Arslan Zulfiqar, and Stephen W. Keckler.
vDNN: Virtualized Deep Neural Networks for Scalable,
Memory-Efficient Neural Network Design. In MICRO,
2016.

[Siskind and Pearlmutter, 2018] Jeffrey Mark Siskind and
Barak A. Pearlmutter. Divide-and-Conquer Checkpoint-
ing for Arbitrary Programs with no User Annotation. Op-
timization Methods and Software, 2018.

[Stich et al., 2018] Sebastian U. Stich, Jean-Baptiste Cor-
donnier, and Martin Jaggi. Sparsified SGD with Memory.
In NIPS, pages 4452–4463, 2018.

[Sun et al., 2020] Xiao Sun, Naigang Wang, Chia-Yu Chen,
Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swa-
gath Venkataramani, Kaoutar El Maghraoui, Vijayalak-
shmi (Viji) Srinivasan, and Kailash Gopalakrishnan. Ultra-
Low Precision 4-bit Training of Deep Neural Networks. In
NeurIPS, volume 33, pages 1796–1807, 2020.

[Tang et al., 2021] Hanlin Tang, Shaoduo Gan, Ammar Ah-
mad Awan, Samyam Rajbhandari, Conglong Li, Xian-
gru Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit
Adam: Communication Efficient Large-Scale Training
with Adam’s Convergence Speed. In ICML, 2021.

[Tarnawski et al., 2021] Jakub M Tarnawski, Deepak
Narayanan, and Amar Phanishayee. Piper: Multidimen-
sional Planner for DNN Parallelization. In NeurIPS,
volume 34, 2021.

[Vogels et al., 2019] Thijs Vogels, Sai Praneeth Karinireddy,
and Martin Jaggi. PowerSGD: Practical low-rank gradi-
ent compression for distributed optimization. In NeurIPS,
2019.

[Walther and Griewank, 2008] Andrea Walther and Andreas
Griewank. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. SIAM, 2008.

[Xu et al., 2021] Hang Xu, Chen-Yu Ho, Ahmed M Abdel-
moniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. GRACE:
A compressed communication framework for distributed
machine learning. In ICDCS, pages 561–572, 2021.

[Yang et al., 2021] Bowen Yang, Jian Zhang, Jonathan Li,
Christopher Re, Christopher Aberger, and Christopher
De Sa. PipeMare: Asynchronous Pipeline Parallel DNN
Training. In MLSys, 2021.

[You et al., 2017] Yang You, Igor Gitman, and Boris Gins-
burg. Large Batch Training of Convolutional Networks.
arXiv:1708.03888, 2017.

[You et al., 2019] Yang You, Jing Li, Sashank Reddi,
Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xi-
aodan Song, James Demmel, Kurt Keutzer, and Cho-Jui
Hsieh. Large Batch Optimization for Deep Learning.
arXiv:1904.00962, 2019.

[Zhan and Zhang, 2019] Jun Zhan and Jinghui Zhang. Pipe-
Torch: Pipeline-Based Distributed Deep Learning in a
GPU Cluster with Heterogeneous Networking. In CBD,
2019.

[Zhang et al., 2019] Junzhe Zhang, Sai Ho Yeung, Yao
Shu, Bingsheng He, and Wei Wang. Efficient Mem-
ory Management for GPU-based Deep Learning Systems.
arXiv:1903.06631, 2019.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5501

	Introduction
	Memory Usage Reduction on a Single GPU
	Rematerialization of Activations
	Offloading of Activations
	Offloading of Weights

	Parallelism for Models that Don't Fit on a Single GPU
	Optimizers for Cross-Device Training
	Zero Redundancy Optimizer
	Low-Precision Optimizers
	Acceleration of Convergence

	Conclusion and Further Research

