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Abstract
A temporal graph has an edge set that may change
over discrete time steps, and a temporal path (or
walk) must traverse edges that appear at increasing
time steps. Accordingly, two temporal paths (or
walks) are temporally disjoint if they do not visit
any vertex at the same time. The study of the com-
putational complexity of finding temporally dis-
joint paths or walks in temporal graphs has recently
been initiated by Klobas et al.. This problem is mo-
tivated by applications in multi-agent path finding
(MAPF), which include robotics, warehouse man-
agement, aircraft management, and traffic routing.
We extend Klobas et al.’s research by providing
parameterized hardness results for very restricted
cases, with a focus on structural parameters of the
so-called underlying graph. On the positive side,
we identify sufficiently simple cases where we can
solve the problem efficiently. Our results reveal
some surprising differences between the “path ver-
sion” and the “walk version” (where vertices may
be visited multiple times) of the problem, and an-
swer several open questions posed by Klobas et al.

1 Introduction
Deciding whether a set of vertex pairs (called source-sink
pairs) in a graph can be connected by pairwise vertex dis-
joint paths is a problem that is of fundamental interest in
algorithmic graph theory. It was among the first problems
that were shown to be NP-complete [Karp, 1975] and the fur-
ther study of the problem is closely tied to one of the most
ground-breaking achievements in discrete mathematics in re-
cent history, graph minor theory [Neil and Seymour, 1985;
Neil and Seymour, 1995]. The disjoint path problem is
known to be solvable in quadratic time if the number of ver-
tex pairs that need to be connected is constant, that is, the
problem is fixed-parameter tractable for the number of sought
paths [Kawarabayashi et al., 2012]. On directed graphs, find-
ing two disjoint paths is NP-hard [Fortune et al., 1980], but on
directed acyclic graphs the problem is solvable in polynomial
time if the number of paths is a constant [Slivkins, 2010].

Klobas et al. [2023] recently introduced and studied two
natural temporal versions of the disjoint path problem, called

TEMPORALLY DISJOINT PATHS (TDP) and TEMPORALLY
DISJOINT WALKS (TDW). Informally speaking, a tempo-
ral graph has an edge set that may change over discrete time
steps. Accordingly, temporal paths must traverse edges that
appear at increasing time steps and may visit each vertex at
most once, whereas a temporal walk may visit each vertex
multiple times. Furthermore, two temporal paths (or walks)
are temporally disjoint if they do not occupy any vertex at the
same time. Analogously to the non-temporal setting, the goal
is to find temporal paths (or walks) connecting vertex pairs of
a given multiset such that those paths (or walks) are pairwise
temporally disjoint. We give formal definitions in Section 2.

Due to the asymmetric and non-transitive nature of con-
nectivity in temporal graphs, path-finding related problems
behave quite differently in the temporal setting than in the
static setting. In fact, there are many natural temporal path-
finding problems that do not have a direct analog in the static
setting [Casteigts et al., 2021; Füchsle et al., 2022]. For
TDP and TDW the situation is similar. Among other results,
Klobas et al. [2023], for example, showed that both problems
are NP-hard if the underlying graph1 is a path, a setting where
the static disjoint path problem is trivial. Furthermore, they
revealed surprising differences in the computational complex-
ity of TDP and TDW. We build on the work of Klobas et
al. [2023] and continue the study of the (parameterized) com-
putational complexity of TDP and TDW. We provide sev-
eral new hardness and algorithmic results that expose further
interesting differences of the two problem variants and that
resolve some of the open questions by Klobas et al. [2023].

One of the main application areas for the temporal disjoint
path problems is multi-agent path finding (MAPF), an area
that has attracted a lot of research from the AI and robotics
community in recent years [Stern, 2019; Stern et al., 2019;
Salzman and Stern, 2020]. The goal is to find paths for multi-
ple agents such that all agents can follow these paths concur-
rently without colliding. The main difference between clas-
sical disjoint path problems and the basic setting of multi-
agent path finding problems is that in the latter, we assume
the agents move along the paths one step at a time and only
collide when they move to the same vertex at the same time.
This means that the paths in a solution to a MAPF problem

1The underlying graph of a temporal graph is the static graph
containing all edges that appear at least once in the temporal graph.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

180



are not necessarily vertex disjoint, but if two paths have a
common vertex, that vertex cannot be at the same ordinal
position in both paths. A key difference between classical
MAPF settings and the problems we study is the assump-
tion that the network structure may change over time. Ap-
plications of MAPF include autonomous vehicles, robotics,
automated warehouses, and airport towing [Stern, 2019;
Stern et al., 2019; Salzman and Stern, 2020], where pre-
dictable changes over time in the network topology are well-
motivated in many real-world scenarios [Latapy et al., 2018;
Michail, 2016; Holme and Saramäki, 2019].

Related Work. The (non-temporal) disjoint path problem
is one of the most central problems in algorithmic graph the-
ory, and hence has been extensively studied in the literature
for the past few decades. For an overview, we refer to Korte
et al. [1990].

In recent years there has also been intensive research on
(non-temporal) multi-agent path finding problems (MAPF)
in multiple variations, mostly in the AI and robotics com-
munity [Stern, 2019; Stern et al., 2019; Salzman and Stern,
2020]. MAPF can hence be seen as a generalization of so-
called pebble motion problems on graphs and it is known to
be NP-hard [Goldreich, 2011; Yu and LaValle, 2013]. To the
best of our knowledge, the current state of the art (optimal) al-
gorithms for MAPF problems employ the so-called conflict-
based search approach [Sharon et al., 2015].

In MAPF, various settings and problem variations have
been considered, including cooperative settings [Standley,
2010], robustness requirements [Atzmon et al., 2020] or pres-
ence of delays [Ma et al., 2017], online settings [Švancara
et al., 2019], continuous time settings [Andreychuk et al.,
2022], explainability requirements [Almagor and Lahijanian,
2020], settings with large agents (that occupy multiple ver-
tices) [Li et al., 2019], and many more. For an extensive
overview, we refer to Stern [2019] and Stern et al. [2019].

Klobas et al. [2023] started the study of TDP and TDW,
which can be interpreted as MAPF settings where the avail-
ability of edges in the graph may change while the agents
are moving. Using the MAPF terminology of Stern et
al. [2019], the problem setting considers both so-called
“vertex-conflicts” and “edge-conflicts” between agents, that
is, two agents cannot occupy the same vertex at the same time
and cannot traverse the same edge at the same time. Further-
more, it uses the “disappear at target” assumption, that is,
once an agent reaches their target vertex, another agent can
occupy this vertex again. It also uses an “appear at start”
assumption, that is, an agent is deployed to their starting ver-
tex when they start moving, and other agents can occupy the
starting vertex before. We remark that the latter two assump-
tions are not crucial for many of our results. We discuss this
issue in more detail in the full version of this work [Kunz et
al., 2023]. We point out that Klobas et al. [2023] consider
so-called non-strict temporal paths, that traverse edges that
appear at non-decreasing time steps. In this work, we con-
sider so-called strict temporal paths that, as described ear-
lier, must traverse edges that appear at (strictly) increasing
time steps. The latter models the common assumption in
MAPF, that agents can move along at most one edge at each

time step [Stern, 2019]. A closer inspection of the proofs by
Klobas et al. [2023] reveals that the results we mention in the
following also hold for the strict case. TDP is NP-hard even
for two source-sink pairs, whereas TDW is W[1]-hard for the
number of source-sink pairs but can be solved in polynomial
time for a constant number of source-sink pairs [Klobas et
al., 2023]. Furthermore, both problem variants are NP-hard
even if the underlying graph is a path [Klobas et al., 2023].
Nevertheless, TDP is fixed-parameter tractable with respect
to the number of source-sink pairs if the underlying graph is
a forest [Klobas et al., 2023].

Finally, we remark that a different version of disjoint paths
in temporal graphs has been studied by Kempe et al. [2002].
They consider two temporal paths to be disjoint if they to
not visit a common vertex, even if that vertex is not occupied
by the two temporal paths at the same time. They show that
finding two such paths in NP-hard.
Our Contribution. The goal of our work is to further un-
derstand which structures of the underlying graph can be ex-
ploited to solve TDP and TDW efficiently (in terms of pa-
rameterized computational complexity). Due to space con-
straints, proofs of statements marked with ? are (partially)
deferred to the full version [Kunz et al., 2023]. Our first
main computational hardness result shows that presumably,
we cannot solve TDP and TDW efficiently in the very re-
stricted case where the number of vertices is small and the un-
derlying graph is a star (a center vertex connected to leaves).

• TDP and TDW are NP-hard and W[1]-hard for the num-
ber of vertices even if the underlying graph is a star.

Recall that we have a multiset of source-sink pairs, that is,
the number of source-sink pairs in the input may be much
larger than the number of vertices. This leads us to focusing
on cases where we consider the number of source-sink pairs
as (part of) the parameter. As mentioned before, Klobas et
al. [2023] showed that TDP is fixed-parameter tractable with
respect to the number of source-sink pairs if the underlying
graph is a forest. They left open whether this algorithm can
be generalized to an FPT-algorithm where the parameter is the
number of source-sink pairs combined with some distance-
to-forest measure for the underlying graph. They also left
open whether a similar algorithm can be found for TDW. We
resolve both of these open questions.

For TDP we show that we presumably cannot obtain an
FPT-algorithm even if we combine the number of source-sink
pairs with the vertex cover number of the underlying graph.

• TDP is W[1]-hard for the combination of the number
of source-sink pairs and the vertex cover number of the
underlying graph.

This result excludes several popular distance-to-forest mea-
sures as potential parameters, such as the treewidth or the
feedback vertex number, which are smaller than the vertex
cover number. On the positive side, we can show that we can
use the feedback edge number (which is a distance-to-forest
measure that is incomparable to the vertex cover number) as
an additional parameter to obtain tractability.

• TDP is in FPT with respect to the combination of the
number of source-sink pairs and the feedback edge num-
ber of the underlying graph.
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The parameterized complexity of TDW is surprisingly dif-
ferent. For this problem we can show that, in contrast to the
path version, we presumably cannot obtain an FPT-algorithm
for the number of source-sink pairs even if the underlying
graph is a star.

• TDW is W[1]-hard for the number of source-sink pairs
even if the underlying graph is a star.

This is quite surprising given that Klobas et al. [2023] showed
that TDW is easier to solve than TDP when the number of
source-sink pairs is considered as a parameter and the un-
derlying graphs is unrestricted. As mentioned before, they
showed that in general, TDW can be solved in polynomial
time if the number of source-sink pairs is constant whereas
TDP is NP-hard already for two source-sink pairs. On the
positive side, if the underlying graph is restricted to be a path,
we can achieve fixed-parameter tractability for TDW.

• TDW is in FPT with respect to the number of source-
sink pairs if the underlying graph is a path.

Our results provide a quite complete picture of the param-
eterized complexity of TDP and TDW when the number of
source-sink pairs and structural parameters (particularly ones
that measure similarity to forests) of the underlying graph are
considered. We point out remaining open cases and future
research directions in Section 5.

2 Preliminaries and Problem Definitions
An interval of non-negative integers from a to b is denoted by
[a, b] := {i ∈ N ∪ {0} | a ≤ i ≤ b} and [a] := [1, a]. An
(s, z)-walk (or walk from s to z) in a graph G = (V,E) of
length k from vertex s = v0 to vertex z = vk is a sequence
P = (vi−1, vi)

k
i=1 of static transitions such that for all i ∈ [k]

we have that {vi−1, vi} ∈ E. The (s, z)-walk P is called an
(s, z)-path (or path from s to z) if vi 6= vj whenever i 6= j.

A temporal graph G = (V,E1, . . . , ET ) or G =
(V, (Et)t∈[T ]) consists of a vertex set V and T edge sets
E1, . . . , ET ⊆

(
V
2

)
. The underlying graph of G is the static

graph GU = (V,EU ) with EU :=
⋃T

i=1Ei. The indices
1, . . . , T are the time steps of G. The temporal graph G is
a temporal tree, star, or line, respectively, if its underlying
graph is a tree, star, or path. We call the pair (e, i) a time edge
of G if e ∈ Ei. The graph (V,Ei) is the i-th layer of G.

A temporal (s, z)-walk (or temporal walk from s to z) in G
of length k from vertex s = v0 to vertex z = vk is a sequence
P = ((vi−1, vi, ti))

k
i=1 of transitions such that for all i ∈ [k]

we have that {vi−1, vi} ∈ Eti and for all i ∈ [k − 1] we
have that ti < ti+1. The temporal (s, z)-walk P is called a
temporal (s, z)-path (or temporal path from s to z) if vi 6= vj
whenever i 6= j. The arrival time of P is tk. We say that
P visits the vertices V (P ) := {vi | i ∈ [0, k]} in order
v0, v1, . . . , vk. We say that P occupies vertex vi during the
time interval [ti, ti+1], for all i ∈ [k − 1]. Furthermore, we
say that P occupies v0 during time interval [t1, t1] and P oc-
cupies vk during time interval [tk, tk]. We say that P follows
the (static) path or walk P ′ = (vi−1, vi)

k
i=1 of the underlying

graph of G. If the arrival time of P is the smallest possible
among all temporal (s, z)-walks in G, we call P foremost. If

for all vi with i ∈ [k] we have that ti is the arrival time of
a foremost (s, vi)-path in G, then we call P prefix foremost.
If there is a temporal (s, z)-path in G, then there also exists a
prefix-foremost (s, z)-path and such a path can be computed
in polynomial time [Wu et al., 2016]. Given two temporal
walks P1, P2 we say that P1 and P2 temporally intersect if
there exists a vertex v and two time intervals [a1, b1], [a2, b2],
where [a1, b1] ∩ [a2, b2] 6= ∅, such that v is occupied by P1

during [a1, b1] and by P2 during [a2, b2]. We say that P1 and
P2 are temporally disjoint if they are not temporally intersect-
ing. The problem TDP is formally defined as follows.

TEMPORALLY DISJOINT PATHS (TDP)

Input: A temporal graph G = (V, (Et)t∈[T ]) and a
multiset S of source-sink pairs containing el-
ements from V × V .

Question: Are there pairwise temporally disjoint tempo-
ral (si, zi)-paths for all (si, zi) ∈ S?

The problem TEMPORALLY DISJOINT WALKS (TDW) re-
ceives the same input but asks whether there are pairwise tem-
porally disjoint temporal (si, zi)-walks for all (si, zi) ∈ S.
Given an instance of TDP or TDW, we use Ŝ to denote the
set of vertices in V that appear as sources or sinks in S, that
is, Ŝ = {s ∈ V | (s, z) ∈ S for some z ∈ V } ∪ {z ∈ V |
(s, z) ∈ S for some s ∈ V }.

We study the (parameterized) computational complexity of
those two problems. We use the following standard con-
cepts from parameterized complexity theory [Downey and
Fellows, 2013; Flum and Grohe, 2006; Cygan et al., 2015].
A parameterized problem L ⊆ Σ∗ × N is a subset of all in-
stances (x, k) from Σ∗ × N, where k denotes the parame-
ter. A parameterized problem L is in the class FPT (or fixed-
parameter tractable) if there is an algorithm that decides ev-
ery instance (x, k) for L in f(k) · |x|O(1) time, where f is any
computable function that depends only on the parameter. If a
parameterized problem L is W[1]-hard, then it is presumably
not fixed-parameter tractable [Downey and Fellows, 2013;
Flum and Grohe, 2006; Cygan et al., 2015].

3 Parameterized Hardness of TDP and TDW
In this section, we analyze the parameterized hardness of
TDP and TDW with respect to structural parameters of the
underlying graph (combined with the number of source-sink
pairs). We first consider the number |V | of vertices in the in-
put temporal graph as a parameter, which one might consider
as the largest structural parameter of the underlying graph.
Theorem 1 (?). TDP and TDW on temporal stars are NP-
hard and W[1]-hard with respect to the number of vertices.

Theorem 1 is proved by a parameterized reduction from the
W[1]-hard problem UNARY BIN PACKING parameterized by
the number of bins [Jansen et al., 2013]. This reduction is
deferred to the full version [Kunz et al., 2023].

3.1 Parameterized Hardness of TDP
In this section, we show that TDP is W[1]-hard when pa-
rameterized by the combination of source-sink pairs and the
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vertex cover number of the underlying graph. This shows to
which extend we can expect to generalize the FPT-algorithm
for TDP for the number of source-sink pairs on temporal
forests by [Klobas et al., 2023]. Our result rules out FPT-
algorithms for TDP parameterized by the number of source-
sink pairs combined with e.g. the treewidth or the feedback
vertex number of the underlying graph, since both of these
parameters are smaller than the vertex cover number. To ob-
tain tractability, we have to use parameters that are larger or
incomparable to the vertex cover number, such as the feed-
back edge number. In Section 4.1, we show this is possible.

Theorem 2 (?). TDP is W[1]-hard when parameterized by
the combination of the number |S| of source-sink pairs and
the vertex cover number of the underlying graph.

Theorem 2 is proved by a parameterized reduction from the
W[1]-hard problem MULTICOLORED CLIQUE parameterized
by the number of colors [Fellows et al., 2009]. The reduction
is deferred to the full version [Kunz et al., 2023].

3.2 Parameterized Hardness of TDW
Klobas et al. [2023] left the parameterized complexity of
TDW with respect to the number |S| of source-sink pairs on
temporal trees as an open question. In this section, we an-
swer this question by showing that the problem is W[1]-hard
for this parameterization, even on temporal stars. This may
be somewhat surprising considering that Klobas et al. [2023]
showed that TDP is fixed-parameter tractable on trees. This
implies that while TDP is harder than TDW on arbitrary
graphs for |S| as the parameter (the former is NP-hard for
|S| = 2, while the latter is solvable in polynomial time for
constant |S|), TDW is harder than TDP on temporal trees.

Theorem 3 (?). TDW on temporal stars is W[1]-hard when
parameterized by the number |S| of source-sink pairs.

We will give a parameterized reduction from the W[1]-
hard [Fellows et al., 2009] problem MULTICOLORED
CLIQUE. The input for this problem consists of an integer k
and a properly k-colored graph G = (V1 ] V2 ] . . . ] Vk, E)
and one is asked to decide whether G contains a clique of
size k. Any such clique must, of course, contain exactly one
vertex from each color class.

Construction 1. Let (G = (V1 ] V2 ] . . . ] Vk, E), k)
be an instance of MULTICOLORED CLIQUE. We may as-
sume w.l.o.g. that |V1| = |V2| = . . . |Vk| =: n. Suppose
that Vi = {vi1, . . . , vin}. We will now construct an instance
(G = (V, (Et)t∈[T ]), S) of TDW.

We start by describing S. For every i ∈ [k], there are two
terminal pairs (si, zi) and (s̃i, z̃i). The temporal walks that
connect these two pairs will encode the selection of a vertex
in Vi. Additionally, for every i, j ∈ [k] with i < j there is
a terminal pair (si,j , zi,j). The temporal walk for this pair
verifies that at least one vertex has been selected in each of Vi
and Vj and that those two vertices are adjacent. Let S denote
this set of terminal pairs.

Next we will define G = (V,E1, . . . , ET ). We start by
giving V . For every i ∈ [k] there are two sets of vertices, the
first, Wi, is intended to be used by the temporal walk con-
necting (si, zi) and the other, W̃i, by the temporal walk for

(s̃i, z̃i). Let Wi := {wi
1, . . . , w

i
kn, x

i
1, . . . , x

i
kn, y

i
1, . . . , y

i
n}

and W̃i := {w̃i
1, . . . , w̃

i
kn, x̃

i
1, . . . , x̃

i
kn, ỹ

i
1, . . . , ỹ

i
n}. Then,

for every edge e = {u, v} ∈ E with u ∈ Vi and v ∈ Vj for
some i < j there are vertices We := {αj

u, βe, γ
i
v}. Finally,

there is a central vertex c, to which every edge will be inci-
dent. Let V := {c}∪

(⋃
(s,z)∈S{s, z}

)
∪
(⋃

i∈[k]Wi∪W̃i

)
∪(⋃

e∈E We

)
.

It remains to define E1, . . . , ET . For every i ∈ [k], there is
a sequence of edge sets Ei

0, . . . , E
i
4kn+6. Informally speak-

ing, in this sequence the temporal walks connecting (si, zi)
and (s̃i, z̃i) select a vertex in Vi. The temporal walk connect-
ing (si,j , zi,j) for j 6= i verifies that the selected vertex is
adjacent to the one selected in Vj . First, for ` ∈ [kn], the ver-
tices wi

` are adjacent to c in the layersEi
4`−3 andEi

4`, and the
vertices w̃i

` have an edge to c in Ei
4`−1 and Ei

4`+2. Next, for
` ∈ [kn], the vertices xi` are adjacent to c in Ei

4`−2 and Ei
4`+1

and x̃i` have edges to c in Ei
4` and Ei

4`+3. Finally, for ` ∈ [n],
the vertices yi` are adjacent to c in the layers Ei

4k(`−1)+1 and
Ei

4k`+1, while for ỹi` those layers areEi
4k(`−1)+3 andEi

4k`+3.
Additionally, the starting vertex si is adjacent to c in the layer
Ei

0 and zi has an edge to c in Ei
4kn+4. Similarly, for s̃i and

z̃i, those layers are Ei
2 and Ei

4kn+6, respectively.
For any i, j ∈ [k] with i < j, there is a layer Ei,j

1 , which
contains the edge {si,j , c} and a second subsequent layer
Ei,j

2 , which contains {c, αj
v} for all v ∈ Vi that have a neigh-

bor in Vj . There is also a layer Ei,j
f−1, which connects c to

γiv for all v ∈ Vj that have a neighbor in Vi, and finally Ei,j
f

connecting zi,j to c. Next, consider edge e ∈ E. Suppose
that one endpoint of that edge is via ∈ Vi and the other end-
point is vjb ∈ Vj , with i < j. Then, there is an edge from
αj
vi
a

to c in the layer Ei
4k(a−1)+4(j−1), from c to βe in layer

Ei
4k(a−1)+4(j−1)+2, from βe to c in Ej

4k(b−1)+4i, and from c

to γi
vj
b

in Ej
4k(b−1)+4i+2.

The order of the layers in G is as follows. The layers Ei,j
1

and Ei,j
2 for each i, j ∈ k are consecutive to one another and

all such layers come at the very beginning of the temporal
graph. Then, come the layers E1

1 , . . . , E
1
4kn+6, followed by

E2
1 , . . . , E

2
4kn+6, and so on. The temporal graph concludes

with the layersEi,j
f−1 andEi,j

f consecutively for each i, j ∈ k.
We give an illustration of the construction in Figure 1. �

We will now give a brief overview of the intuition as to
why this construction is correct before proving this claim for-
mally. First, consider for any i ∈ [k] temporal walks Pi and
P̃i that connect (si, zi) and (s̃i, z̃i), respectively. For the pur-
pose of explanation, assume for now that the vertices yi` and
ỹi` did not exist. The first walk, Pi, must move from si to
c in layer Ei

0, because si is subsequently isolated. The sec-
ond walk, P̃i, must similarly arrive in c in Ei

2. Hence, Pi

must leave c in Ei
1, otherwise it temporally intersects P̃i. It

must move to wi
1. That vertex is again adjacent to c in layer

Ei
4 and isolated after that. Hence, Pi must return to c in that

layer. Therefore, P̃i must leave c in layer Ei
3, otherwise it
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temporally intersects Pi. It must move to w̃i
1. We can see that

the two walks Pi, P̃i are “locked” into alternatingly moving
from the center c to vertices wi

` and w̃i
`, respectively. For an

illustration see Figure 1.
Now consider that the vertices yi` and ỹi` exist. The pattern

in which Pi and P̃i move can be “broken” if Pi or P̃i moves
to yi` or ỹi`, respectively. Now we can make two observations.

• If the two walks do so almost simultaneously it creates
an interval of size O(k) where neither of the two walks
occupy the center vertex c. This interval corresponds to
a vertex in Vi. Hence, by choosing when to move to yi`
and ỹi`, respectively, a vertex from Vi is “selected”.

• After the two walks move back to c, they are locked in a
similar pattern, where they alternatingly move from the
center to vertices xi` and ỹi`, respectively. (This happens
also if only one of the walks move to yi` or ỹi`.) From
this pattern, they cannot move to vertices yi` or ỹi`, hence
at most one vertex is selected per color.

If no vertex is selected, that is, no vertices yi` or ỹi` are visited,
then the temporal walk Pi,j from si,j to zi,j for any i < j will
temporally intersect Pi or P̃i. (If i = k we make an analo-
gous observation, where i and j exchange their role.) Hence,
we can assume that one vertex of every color is selected. We
can observe that Pi,j first must move from si,j to c and then
to αe where e is any edge connecting a vertex in Vi to a vertex
in Vj . Informally speaking, this is only possible without tem-
porally intersecting any of the temporal walks Pi, P̃i, Pj , P̃j

if the endpoints of e are selected as vertices for colors i and
j, respectively. Thereby, we verify that the selected vertices
indeed form a clique in G.

The formal correctness proof for our reduction is deferred
to the full version [Kunz et al., 2023].

4 Algorithms for TDP and TDW
In this section, we present two new algorithms, one for TDP
and one for TDW.

4.1 Algorithm for TDP
In this section, we present an FPT-algorithm for TDP pa-
rameterized by the combination of the number of source-sink
pairs and the feedback edge number2 of the underlying graph.
This generalizes the FPT-algorithm by Klobas et al. [2023]
for TDP parameterized by the number of source-sink pairs
for temporal forests. Theorem 2 implies that we presumably
cannot replace the feedback edge number of the underlying
graph by a smaller parameter such as feedback vertex num-
ber or treewidth and still obtain fixed-parameter tractability.

Theorem 4 (?). TDP is in FPT when parameterized by the
combination of the number |S| of source-sink pairs and the
feedback edge number of the underlying graph.

The high-level idea of the algorithm is as follows. We can
bound the number of paths in the underlying graph between

2The feedback edge number of a graph G is the minimum num-
ber of edges that need to be removed from G to turn G into a forest.

any source-sink pair in a function of its feedback edge num-
ber. We can do the same for the number of how often two
such paths intersect. Hence, for a given set of paths, the total
number of such intersections is bounded by a function of the
feedback edge number and the number of source-sink pairs.
For each such intersection, we can consider all possibilities in
which order it is traversed by the temporal paths. This gives
us enough information to verify in polynomial time whether
the possibility of how and in which order the source-sink pairs
should be connected is realizable.

4.2 Algorithm for TDW
In this section, we present an FPT-algorithm for TDW pa-
rameterized by the number of source-sink pairs for the case
where the underlying graph is a path. Recall that a temporal
graph that has a path as underlying graph is called a tempo-
ral line. Klobas et al. [2023] showed that TDW is NP-hard
on temporal lines and they gave an FPT-algorithm for TDP
parameterized by the number of source-sink pairs for tempo-
ral forests. Theorem 3 implies that we presumably cannot
adapt this FPT-algorithm for TDW. However, we can obtain
tractability for the case of temporal lines. This answers an
open question by Klobas et al. [2023].
Theorem 5. TDW on temporal lines is in FPT with respect
to the number |S| of source-sink pairs.

Before we prove Theorem 5, we first investigate proper-
ties of solutions S to an instance of TDW that minimize the
sum of the lengths of its walks (our algorithm will produce
such a solution). We show that we can upper-bound the num-
ber of times a temporal walk in such a solution S changes
its direction by a function of |S|. Furthermore, we show that
the direction changes always occur in “regions” (whose size
is upper-bounded by a function of |S|) “around” the sources
and sinks in S. Intuitively, this allows us to iterate over all
possibilities in which direction, how often, and in which or-
der the temporal walks move through the regions around the
source and sink vertices in S. Given such a possibility, we
have enough information to check whether there exist tempo-
rally disjoint walks that realize this behavior.

For the remainder of this section, let S be a solution to an
instance of TDW that minimizes the sum of the lengths of its
temporal walks. We first show that if a temporal walk in S
changes its direction, there has to be another temporal walk
in S that enforces this behavior as follows.
Lemma 6 (?). Let W be a temporal (s, z)-walk in S such
that (a, b, t), (b, a, t′) with t < t′ are consecutive inW . Then,
there exists a temporal (s′, z′)-walkW ′ in S with (c, a, t′′) or
(a, c, t′′) in W ′ where t < t′′ < t′.

Having Lemma 6, we can inductively show if a temporal
walk W0 in S changes direction, then there is a sequence of
temporal walks in S that change direction right before W0

followed by a temporal walk in S that is either starting at its
source or arriving at its sink.
Lemma 7 (?). Let W0 be a temporal (s0, z0)-walk in S such
that (a0, b0, t0), (b0, a0, t

′
0) with t0 < t′0 are consecutive in

W0. Then, there exist temporal (s1, z1)-walk W1, . . . , tempo-
ral (sr, zr)-walk Wr in S and a1, b1, t1, t′1, . . . , ar, br, tr, t

′
r

so that:
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Figure 1: Illustration of the part of the temporal graph G as defined by Construction 1 that corresponds to color i = 2 for k = 3 colors.
Vertices are represented by horizontal lines. The positions of the lines indicate the “vertex type” (wi
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` for ` ∈ [n], and c), as

listed on the left. The non-horizontal lines represent time edges, where the label corresponds to the position of their connection to the center
vertex c (black horizontal line in the middle). Positions further to the left correspond to earlier time labels. Edges e, e′ connect vertices of
color 1 to vertex v of color 2. Edges e′′, e′′′ connect vertices of color 3 to vertex v of color 2.

• For every 1 ≤ i < r, (ai, bi, ti), (bi, ai, t
′
i) are consecu-

tive in Wi, ti−1 < ti ≤ t′i < t′i−1 and ai−1 = bi.

• either (ar, br, tr) or (br, ar, tr) in Wr, tr−1 < tr <
t′r−1, ar−1 = br and either br = zr or br = sr.

From Lemma 7 we can draw two important corollaries that
will help us to design the algorithm and prove its correctness.
We give an illustration in Figure 2. The first corollary is that
direction changes of temporal walks in S occur not too far
away from source or sink vertices.

Corollary 8. Let W be an (s, z)-walk in S such that
(a, b, t), (b, a, t′) are consecutive in W with t < t′. Then,
there exists an (s′, z′)-walk W ′ 6= W in S with at least one
among (s′, a′, t′′) or (a′, z′, t′′) in W ′ for some a′, where
t < t′′ < t′ and the distance between a and a′ in the un-
derlying path of the temporal graph is at most |S|.

The second corollary is that the temporal walks in S do not
change their direction too often.

Corollary 9. Let W be an (s, z)-walk in S . Then at most
2|S| pairs of triples of the form (a, b, t), (b, a, t′) with t < t′

are consecutive in W .

We now have all the pieces we need to prove Theorem 5.

Proof of Theorem 5. Let (G = (V, (Et)t∈[T ]), S) be an in-
stance of TDW such that the underlying graph of G is a path.
Let G denote the underlying graph of G. Recall that Ŝ de-
notes the set of all vertices in V that appear as sources or
sinks in S. We know by Corollary 8 that we may assume
w.l.o.g. that all temporal walks in a solution to (G, S) change
direction only at vertices that are of distance (in G) at most
|S| from some vertex v ∈ Ŝ. Let D = {v ∈ V | ∃v′ ∈
Ŝ such that distG(v, v′) ≤ |S|} denote the set of all vertices
in V where some temporal walk in the solution potentially
changes direction. Observe that |D| ≤ 4|S|2. By Corol-
lary 9, we know that w.l.o.g. all temporal walks in a solu-
tion to (G, S) change direction at most 2|S| times. It fol-
lows that for each source-sink pair in (s, z) ∈ S, there are
|S|O(|S|) possibilities we need to consider for where the tem-
poral (s, z)-walk in the solution changes directions. Consid-

ering all source-sink pairs, we have |S|O(|S|2) possible con-
figurations the we need to consider for where temporal walks
in the solution change directions.

Consider one specific configuration. We now analyse how
many different relative orderings of the temporal walks we
need to consider. To do this, we treat every temporal walk as
at most 2|S| temporal path segments that form the walk, that
is, at the endpoints of each path segment, the walk changes
direction (or starts/ends). In total, this gives us 2|S|2 tempo-
ral path segments. Note that any two of these path segments
P, P ′ have the property that they either do not visit common
vertices, or if they do, then for all common vertices we have
that either P occupies each of them before P ′ or vice versa.
Otherwise, P and P ′ would be temporally intersecting. It
follows that there exist a total ordering of all path segments
such that whenever two path segments visit common vertices,
the ordering defines which of the two path segments occupies
each of the common vertices first. Overall, we have |S|O(|S|2)

possible orderings for the path segments.
However, some of these orderings might not yield pairwise

temporally disjoint walks when we reconnect all path seg-
ments to form the respective temporal walks. Let P1 and P2

be two consecutive path segments of some temporal walk W
such that P1 is the path segment right before P2, then the or-
dering must obey two requirements.

1. Path segment P1 must occur before path segment P2 in
the ordering.

2. Let vertex v be the endpoint of P1 and the starting point
of P2, implying that W changes direction at vertex v.
Then for each path segment P ′ that contains vertex v
we have that P ′ either must be before P1 and P2 in the
ordering or P ′ must be after P1 and P2 in the ordering.

The first requirement must be met, since otherwise connect-
ing P1 and P2 does not yield a temporal walk. To see why
the second requirement must be met, let W ′ be the temporal
walk of which P ′ is a path segment. IfW = W ′, then the first
requirement is not met. If W 6= W ′, then the two temporal
walks would temporally intersect in vertex v.

We call an ordering of the path segments valid if both of
the above requirements are met. Given an ordering, we can
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ar br = ar−1 br−1 = ar−2 br−2 = ar−3 b1 = a0 b0

Figure 2: Illustration for Lemma 7 and Corollary 8. The colored paths represent temporal (sr, zr)- to (s0, z0)-walks. The vertical position of
the colored edges represents the time labels. The diamond shaped vertex br = ar−1 equals sr or zr and hence is a vertex of interest. Since
r ≤ |S|, the distance between br and b0 is also at most |S|.

clearly check in polynomial time whether it is valid or not.
The algorithm now proceeds as follows:

1. Iterate over all possible configurations where the tempo-
ral walks in the solution change directions.

2. For each configuration, iterate over all valid orderings of
the path segments implicitly given by the configuration.

3. For each configuration with a valid ordering, iterate over
the path segments according to the ordering.
For each path segment, compute a prefix-foremost tem-
poral path P from the starting point to the endpoint of
the path segment.
If no such temporal path exists, discard the current com-
bination of configuration with valid ordering. Other-
wise, for each transition (v, w, t) in P , remove all time
edges incident with v or w that have a time label t′ ≤ t.
Continue with the next path segment. If there is no fur-
ther path segment, output YES.

4. If all combinations of configuration with valid ordering
were discarded, output NO.

Since we have |S|O(|S|2) possible configurations and
|S|O(|S|2) possible valid orderings, the running time of the
algorithm is in |S|O(|S|4) · |G|O(1). Note that with polynomial
overhead, the algorithm can also output the solution.

By the arguments made before, it is easy to check that if
the algorithm outputs YES, then we face a yes-instance.

For the other direction, assume that we face a yes-instance.
Then there is a solution S that minimizes the sum of the
lengths of its temporal walks. Corollaries 8 and 9 imply that
each temporal walk in the solution changes direction at most
2|S| times at vertices that are of distance at most |S| to a
vertex that appears as a source or sink in S. Hence, we can
segment every temporal walk in the solution into at most 2|S|
temporal paths that have endpoints in the setD (defined at the
beginning of the proof). The path segments form a partially
ordered set, if we define a path segment P to be smaller than
P ′ if the two path segments have common vertices and each
of the common vertices is occupied by P earlier than by P ′.
Note that for all pairs of path segment P, P ′ that have com-
mon vertices, we have that P is either smaller than P ′ or vice
versa, otherwise P and P ′ would be temporally intersecting.
Hence, we have that any linearization of the partial ordering
is a valid ordering of the path segments.

If follows that there exists a combination of configurations
with valid ordering that agrees with the solution. Lastly, note
that we can assume w.l.o.g. that the temporal path segments

in the solution are prefix-foremost (among the ones that do
not temporally intersect), since if they are not, we can simply
replace a temporal path segment with a prefix-foremost one.
We can conclude that the algorithm outputs YES.

5 Future Work
We leave several directions for future research. Our hardness
results rule out many structural graph parameters as further
options for obtaining tractability. However, there are some
candidates that are unrelated to the vertex cover number and
the feedback edge number, and are also large on star graphs,
leading to the following question.

• Are TDP and TDW in FPT or W[1]-hard with respect to
the combination of the number of source-sink pairs and
the cutwidth or bandwidth of the underlying graph?

In MAPF, one is often interested in finding solutions that
minimize the sum or maximum of steps or actions that each
agent needs to take to arrive at their destination [Stern, 2019].
In our setting, the number of transitions of a temporal path or
walk corresponds to the number of steps and the difference
between the time label of the last and first transition (also
called duration) corresponds to the number of actions (where
waiting for one time step is considered an action). We can
observe that the number of transitions of temporal paths or
walks is constant in the reductions of Theorem 1 and Theo-
rem 2, indicating that finding solutions with few transitions
is still hard. We believe that the duration might be a more
promising parameter, since it is large in the reductions of The-
orem 2 and Theorem 3, leading to the following question.

• Are TDP and TDW in FPT or W[1]-hard with respect
to the combination of the number of source-sink pairs
and the maximum duration of any temporal (path/walk)
in the solution?

Finally, we leave open whether our results also hold for the
non-strict case, where temporal (paths/walks) use transitions
with non-decreasing (instead of increasing) time labels. We
conjecture that all our results can be adapted for this case.
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