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Abstract

Counterfactual explanations have been argued to
be one of the most intuitive forms of explanation.
They are typically defined as a minimal set of edits
on a given data sample that, when applied, changes
the output of a model on that sample. However, a
minimal set of edits is not always clear and under-
standable to an end-user, as it could, for instance,
constitute an adversarial example (which is indis-
tinguishable from the original data sample to an
end-user). Instead, there are recent ideas that the
notion of minimality in the context of counterfac-
tuals should refer to the semantics of the data sam-
ple, and not to the feature space. In this work,
we build on these ideas, and propose a framework
that provides counterfactual explanations in terms
of knowledge graphs. We provide an algorithm for
computing such explanations (given some assump-
tions about the underlying knowledge), and quanti-
tatively evaluate the framework with a user study.

1 Introduction
As the field of eXplainable AI (XAI) research matures, the
desiderata for explanations become more clear. Some of these
are difficult to quantify, such as understandability, trust, and
informativeness [Hoffman et al., 2018]. For counterfactual
explanations specifically, there are additional requirements,
namely feasibility and actionability [Poyiadzi et al., 2020],
minimality/proximity, and flip-rate/accuracy/validity [Verma
et al., 2020]. In this work, we propose a framework for gen-
erating counterfactual explanations, that guarantees optimal
flip-rate, minimality, feasibility, and actionability. Further-
more, we argue that by utilizing knowledge graphs, the expla-
nations become more understandable, informative, and trust-
worthy - which we quantify in a user study.

Explanations based on low-level features, such as pixel
brightness or sound frequency, have not proven to be particu-
larly helpful or trustworthy to users [Rudin, 2019]. These nu-
meric representations of real-world phenomena appear rather
cryptic to humans, who choose intuitive, high-level criteria
when describing the factors that direct their decisions; crite-
ria such as, how “furry” a dog is or how “dry” a cough sounds

when determining a dog breed or a respiratory issue, respec-
tively. Low-level features may be useful information for ma-
chine predictions, but not for human-readable explanations.

Fortunately, there is no mathematical difference between
a vector representing low-level characteristics (eg. pixel val-
ues) and one representing semantically rich features [Browne
and Swift, 2020]. This makes it feasible to create systems
that provide counterfactual explanations in terms of seman-
tic features instead of low-level characteristics. This argu-
ment has been grounded both theoretically and practically, by
the community. [Browne and Swift, 2020] demonstrates the
equivalence between counterexamples and adversarial exam-
ples in cases where higher-level semantics are not employed.
Additionally, recent works provide explanations by incorpo-
rating the semantics of inputs in various ways. For instance,
[Goyal et al., 2019] uses the intermediate output of a clas-
sifier as a form of higher-level information about the input
image. [Akula et al., 2020] deduces an image’s semantic
concepts (xconcepts) by clustering the outputs of these fea-
tures and presuming that elements of the same cluster are se-
mantically similar. Meanwhile, [Vandenhende et al., 2022]
employs an external neural network to create semantic em-
beddings of these features, regarding proximate embeddings
as semantically equivalent. All of the above algorithms use
different methods of approximating the semantic distance of
the elements depicted in images.

In our work, we build on these ideas and propose a frame-
work for semantic counterfactuals, where the semantics are
defined in knowledge graphs [Hogan et al., 2021]. This
allows for providing explanations using structured, human-
understandable terms. Furthermore, the framework does not
require access to the model under investigation, contrarily to
the above techniques which require accessing the layers of a
model, circumventing its black-box nature. This white-box
access to AI models may be the case in many research sce-
narios but in the real world, the convenience of tapping into
the inner workings of a trained model is unlikely to exist.
Black box explanations have been criticised by the commu-
nity [Rudin, 2019], in favour of inherently interpretable mod-
els, however since black box models are still prevalent in both
academia and the industry, attempting to explain their predic-
tions is still an important problem to solve. Our proposed so-
lution to the problem mitigates a lot of the criticism, as long
as the data and the knowledge graphs are chosen wisely.
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Specifically, by considering explanations at the level of ab-
straction of the knowledge graph, this technique centralizes
the possible sources of errors solely toward the data, instead
of the explainability algorithm. This transforms typical pit-
falls of post hoc XAI, such as misleading explanations, to a
considerably easier and more intuitive problem. For instance,
a pixel-level explanation algorithm, such as a saliency map,
explaining why a dog is a labrador and not a golden retriever,
would produce a map lighting the body of the dog as an ex-
planation. Due to the ambiguity of such a pixel-level expla-
nation, it may not be apparent which characteristics of the
animal’s body were vital for its classification - let alone iden-
tifying it as an erroneous explanation. In contrast, a seman-
tic explanation would express explicitly that “the dog’s coat
has to be red to be classified as a labrador”. The clarity that
such an explanation provides is not only more informative
but easily exposes possible biases - such as an uneven num-
ber of red-coated labradors in the data. Knowing that this
bias can only be arising from the data and not the algorithm,
makes the resolution straightforward. Namely, choosing data
and knowledge which are semantically representative of the
classes we want to discern. This is how we can replace the
hard problem of algorithmic errors in explainability with the
more manageable problem of improper data.

2 Background and Notation
The framework is presented using the formalism of Descrip-
tion Logics (DLs) [Baader et al., 2003]. Even though we do
not make full use of the expressive power and reasoning ca-
pabilities of DLs, they are used as a way of future-proofing
the framework, which could be extended in the future for
more expressive knowledge than what is presented here. In
this work, we make certain assumptions about the structure
of DL knowledge bases. Specifically, given a vocabulary
V = ⟨CN,RN, IN⟩ where CN,RN, IN are mutually disjoint
finite sets of concept, role and individual names, we consider
K = ⟨A, T ⟩ to be a knowledge base, where the ABox A is a
set of assertions of the form C(a) and r(a, b) where C ∈ CN,
r ∈ RN and a, b ∈ IN, and the TBox T is a set of termi-
nological axioms of the form C ⊑ D where C,D ∈ CN
or r ⊑ s where r, s ∈ RN. The symbol ‘⊑ ’ denotes in-
clusion or subsumption. For example, a concept name (in
CN) could be Dog, an individual name (in IN) could be the
(unique) name of a specific dog, for example snoopy 42, and
a role name (in RN) could be a relation, such as “eating”.
Then an ABox could contain the assertion Dog(snoopy 42),
indicating that snoopy 42 is a Dog, and a TBox could contain
the axiom Dog ⊑ Animal, representing the fact that all dogs
are animals (where Animal is also a concept name in CN).
In such a knowledge base, both the ABox and the TBox can
be represented as labeled graphs. An ABox A can be rep-
resented as the graph ⟨V,E, ℓV , ℓE⟩ (an ABox graph), where
V = IN is the set of nodes, E = {⟨a, b⟩ | r(a, b) ∈ A} ⊆
IN × IN is the set of labeled edges, ℓV : V → 2CN with
ℓV (a) = {C | C(a) ∈ A} is the node labeling function, and
ℓE : E → 2RN with ℓE(a, b) = {r | r(a, b) ∈ A} is the
edge labeling function. A TBox T that only contains hierar-
chies of concepts and roles, can be represented as a directed

graph ⟨V,E⟩ (a TBox graph) where V = CN ∪ RN ∪ {⊤}
the set of nodes. The set of edges E contains an edge for
each axiom in the TBox, in addition to edges from atoms
appearing only on the right side of subsumption axioms,
and atoms that don’t appear in the TBox, to the ⊤ node:
E = {⟨a, b⟩ | a ⊑ b ∈ T } ∪ {⟨a,⊤⟩ | c ⊑ a ∈ T ∧ a ⊑ d ̸∈
T ∧ c, d ∈ CN ∪ RN} ∪ {⟨a,⊤⟩ | a ̸∈ sig(T )}. This is abu-
sive notation, in that the symbol ⊤ is overloaded and symbol-
izes both the universal concept and the universal role. Finally,
we consider classifiers to be functions F : D → C, where D
is the domain of the classifier and C is the set of names of the
classes.

3 Counterfactuals in Terms of Knowledge
The first step for attempting to understand a black box is to
choose what data to feed it. In this work we explore the
merits of feeding it data for which there is available infor-
mation in a knowledge base. This data comes in the form
of what we call exemplars, that are described as individuals
in the underlying knowledge, and can be mapped to the fea-
ture domain of the classifier. Such semantic information that
describes exemplars can be acquired from knowledge graphs
available on the web (for example wordnet [Miller, 1995]), it
can be extracted using knowledge extraction methods (such
as scene graph generation), or, ideally, it can be provided
by domain experts. A motivating example would be a set of
X-rays that have been thoroughly described by medical pro-
fessionals, and using standardized medical terminology their
characterizations have been encoded in a description logics
knowledge base. Having such a set of exemplars allows us
to provide explanations in terms of the underlying knowledge
instead of being constrained by the features of the classifier.

Definition 1 (Explanation Dataset). Let D be a domain of
item feature data, C a set of classes, and V = ⟨IN,CN,RN⟩
a vocabulary such that C ∪ {Exemplar} ⊆ CN. Let also
EN ⊆ IN be a set of exemplars. An explanation dataset E in
terms of D, C, V is a tuple E = ⟨M,K⟩, where M : EN → D
is a mapping from the exemplars to the item feature data,
and K = ⟨T ,A⟩ is a DL knowledge base over V such that
Exemplar(a) ∈ A iff a ∈ EN, the elements of C do not ap-
pear in K, and Exemplar and the elements of EN do not ap-
pear in T .

Intuitively, an explanation dataset contains items for which
we have available semantic information, alongside a feature
representation that can be fed to the classifier. The concept
name Exemplar is used to flag those individuals that can be
mapped by M to the domain of the classifier, and it does not
appear in the TBox to avoid complications that could arise
from reasoning. In this context, counterfactual explanations
have the form of semantic edits that are applied on an ABox
corresponding to an explanation dataset. Specifically, given
an exemplar and a desired class, we are searching for a set
of edits that when applied on the ABox lead to the exemplar
being indistinguishable from any exemplar that is classified
to the desired class.

Definition 2 (Counterfactual Explanation). Let F : D → C
be a classifier and ⟨M,K⟩ an explanation dataset where
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M : EN → D is a mapping function, EN is a set of exem-
plars and K = ⟨A, T ⟩ is a knowledge base. A counterfactual
explanation for an exemplar a ∈ EN and class C ∈ C is a tu-
ple ⟨c, E⟩ where c ∈ EN and F (M(c)) = C, and E is a set
of edit operations that when applied on the connected com-
ponent of a on the ABox graph make it equal to the connected
component of c. An edit operation on an ABox can be any of:

• Replacement of assertion D(a) with E(a), symbolized
eD→E

• Replacement of r(a, b) with s(a, b), symbolized er→s

• Deletion of D(a) or r(a, b), symbolized eD→⊤ or er→⊤

• Insertion of D(a) or r(a, b), symbolized e⊤→D or e⊤→r

where D,E ∈ CN and r, s ∈ RN.
For example, consider an image classifier F that classifies

to the classes C = {WildAnimal,DomesticAnimal}, and two
exemplars e1, e2 each classified to a different class: F (e1) =
WildAnimal and F (e2) = DomesticAnimal. The connected
components of each exemplar in the ABox graph might be:

Ae1 = {Exemplar(e1), depicts(e1, a), depicts(e1, b),

isIn(a, b),Animal(a),Forest(b)}

Ae2 = {Exemplar(e2), depicts(e2, c), depicts(e2, d),

isIn(c, d),Animal(c),Bedroom(d)}

Then an explanation for exemplar e1 and class
DomesticAnimal would be the replacement of assertion
Forest(b) with Bedroom(b), which would be symbolized
⟨e2, {eForest→Bedroom}⟩ and it would be interpreted by a
user as “If image e1 depicted animal a in a Bedroom
instead of a Forest, then the image would be classified as a
DomesticAnimal”. Of course there is no way to know if the
image e1 with the Forest replaced with a Bedroom would be
classified to the target class, because we do not have a way
to edit the pixels of the image and feed it to the classifier.
The explanation however provides useful information to the
user and can potentially aid in the detection of biases of the
classifier. For example, after viewing this explanation, the
user might choose to feed the classifier images depicting
wild animals in bedrooms to see whether or not they are
misclassified as domestic animals.

To provide more information to the end user, we can
accumulate counterfactual explanations for multiple exem-
plars and the desired class and provide statistics about what
changes tend to flip the prediction of the classifier, as a form
of a “global” explanation. For example, one could ask “What
are the most common semantic edits that when applied on ex-
emplars depicting bedrooms lead to them to be classified as
wild animals?”. To do this, we first compute the multiset G
of all counterfactual explanations from each exemplar in the
source subset to the target class , and then we show the end-
user the importance of each atom for changing the prediction
on the source exemplars to the target class, where

Importance(y) =
|{ex→y ∈ G}| − |{ey→x ∈ G}|

|G|
where , x, y ∈ CN, or x, y ∈ RN.

Intuitively, the importance of an atom shows how often it
is introduced (either via replacement or via insertion) as part
of the semantic edits of a set of counterfactual explanations.
A negative importance would indicate that the atom tends to
be removed (either via replacement or via deletion of asser-
tions). For example, one could gather all exemplars that are
classified as WildAnimal, along with their counterfactual ex-
planations for target class DomesticAnimal and compute how
important the presence (or absence) of a concept or a role is
for distinguishing between the two classes.

4 Computing Counterfactual Explanations
Given an explanation dataset ⟨EN → D, ⟨A, T ⟩⟩, the first
step for computing counterfactual explanations is to deter-
mine the edit operations on the ABox that transform the de-
scription of every exemplar to every other exemplar, thus this
is a computation that has to be done O(|EN|2) times, but it
only has to be done once for an explanation dataset. Ide-
ally, each set of edit operations will be minimal as they are
intended to be shown to users as explanations, which means
that the problem to be solved is the exact graph edit distance
problem [Sanfeliu and Fu, 1983].

4.1 Edit Distance Between Exemplars
Unfortunately, computing the graph edit distance is NP-hard
[Zeng et al., 2009], and even though there are optimized algo-
rithms for its computation [Abu-Aisheh et al., 2015], it will
not be feasible for explanation datasets with a large num-
ber of exemplars. One way to overcome the complexity is
to simplify the problem, and to work with sets instead of
graphs, which will allow us to use an algorithm similar to
the one presented in [Filandrianos et al., 2022] for the com-
putation of explanations. Of course converting a graph into
a set without losing information is not generally possible. In
this work, we convert the connected components of exem-
plars on the ABox graph into sets of sets of concepts, by
rolling up the roles into concepts. Specifically, we add in-
formation about outgoing edges to the label of each node in
the ABox graph, by defining new concepts ∃r.C for each
pair of role name r and concept name C, and then adding
∃r.C to the label of a node a if r(a, b), C(b) ∈ A for any
b ∈ IN. Then every exemplar of the explanation dataset is
represented as the set of labels of nodes that are part of the
connected component of the exemplar on the ABox. For in-
stance, an exemplar e with a connected component: Ae =
{Exemplar(e), depicts(e, a), depicts(e, b), depicts(e, c),Cat
(a), eating(a, b),Fish(b), in(b, c), Water(c) would be repre-
sented as the set of labels (ignoring the Exemplar node):
{{Cat, ∃eating.Fish}, {Fish, ∃in.Water}, {Water}}. Now,
to compute counterfactual explanations, we have to solve a
set edit distance problem.

4.2 Cost of Edits
Before solving the edit distance problem we first have to de-
termine how much each edit costs. Intuitively, we want coun-
terfactual explanations to be semantically similar exemplars,
thus the cost of an edit should reflect how much the exem-
plar changes semantically after applying the edit. To do this,
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we utilize the information that is present in the TBox. For
the first type of ABox edits, that involves replacing concept
assertions (eA→B), we assign a cost to the replacement of
concept A with concept B equal to their distance on the TBox
graph, ignoring the direction of the edges. For example, given
a TBox: T = {Cat ⊑ Mammal,Dog ⊑ Mammal,Ant ⊑
Insect,Mammal ⊑ Animal, Insect ⊑ Animal} the cost of re-
placing a Cat(a) assertion with Mammal(a) would be 1, the
cost of replacing Cat(a) with Dog(a) would be 2 and the cost
of replacing Cat(a) with Ant(a) would be 4. Similarly, the
cost of replacing a role assertion r(a, b) with s(a, b) (symbol-
ized er→s) is assigned to be the distance of the shortest path
on the undirected TBox graph from r to s. It is worth men-
tioning that this is not necessarily the optimal way to compute
semantic similarities of concepts and roles, and other mea-
sures exist in the literature [d’Amato et al., 2009]. For the
insertion of concept or role assertions, as is apparent from the
notation e⊤→a, we assign a cost equal to the distance of the
inserted atom (either a role or a concept) from the ⊤ node in
the TBox graph. This means that it is more expensive to in-
sert more specific atoms, than more general ones. Similarly
for the deletion of atoms ea→⊤, the cost is assigned to be the
distance of the deleted concept or role from the ⊤ node on the
undirected TBox graph. Finally, we allow a user to manually
assign cost to edits which could be useful in specific applica-
tions where some edits might not be feasible in the real world.
For example, if we had exemplars representing people, and
concepts representing their age (Young,Old) we might want
to disallow the edit eOld→Young as it would require time-travel
in order to be implemented realistically, so we could assign
an infinite cost to this edit.

4.3 Algorithm
In the general case, the algorithm for computing counterfac-
tual explanations has two steps. The first step (preprocessing)
is to compute the edit path between all pairs of exemplars in
an explanation dataset and to acquire predictions of the clas-
sifier on all exemplars. The second step is, given an exemplar
and a target class, to find the exemplar with the minimal edit
distance that is classified to the target class. For the case of
graph edits, in our experiments we use a depth-first graph edit
distance algorithm proposed in [Abu-Aisheh et al., 2015], as
it is implemented in the networkx python package1. For the
case of concept set descriptions, first we need to find the con-
nected components of exemplars on the ABox graph. Then
we need to add ∃r.C concepts to the labels of nodes a for
which r(a, b)C(b) is in the ABox. To compute the set edit
distance between two labels of nodes ℓa, ℓb, each of which
is a set of concepts (either atomic or of the form ∃r.C), we
first construct a bipartite graph where each element of ℓa is
connected to every element of ℓb and has a cost based on the
TBox T , as defined in section 4.2. On this bipartite graph we
then compute the minimum weight full match using an imple-
mentation of Karp’s algorithm [Karp, 1980] for the problem
to get the optimal set of edits from one set of concepts to an-

1https://networkx.org/documentation/stable/reference/
algorithms/generated/networkx.algorithms.similarity.optimize
graph edit distance.html

other. Finally, to compute the edit distance between two sets
of labels L1, L2, each of which is a set of sets of concepts,
we first compute the edit distance from each label in L1 to
every label in L2 by using the procedure described in the pre-
vious paragraph for each pair of labels, meaning the set edit
distance computation is performed |L1||L2| times. Then to
find the edit distance between L1 and L2 we use the same
procedure as with sets of concepts (bipartite graph and full
match), but this time the weights of the edges of the bipartite
graph are assigned according to set the edit distance. Hav-
ing preprocessed the explanation dataset and saved the edit
paths, an explanation can be provided in O(|EN|). Regarding
the complexity of the preprocessing algorithm, we refer to the
supplementary material 2.

5 Experiments
For evaluating the proposed framework, we conducted four
experiments, each with a different purpose. The first is a
user study for comparing our work with a state-of-the-art im-
age counterfactual system, which was performed on the CUB
dataset [Wah et al., 2011]. The second is a demonstration
of an intended use-case of the framework, where in order to
explain a black-box classifier trained on the Places dataset
[Zhou et al., 2018], we utilize semantic information present
in COCO [Lin et al., 2014], the Visual Genome [Krishna et
al., 2017], and WordNet. In the third experiment we explore
the use of a scene graph generator for producing semantic de-
scriptions. For the final experiment, we generate explanations
for a COVID-19 cough audio classifier trained on a subset of
Coswara [Sharma et al., 2020], showcasing that our approach
is domain agnostic, and how it can provide useful explana-
tions in such a critical application.

5.1 Human Evaluation on the CUB Dataset
To assess how the counterfactual images retrieved by our al-
gorithm fare against the state-of-the-art results [Goyal et al.,
2019], we set up a human study; since a widely accepted met-
ric to evaluate the success of semantically consistent visual
counterfactuals does not exist.

Setting
We first acquire two pre-trained classifiers (a VGG-16 [Si-
monyan et al., 2013], and a ResNet-50 [He et al., 2016]), and
make predictions on the test set of CUB. This dataset is what
we use as an explanation dataset, after encoding the annoata-
tions of the images in a DL knowledge base.

In [Vandenhende et al., 2022], the authors selected a num-
ber of bird images from the CUB dataset. Then, for each
one, they retrieved its closest counterfactual image from the
full dataset, with the restriction that it cannot belong to the
same bird species (label) as the source. For our experiment,
we executed the same methodology utilizing our algorithm to
perform the same task on the same source images.

Then, to each of our 33 human evaluators, we presented
a randomly selected source image along with its two cor-
responding counterfactual images - the one retrieved by the

2https://github.com/geofila/Semantic-
Counterfactuals/blob/main/Supplementary%20Material.pdf
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ResNet-50 VGG-16
[Vandenhende et al., 2022] S.O.T.A. 14.65% 13.68%
Ours 34.93% 23.65%
Can’t Tell 50.42% 62.67%

Table 1: Human evaluation results on which of the two counterfac-
tual bird images is semantically closer to the source image.

Figure 1: The first column shows the original image, the second one
[Vandenhende et al., 2022]’s retrieved image and the third one the
image retrieved by our algorithm.

SOTA and by our algorithm. The evaluators were then asked
which of the two counterfactual bird images more closely, se-
mantically, resembled the bird depicted in the first image (i.e.
not taking into account the bird’s posture or its background).

Results
The images retrieved with both methods were largely similar
and sometimes identical. As a result, the evaluators expe-
rienced difficulties deciding between the two counterfactual
images, and the two methods achieved similar results (Table
1). It is important to note that our algorithm did not peek
inside the model, contrarily to the SOTA algorithm. Our ap-
proach managed to attain equal results just by taking into ac-
count the semantic knowledge accompanying CUB images,
without having white-box access to the classifiers. Further
details about this experiment are available in the supplemen-
tary material2.

5.2 Explaining a Places Classifier Using COCO
For our second experiment, we decided to explore more re-
alistic examples and took advantage of the COCO dataset,
which contains object-annotated, real-world images that can
automatically be linked to an external knowledge.

Setting
We initially examined COCO’s labels to determine which
class transitions we could utilize for our counterfactuals, and
concluded that the two classes should be “Restaurant” related
and “Bedroom” related images. Details about the subset of
COCO can be found in the supplementary material 2. For
each image, a description of the objects present in that image
is provided. To create the explanation dataset, we automati-
cally linked these object descriptions with WordNet synsets
by using the NLTK python package3. We used WordNet
synsets as the set of concept names CN, and the hyponym-
hypernym hierarchy as a TBox. We then selected an image
classifier, trained specifically for scene classification on the

3https://www.nltk.org/howto/wordnet.html

Figure 2: Counterfactual explanations for changing the predictions
of for two images. For ‘Bedroom’ to ‘Playhouse’ is to simply to add
a child (e⊤→Child) (left) and for ‘Bedroom’ to ‘Veterinarians Office’
is to add a cat (e⊤→Cat) (right).

Figure 3: Global explanation for the subset of COCO which is clas-
sified as “bedroom”, with target class “kitchen”

PLACES dataset, provided by its creators 4, and made pre-
dictions on the aforementioned subset of COCO. This is the
black-box classifier which we provide explanations for.

Results
In the first row of fig.2 we show a local counterfactual ex-
planation for an image classified as a “Bedroom” to the tar-
get class “Playhouse”, which requires only one Concept Edit
(e⊤→Child). This example is interesting because “Playhouse”
is an erroneous prediction (the ground truth for the second
image should be “Bedroom”), thus immediately we detect a
potential bias of the classifier, that if a Child is added to an im-
age of a “Bedroom” it might be classified as a “Playhouse”.
Similarly, in the second row of fig.2 we show a counterfactual
for an image classified as “Bedroom” to the target class “Vet-
erinarian’s Office”, and the resulting target image is again an
erroneous prediction.

In fig.3 and fig.4 we see two examples of global counter-
factual explanations on the COCO dataset. As an unbiased
exercise, we can try to work out the source and target classes
for each figure, just by looking at the most frequent additions
and removals it contains. On the first (fig.3), which is the
simpler of the two, we see that the most common removals
from the source images were concepts relevant to {furniture,
bed, animal, carnivore, dog}, while the most common addi-

4http://places2.csail.mit.edu/index.htm
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Figure 4: Global explanation for the subset of COCO which is clas-
sified as “bedroom”, with target class “veterinarian”

tions were the concepts {home appliance, refrigerator, white
goods, consumer goods}. From this, we can assume that the
source subset more likely contained bedroom images (with a
bias towards pets) and the target class was probably a kitchen.
The true classes were, indeed, “bedroom” and “kitchen”. On
the second (fig.4), we see that the most frequent removals
revolved around furniture and electronics, and the most com-
mon additions around animals. Knowing that we are deal-
ing with a classifier of rooms and places, we would prob-
ably guess a kitchen for the source and some type of loca-
tion with a lot of domestic animals for the target. The actual
classes were “bedroom” (surprisingly) and “veterinarian of-
fice”, which raises the interesting question: why did we see
removals of “kitchens” instead of “beds” from the bedroom
class? And the answer is: because no beds were really re-
moved since veterinarian office images tend to include beds.
Moreover, trying to understand the “kitchen” removal from
bedroom photos and browsing through training dataset, we
notice that it contains several studio-apartment bedroom im-
ages that have part of their kitchen appearing in the photo -
kitchens that are mostly missing from vets’ offices and thus
had to be removed.

Comparison With Visual Genome’s Results
A crucial question at this point is how can we know where the
biases that our system uncovers come from. We are assuming
that they emerge from the classifier, but a biased explanation
dataset could yield similarly biased results. A way to answer
this question is to run the same task on a different dataset, to
see how those results compare with the previous ones. For
our cross-checking dataset, we will use Visual Genome since
it is, along with COCO, one of the very few datasets con-
taining annotated images. The results of the Visual Genome
experiment, overlayed on COCO’s results, are depicted in fig.
5. We can see that the classifier gave very similar predictions
for both datasets, which validates the hypothesis that the bi-
ases did not arise from a possible irregular distribution within
the explanation datasets but from the classifier itself.

Figure 5: Global explanation for the subset of Visual Genome which
is classified as “bedroom”, with target class “vet”

5.3 Testing the Importance of Roles
Most of the important features that differentiated the classes
in the previous experiment could be fully expressed by con-
cepts alone, e.g. the existence of a bed or a dog. There are,
though, many situations where this is not the case and where
roles and relationships between objects should be taken into
account. For example, classifying between “driver” and
“pedestrian” classes on images containing the concepts “mo-
torbike”, “bicycle” and “person” cannot be done without
knowing the relationship between the person and the vehicle.

Setting
The issue with this experiment was the general unavailabil-
ity of datasets that include images along with their semantic
descriptions, which is critical information for our system to
work. Visual Genome does include roles, but they are few and
inconsistent since they may be present in one photo but miss-
ing in other similar ones. Moreover, most real-world applica-
tions would not have knowledge accompanying their image
datasets. To tackle this practical obstacle, we decided to use
a Scene Graph Generator [Cong et al., 2022] that can extract
concepts and roles from images. Details about the parame-
ters used for scene graph generation are in the supplementary
material 2.

The first step is to search the web for images satisfying
our criteria and divide them into two classes, namely “driver”
and “pedestrian”. We do this for motorbike and bicycle riders
since we want to avoid the role name being itself the descrip-
tor of the class, e.g. “person driving car”. We query Google,
Bing and Yahoo images for a combination of keywords con-
taining “people”, “motorbikes” and “bicycles”, gather the fol-
lowing creative-commons photographs, and manually split
them into two classes. 1. {driver class} (63 images of peo-
ple on bicycles and 127 images of people on motorbikes) 2.
{pedestrian class} (31 images of people and parked motor-
bikes, 38 images of people and parked bicycles). Once we
construct our dataset, we extract semantic descriptions with
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Figure 6: Flipping class form “pedestrian” to “driver”, the most
important changes are: the addition of “rideˆwheeled˙vehicle”,
“wearˆhelmet” and the removal of “wearˆhat”.

the scene graph generator.

Results
The global counterfactuals transitioning from “pedestrian”
to ”driver”, are depicted on fig.6 as concept set descrip-
tions, i.e. concepts along with roles. The top addi-
tion by a very large margin is “rideˆwheeled vehicle”
as expected, which is the parent, and thus, the sum of
“rideˆbicycle” and “rideˆmotorbike”. Next, we see addi-
tions of “wearingˆhelmet” and a smaller addition of the
concept “helmet” by itself, presumably because in some driv-
ing photos the helmet was on the handlebars of the bike and
not on the rider’s head. We also see that “wearˆhat” is re-
moved (the child of “wearˆclothing”), which compliments
the addition of “wearˆhelmet”, and that “haveˆseat” is re-
moved since bicycle seats are not visible when bikes are rid-
den. The rest of the edits are too scarce and, although we
might be able to explain them, they can very likely be noise
as well.

5.4 COVID-19 Classification
Our final experiment showcases the framework in the audio
domain, and specifically in an application where explainabil-
ity is crucial: COVID-19 diagnosis.

Setting
We provide explanations for a classifier that was trained on a
subset of the Coswara Dataset, specifically, the winning entry
of the IEEE COVID-19 sensor informatics challenge 5. The
input of the classifier is an audio file of a person’s cough-
ing, and the output is the probability that the user to has the
COVID-19 virus. As an explanation dataset, we used data
from the Smarty4covid platform 6, which contains similar au-
dio files and includes additional annotations, such as gender,
symptoms, medical history, etc., in the form of an ontology.

5https://healthcaresummit.ieee.org/data-hackathon/ieee-covid-
19-sensor-informatics-challenge/

6https://doi.org/10.5281/zenodo.7137424

Concept Importance Concept Importance
Symptom -1.298 Runny Nose -0.22

Respiratory -1.278 Dry Cough -0.19
Female 0.25 Cough -0.189
Male -0.254 Sore Throat -0.13

Table 2: The global counterfactuals transitioning from “COVID-19
Negative” to “COVID-19 Positive”, for a classifier trained on cough-
ing audios from Coswara Dataset, using Smarty4covid data as the
Explanation Dataset.

It is worth mentioning that as features of the audio files, we
selected only the concepts that can be expressed in the audio
file. Thus, we removed concepts such as vaccination status.

Results
The global counterfactuals transitioning from “COVID-19
Negative” to “COVID-19 Positive” (Table 2) depicts that the
top insertion is the concept “Symptom”, which is the parent
of all the symptoms of the knowledge base. However, not
every symptom is capable of altering the prediction of the
classifier since the concept “Respiratory” which is a child of
the concept “Symptom” and the parent of all the symptoms
that are related to the respiratory system (e.g., “Dry Cough”)
is the next most added concept along with its children such
as “Dry Cough”, “Runny Nose”, and “Cough”. In this exper-
iment, we also uncovered an unwanted bias of the classifier
since one of the most common edits was to change the user’s
sex. After this peculiar observation, we conducted a search
on the training dataset, and we found out that this bias was
inherited from the training set of the classifier. In particular,
on the Coswara dataset, 42% of females are COVID-19 pos-
itive, while for males the percentage is 27%, which made the
classifier erroneously correlate sex to COVID-19 status.

6 Conclusion
We have presented a novel explainability framework based
on knowledge graphs. The explanations are guaranteed to
be valid, and feasible, as they are always edits towards real
data points. They are also guaranteed to be minimal, as they
are the result of an edit distance computation, and actionable,
provided the manual assignment of edit costs. Via the human
study, we also show that counterfactual explanations in the
context of the proposed framework, are understandable, and
satisfactory to end-users. The main limitation of the frame-
work, is its dependence on the explanation dataset, which ide-
ally is curated by domain experts. For critical applications,
such as medicine, we argue that it is worth the resources.
For other applications, we have shown that using available
semantically enriched datasets, such as the visual genome, or
using automatic knowledge extraction techniques to construct
the explanation dataset, such as scene graph generation, can
lead to useful explanations. There are two directions we plan
to further explore in future work. Firstly, we aim to extend the
framework for more expressive knowledge, and to make use
of theoretical results regarding description logics and reason-
ing. Secondly, we are experimenting with generative models,
that can apply the semantic edits on a data sample, and gen-
erate a new sample that can be fed to the classifier.
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