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Abstract

Recent works reveal that adversarial augmenta-
tion benefits the generalization of neural net-
works (NNs) if used in an appropriate man-
ner. In this paper, we introduce Temporal Ad-
versarial Augmentation (TA), a novel video aug-
mentation technique that utilizes temporal atten-
tion. Unlike conventional adversarial augmenta-
tion, TA is specifically designed to shift the at-
tention distributions of neural networks with re-
spect to video clips by maximizing a temporal-
related loss function. We demonstrate that TA
will obtain diverse temporal views, which signifi-
cantly affect the focus of neural networks. Train-
ing with these examples remedies the flaw of
unbalanced temporal information perception and
enhances the ability to defend against tempo-
ral shifts, ultimately leading to better general-
ization. To leverage TA, we propose Temporal
Video Adversarial Fine-tuning (TAF) framework
for improving video representations. TAF is
a model-agnostic, generic, and interpretability-
friendly training strategy. We evaluate TAF with
four powerful models (TSM, GST, TAM, and TPN)
over three challenging temporal-related bench-
marks (Something-something V1&V2 and div-
ing48). Experimental results demonstrate that TAF
effectively improves the test accuracy of these mod-
els with notable margins without introducing ad-
ditional parameters or computational costs. As a
byproduct, TAF also improves the robustness under
out-of-distribution (OOD) settings. Code is avail-
able at https://github.com/jinhaoduan/TAF.

1 Introduction
Deep learning has achieved significant successes in multi-
ple domains [Yuan and Moghaddam, 2020; Shi et al., 2020;
Yuan et al., 2023; Cao et al., 2023]. However, adversarial ex-
amples have been widely recognized as a serious threat to
neural networks (NNs) [Xu et al., 2018; Xu et al., 2020].

∗Equal corresponding author.

Imperceptible distortions created by advanced adversarial at-
tack algorithms can easily manipulate the decision of well-
trained neural networks. This issue would be more critical
for security-sensitive scenarios, such as biological identifi-
cation [Dong et al., 2019] and autonomous [Wang et al.,
2022]. However, recent works also reveal that adversar-
ial examples could benefit NNs if used in the appropriate
manner. For instance, adversarial examples could be the
special cases when perceiving the category decision bound-
aries [Tanay and Griffin, 2016]. Also, by regarding adver-
sarial examples as special augmentations, jointly utilizing ad-
versarial examples and natural examples during the training
will ameliorate the generalization of NNs [Xie et al., 2020;
Chen et al., 2021a].

Temporal modeling is the decisive procedure for video
understanding tasks [Wang et al., 2016]. Recently, vari-
ous modules are proposed to capture temporal information.
For example, equipping networks with temporal convolu-
tion operations [Lin et al., 2019; Luo and Yuille, 2019;
Carreira and Zisserman, 2017] and local/global attention
mechanisms [Wang et al., 2018; Fan et al., 2019] are the
most common practices. Although these methods make great
progress on this issue, the main concern is that such strate-
gies tend to achieve narrow and overly centered temporal at-
tention. No mechanisms guarantee the surrounding temporal
clues, which may contain valuable information, will also be
fully explored equivalently. Figure 1 shows that current state-
of-the-art model inferences only rely on a few frames, which
ignores the following “holding” part and provides the wrong
prediction. This property helps to converge training samples
but might result in temporally over-fitting and hurts the gen-
eralization. Therefore, we may ask: do balanced temporal
attention distributions help with the generalization?

Training with adversarial augmentation is a promising
scheme to adaptively regularize the temporal attention dis-
tributions of NNs. On the one hand, considering that adver-
sarially augmented examples share the same semantic con-
tents as natural examples, training with these examples will
keep the consistency and stability of learning targets. On the
other hand, the constructed perturbations can largely affect
the behavior of NNs, which provides an opportunity to con-
cretely rectify models according to the needs. Motivated by
that, we propose Temporal Adversarial Augmentation (TA)
to address the unbalanced perception of temporal informa-
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Long-term Motion: Lifting up one end of something without letting it drop down 

Video Frames

Baseline CAM

Baseline Attention

Baseline Prediction: Lifting something up completely       , then letting it drop down

TAF CAM

TAF Attention

TAF Prediction: Lifting up one end of something       without letting it drop down

Figure 1: TAF enables models to capture global temporal cues by broadening and balancing the temporal attention distributions. As a result,
the model is able to capture both the “lifting” and “holding” parts of the video, whereas the baseline model without TAF can only focus on
the ”lifting” process and ignores the ”holding” parts.

tion. Different from conventional adversarial augmentation,
TA is specifically designed to perturb the temporal attention
distributions of NNs. Concretely, TA utilizes Class Activation
Mapping (CAM)-based temporal loss function to represent
the temporal attention distributions w.r.t. video clips, and dis-
turb NNs’ temporal views by maximizing the temporal loss
function. In this way, videos augmented by TA will obtain di-
verse temporal attention (Figure 3). Training with temporally
augmented examples will remedy the defect of unbalanced
attention assignation. Our contributions can be summarized
as the following:

• We introduce Temporal Adversarial Augmentation
(TA). TA changes the temporal distributions of video
clips and provides more temporal views for video un-
derstanding models.

• We propose Temporal Video Adversarial Fine-tuning
(TAF) framework to regularize the attention distribu-
tion of networks by utilizing temporal adversarial aug-
mentation. TAF is a model-agnostic, generic, and
interpretability-friendly training scheme. This is the first
work to improve video understanding models by explic-
itly utilizing adversarial machine learning.

• TAF is performed on four powerful video understanding
models, including TSM [Lin et al., 2019], TAM [Fan et

al., 2019], GST [Luo and Yuille, 2019], and TPN [Yang
et al., 2020], and evaluated on three temporal related
benchmarks (Somthing-something V1 & V2 and Div-
ing48). Experimental results demonstrate that TAF can
significantly boost test accuracy, without any additional
parameters and computational costs.

• TAF is evaluated under the out-of-
distribution [Hendrycks and Dietterich, 2018] set-
tings and it effectively boosts robustness in defending
naturally corrupted data with notable margins.

2 Related Works
2.1 Adversarial Machine Learning for Good
Enhancing NNs by taking advantage of adversarial machine
learning is being popular. One of the main contributions in
this field is revealing the relationship between robustness and
generalization [Tsipras et al., 2018; Su et al., 2018]. [Tsipras
et al., 2018] theoretically proves that there is an inherent gap
between robustness and generalization. Similar conclusions
are proposed in [Su et al., 2018] with empirical evidence. In
applications, [Xie et al., 2020; Chen et al., 2021a] prove that
by utilizing auxiliary batch normalization layers, adversarial
examples could benefit the generalization and improve image
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Figure 2: The overall pipeline of TAF. The upper network (clean path) and the lower network (adversarial path) share weights except for
batch normalization layers.

classification tasks. Besides, adversarial examples show great
potential in understanding and interpreting NNs [Ignatiev et
al., 2019; Boopathy et al., 2020]. [Ignatiev et al., 2019] re-
veals that adversarial examples and explanations can be con-
nected by the general formal of hitting set duality. [Boopa-
thy et al., 2020] propose an interpretability-aware defensive
mechanism to achieve both robust classification and robust
interpretation.

2.2 Robustness of Video Understanding
Video understanding, as one of the most important vision
tasks, has been promoted to a new level with the help of
NNs. [Carreira and Zisserman, 2017; Xie et al., 2018;
Lin et al., 2019; Wang et al., 2016] propose to improve
video representations with NNs constructed by different ar-
chitectures (e.g., 2D/3D structures, recurrent architectures).
[Arnab et al., 2021; Wei et al., 2022] prove that Transformer
architectures benefit video understanding tasks a lot. Be-
sides, boosting temporal modeling by incorporating NNs with
additional attention mechanisms is also practical and popu-
lar [Wang et al., 2018; Fan et al., 2019]. In terms of ro-
bustness, various attack and defense algorithms are proposed
in video scenarios. [Li et al., 2018a; Chen et al., 2021b]
show that video understanding models can also be easily ma-
nipulated by imperceptible perturbations. Furthermore, [Li
et al., 2021] proves that video models can be attacked un-
der different settings (e.g., black-box attack and transfer at-
tack). On the other side, common defense techniques (e.g.,
adversarial training [Kinfu and Vidal, 2022], adversarial de-
tection [Thakur and Li, 2022]) are also compatible with video
understanding models.

2.3 Class Activation Mapping
Class Activation Mapping (CAM) [Zhou et al., 2016] is one
of the most popular approaches in understanding and inter-

preting the attention distributions of NNs. CAM measures
the importance of channels by global average pooling and
weighted fusion. After that, a series of gradient-based [Sel-
varaju et al., 2017; Chattopadhay et al., 2018] and gradient-
free [Petsiuk et al., 2021] CAM solvers are also introduced.
Gradient-based CAM uses either first-order [Selvaraju et al.,
2017] or second-order [Chattopadhay et al., 2018] gradient
information to perceive the interested regions of NNs. Con-
sidering GradCAM [Selvaraju et al., 2017] is compatible
with various model structures, and it is more effective than
gradient-free CAM, we choose it as the CAM producer in the
rest of this paper.

3 Approach
In this section, we describe how to capture balanced temporal
information with the proposed Temporal Video Adversarial
Fine-tuning (TAF) framework. Firstly, we revisit the vanilla
adversarial augmentation. Then, detailed illustrations of TA
along with the CAM-based metrics are provided. At last, we
outline the training and testing protocols of the TAF frame-
work. The pipeline of TAF is shown in Figure 2.

3.1 Vanilla Adversarial Augmentation
Adversarial augmentation derives from adversarial perturba-
tion, a kind of imperceptible noise that can easily disturb
the predictions of well-trained NNs. [Xie et al., 2020;
Chen et al., 2021a] show that adversarial perturbations can
be seen as special augmentations to improve generalization
and robustness in image-based vision tasks.

For a given model, F , parameterized by weights θ and in-
put X ∈ RC×H×W with C channels and resolution H ×W ,
the adversarially augmented example, X ′, is defined as:

X ′ = X + δ = X + argmax
δ∈[−ϵ,ϵ]

L(X + δ, y), (1)
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where δ is the adversarial noise solved by either single-step
(e.g., FGSM [Goodfellow et al., 2014]) or iterative (e.g.,
PGD [Kurakin et al., 2018]) attack algorithms, ϵ is the at-
tack budget, and L is the conventional classification loss (i.e.,
Cross-entropy Loss).

Vanilla adversarial augmentation is an effective technique
for image tasks, but it is not well-suited for video scenar-
ios. Video understanding models often suffer from serious
overfitting issues, with over 40% overfitting gaps (i.e., top-
1 training accuracy vs top-1 validation accuracy) observed
on the Something-something V1 dataset. This severe over-
fitting suggests that a lot of generalization-irrelevant noise is
introduced during the training. For neural networks, the loss
function plays a crucial role in determining which features or
information are absorbed. Therefore, using a classification
loss alone may propagate these irrelevant noises back to the
adversarial perturbation, which ultimately harms the general-
ization of neural networks.

3.2 Temporal Adversarial Augmentation
To address this issue, the proposed Temporal Adversar-
ial Augmentation (TA) utilizes a CAM-based temporal loss
function to leverage temporal attention-related information
solely, which is one of the most fundamental and essential
features of videos. Here we show how to incorporate tempo-
ral information into adversarial augmentation.

For a given model, F , parameterized by weights θ and
video volume X ∈ RT×Nc×H×W with T frames, Nc chan-
nels and H × W resolution, we first consider the CAMs of
model F w.r.t. frame Xi,

XC
i = GC(θ,Xi, ŷ) =

1

HW

H∑ W∑ ∂Lce(θ,X, ŷ)

∂F ′(Xi)
F

′
(Xi),

i = 1, . . . , T,
(2)

where F ′
refers to the subnetwork of F from the input

layer to the final convolutional layer and Lce(·, ·, ·) is Cross-
entropy loss. XC

i represents the CAM of the i-th frame.
To discriminate the importance of each frame, we normalize
each CAM and define the overall CAM on video X as

X̂C
i =

XC
i −min(XC)

max(XC)
i = 1, . . . , T, (3)

where min(·) and max(·) refer to the minimal and maximal
values among all CAMs and XC = {XC

1 , · · · , XC
T }.

We balance temporal attention distribution by amplifying
those “unimportant” frames (i.e., frames with smaller CAM
values). Concretely, we sort X̂C

i in ascending order according
to the sum of CAM values at each frame:

ΣX̂C
π1 < ΣX̂C

π2 < · · · < ΣX̂C
πN < · · · < ΣX̂C

πK (4)
The top N frames with the smallest CAM values are selected
as the non-key frames. Then, the CAM-based loss is defined
as

LC =
1

N

N∑
i

X̂C
πi. (5)

By maximizing LC , global temporal attention will be reas-
signed to those unimportant frames, which balances the at-
tention distribution.

Clean Video Frames & CAMs

CAMs of Vanilla Adv. Frames

CAMs of Temporal Adv. Frames

Figure 3: Adversarially augmented examples and the corresponding
CAMs. Vanilla adversarial augmentation does not substantially af-
fect the temporal attention distribution, while our temporal adversar-
ial augmentation changes it significantly. This highlights the benefits
of TAF in terms of broadening and balancing the temporal attention
distributions.

To generate the final temporal augmentation, we utilize the
popular iterative gradient sign method (i.e. PGD [Kurakin et
al., 2018]) and update X in K iteration steps with the formu-
lation

Xk+1
i =ΠX±ϵ(X

k
i + β ∗ sgn(∇XK

i
LC(θ,Xi, ŷ))),

i = 1, . . . , T, k = 1, . . . ,K,
(6)

where ϵ refers to the attack budget under ℓinf constraint and
ΠX±ϵ(·) projects tensor back to [X − ϵ,X + ϵ]. β represents
the attack step size. In terms of the targeted label ŷ, we assign
it based on the example’s prediction. For correctly classified
samples, models are expected to be robust against temporal
shifting. Therefore, a random label is set to ŷ, which will
generate diverse temporal views. However, for incorrectly
classified samples, these are hard examples for the model and
we choose to reduce the difficulties of these examples by cor-
rectly boosting the temporal attention [Lee et al., 2021]. In
this situation, we set ŷ with the true label.

As shown in Figure 3, by shifting the temporal attention of
models, temporally augmented video clips have diverse tem-
poral views compared with conventional adversarial augmen-
tation. Training with these examples can be seen as a regular-
ization applied to the NNs for encouraging diverse inference,
which results in better generalization to unseen samples.
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3.3 Adversarial Fine-Tuning Framework for Video
Understanding

TAF jointly utilizes both natural examples and adversarially
augmented examples with the following optimization object:

min
θ

E(x,y)∼D

[
α ∗ Lce(θ, x, y) + (1− α) ∗ Lce(θ, x

K , y)
]
,

(7)
where Lce is the Cross-entropy loss function, and xK is the
temporally augmented data based on Eqn. 6. α is used to con-
trol the contribution of loss items. Besides, inspired by [Xie
et al., 2020], we adopt additional normalization layers (i.e.,
Batch Normalization [Ioffe and Szegedy, 2015]) to deal with
the distribution mismatching between adversarial examples
and natural examples. We name the forward path with orig-
inal normalization layers and additional normalization layers
as clean path and adversarial path, respectively.

For training, the natural examples will be first passed
through the clean path and get two outputs: clean logits and
CAM feature maps. Then, temporally augmented examples
are generated by performing Eq. 6 on CAM feature maps and
back-propagating through the clean path to the input exam-
ple. Next, pass the augmented examples through the adver-
sarial path and get adversarial logits. Finally, optimizing both
clean path and adversarial path with classification loss. For
inference, we drop adversarial normalization layers and get
the final prediction with the clean path. The pseudo-code of
TAF is shown in Appendix A.

Dataset Method Backbone frames Top-1(%) Top-5(%)

SSV1

TSM resnet50 8 45.6 74.6
TSM+TAF resnet50 8 46.9(+1.3) 75.0(+0.4)
TSM resnet50 16 47.2 77.1
TSM+TAF resnet50 16 47.9(+0.7) 77.7(+0.6)
GST 3d-resnet50 8 46.6 75.6
GST+TAF 3d-resnet50 8 47.6(+1.0) 76.4(+0.8)
GST 3d-resnet50 16 48.4 77.2
GST+TAF 3d-resnet50 16 48.8(+0.4) 77.5(+0.3)
GST-L 3d-resnet50 8 47.0 76.1
GST-L+TAF 3d-resnet50 8 47.7(+0.7) 76.3(+0.2)
TAM resnet50 8 46.2 75.4
TAM+TAF resnet50 8 46.6(+0.4) 75.4

TPN resnet50 8 48.0 77.2
TPN+TAF resnet50 8 49.1(+1.1) 78.0(+0.8)

SSV2

TSM resnet50 8 58.9 85.5
TSM+TAF resnet50 8 59.8(+0.9) 86.0(+0.5)
TSM resnet50 16 61.1 86.8
TSM+TAF resnet50 16 62.0(+0.9) 87.3(+0.5)
GST 3d-resnet50 8 61.3 87.2
GST+TAF 3d-resnet50 8 61.7(+0.4) 87.4(+0.2)
TPN resnet50 8 61.6 87.7
TPN+TAF resnet50 8 62.1(+0.5) 88.3(+0.6)

D48

TSM resnet50 8 78.5 97.3
TSM+TAF resnet50 8 79.1(+0.6) 97.6(+0.3)
GST 3d-resnet50 8 73.9 96.7
GST+TAF 3d-resnet50 8 74.7(+0.8) 96.9(+0.2)
TAM resnet50 8 75.1 96.3
TAM+TAF resnet50 8 75.8(+0.7) 97.1(+0.8)
TPN resnet50 8 80.2 98.4
TPN+TAF resnet50 8 80.9(+0.7) 98.0

Table 1: Evaluations on Something-something V1 and V2 (SSV1
and SSV2), Diving48 (D48) benchmarks.

4 Experiments
In this section, we investigate the effectiveness of TAF
through comprehensive experiments. Concretely, we first
introduce our experiment settings, including datasets, base-
lines, and implementation details. The evaluations on mul-
tiple state-of-the-art models and challenging benchmarks are
followed. Then, a series of ablation studies are conducted,
including comparing with vanilla adversarial augmentation,
impacts of α and attacking settings, relieving overfitting, and
the discussion about computational costs. Moreover, we qual-
itatively analyze TAF by providing representative visualiza-
tions. At last, we examine the models’ ability against nat-
urally corrupted data [Hendrycks and Dietterich, 2018], i.e.,
out-of-distribution (OOD) robustness.

4.1 Datasets and Baselines
We evaluate TAF on three popular temporal datasets:
Something-something V1&V2 [Goyal et al., 2017], Div-
ing48 [Li et al., 2018b]. Something-something V1&V2
are large-scale challenging video understanding benchmarks
consisting of 174 classes. Diving48 is a fine-grained temporal
action recognition dataset with 48 dive classes. The detailed
introduction of these datasets can be found in Appendix B

The reason why we choose these three datasets is that TAF
aims to tackle temporal modeling issues. Both Something-
something and Diving48 are the most challenging bench-
marks in this field [Lin et al., 2019]. Only action descriptions
are reserved in these datasets, without introducing scene-
related knowledge that enforces the model to learn the tem-
poral information. In this way, TAF can be fairly and entirely
evaluated.

Baselines. To evaluate the effectiveness of TAF, we con-
duct experiments on four powerful action recognition mod-
els: TSM [Lin et al., 2019], GST [Luo and Yuille, 2019],
TAM [Fan et al., 2019] and TPN [Yang et al., 2020].
These models cover the most representative action recogni-
tion methodologies: 2DConvNets-based recognition [Lin et
al., 2019; Fan et al., 2019; Yang et al., 2020], 3DConvNet-
based recognition [Luo and Yuille, 2019] and attention-based
recognition [Fan et al., 2019; Yang et al., 2020]. We train all
the baseline models by strictly following the training proto-
cols provided by their official codebases.

Fine-tuning. For fine-tuning, we load pre-trained weights
and keep training 15 epochs with TAF. We conduct 3 trials
for each experiment and report the mean results. The initial
training settings (e.g., learning rate, batch size, dropout, etc.)
are the same as the status when the pre-trained models are
logged. The learning rates are decayed by a factor of 10 af-
ter 10 epochs. We set α as 0.7, and the number of attacked
frames N as 8 or 16 according to the input temporal length.
Note that considering most of the baseline models did not
conduct experiments on Diving48, we adopt the same train-
ing settings as on the Something-something datasets.

Inference. For fairness and convenience, all the perfor-
mances reported in this paper are evaluated on 1 center crop
and 1 clip, with input resolution 224 × 224.
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Method Scratch Fine-t. CELoss CAMLoss Top-1 ∆

baseline
√

45.6 -
AdvProp [51]

√ √
44.5 -1.1

CE-based
√ √

46.1 +0.5

TAF
√ √

46.9 +1.3

(a) Scratch and Fine-t. stand for training from scratch and fine-
tuning from pre-trained models. CELoss/CAMLoss refers to the
objective function used to generate adversarial perturbations.

Method Top-1 (%) Top-5 (%)

baseline 45.6 74.6

α = 0.2 46.3 75.1
α = 0.5 46.7 75.1
α = 0.7 46.9 75.0
α = 0.8 46.5 74.8

(b) Impacts of applying different
α when optimizing objectives.

Method Top-1 (%) Top-5 (%)

baseline 45.6 74.6

ϵ = 6 K = 1 46.6 75.1
ϵ = 6 K = 3 46.5 74.6
ϵ = 64 K = 1 46.9 75.0
ϵ = 64 K = 3 46.8 75.0

(c) Impacts of attacking settings.
ϵ is scaled by 255. K refers to
the number of attack steps.

Table 2: Ablation study on Something-something V1 benchmark.

Poking something so that it spins around
Lifting up one end of something without letting it drop down
Lifting a surface with something on it but not enough to slide down
Poking a stack of something without the stack collapsing
Moving something across a surface without it falling down

Class Indexes

Im
pr

ov
em

en
t (

%
)

long-term motion
short-term motion

Class-wise Improvement: Long-term Motions v.s. Short-term Motions

Figure 4: Class-wise improvements on the Something-something
V1 dataset. TAF benefits more on the long-term motions.

4.2 Comparisons with State-of-the-Art Models
The performances of TAF on Something-something V1 &
V2, and Diving48 are summarized in Table 1. It is shown that
TAF effectively improves on TSM, TAM, TPN, and GST with
1.3%, 0.4%, 1.1%, and 1.0% top-1 accuracy on Something-
something V1, respectively. Similar promotions are also ob-
served on the V2 dataset. As for longer temporal inputs, we
evaluate TAF in 16-frame settings and show that TAF aug-
ments TSM with 0.7% and 0.9% top-1 accuracy on V1 and
V2, separately. The experiments of longer inputs on GST are
also promising. For Diving48, TAF improves TSM by 0.6%,
GST by 0.8%, TAM by 0.7%, and TPN by 0.7%.

To further investigate the impact of TAF, class-wise im-
provements v.s. class indexes are summarized in Figure 4.
Since TAF benefits models by broadening the temporal atten-
tion distributions, we focus on the gains of motions requiring
longer temporal knowledge, referred to as long-term motions.
We define long-term motion as an action consisting of at least
two motions or phenomenons, such as “Lifting up one end of
something without letting it drop down”. Based on our defi-
nition, 35 categories are recognized as the long-term motions
out of 174 classes from the Something-something bench-
marks. Appendix C provides the complete list of long-term
motions. The aggregation of red bars demonstrates that TAF
substantially enhances the ability to capture long-term tem-
poral cues: Over 10 long-term motions get improved largely
(i.e., ≥ 10%).

4.3 Ablation Study
We conduct comprehensive experiments exploring the im-
pacts of TAF. At first, we compare the proposed TAF with
Cross-entropy based (CE-based) training strategy. Then, we

0 2 4 6 8 10 12 14
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TAF Relieves Over-fitting

w/ TAF (train)
w/o TAF (train)

Figure 5: Training and testing loss curves of TSM w/ and w/o TAF
on Something-something V1. The testing loss is decreased while
the training loss is increased when TAF is utilized, which shows that
TAF effectively relieves over-fitting.

study the effects of α and the performances of TAF under dif-
ferent attacking settings (e.g., epsilon ϵ, attack steps T ). The
training loss and testing loss are provided to justify the reg-
ularization of overfitting. Note that all ablation studies are
performed on resnet50-TSM, with Something-something V1
as the dataset. Appendix D provides additional ablation stud-
ies and comparisons with other popular data augmentation
methods.

Comparison with Vanilla Adversarial Augmentation

Results are placed in Table 2a. It is shown that although
the CE-based method achieves a certain improvement (0.5%)
over the baseline model, still TAF remarkably outperforms
the CE-based method (0.8%) and baseline model (1.3%). As
we mentioned in Sec. 3.1, directly taking advantage of con-
ventional classification loss will introduce lots of irrelevant
noises into the adversarial perturbations, especially in heavy-
overfitting situations. Training with these examples benefits
less on generalization. However, TAF utilizes a CAM-based
loss function to filter all noise except temporal modeling
knowledge. Therefore, training with temporally augmented
examples is more effective and more suitable for video un-
derstanding tasks.
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Noise Blur Weather

Model Gauss. Impulse Speckle Gauss. Defocus Zoom Snow Bright

TSM 19.9/41.5 16.7/35.7 20.1/41.4 20.0/41.5 19.3/40.8 18.9/40.3 11.0/25.3 17.2/36.2
TSM+TAF 21.0/43.6 17.9/37.7 21.1/44.0 20.8/43.6 20.4/42.9 20.0/42.3 11.9/27.2 18.2/38.5
TPN 24.7/48.8 17.3/37.6 24.4/48.8 25.3/49.6 24.7/48.7 24.3/48.2 13.6/31.0 19.5/40.1
TPN+TAF 25.7/50.1 18.7/39.8 25.6/49.8 26.2/50.7 25.7/50.1 25.3/49.4 15.1/32.6 20.8/41.5

Table 3: Evaluations of defending natural corruption. Performances are reported as Top-1(%)/Top-5(%).

Figure 6: Two representative visualizations. For each group, row
1 refers to the CAM generated by the baseline model. Row 2 rep-
resents the CAM created by the model fine-tuned with TAF. TAF
generates more balanced CAMs.

Impacts of α and Attack Settings
Impacts of α and different attack settings are shown in Ta-
ble 2b and Table 2c. It shows that incorporating with a proper
portion of temporally augmented examples can effectively
boost TSM, and the best performance is achieved when α
is set to 0.7. In terms of the impacts of attack settings, we
investigate it by applying two schemes: small perturbation
(i.e., ϵ = 6/255, β = 2/255) and large perturbation (i.e.,
ϵ = 64/255, β = 32/255) in Table 2c, along with single (i.e.,
K = 1) or multiply (i.e., K = 3) steps. Generally, larger ϵ
allows injecting more temporal perturbations into natural ex-
amples and further achieves better temporal robustness.

Relieving Over-Fitting
We provide the training and testing curves of TSM w/ and w/o
TAF in Figure 5. It is shown that the testing losses of TSM
are significantly reduced (i.e., from approximately 2.4 to 2.2)
while the training losses increase slightly during the initial
fine-tuning phase when TAF is utilized. This demonstrates
that TAF effectively alleviates the overfitting issue.

Computational Cost
For training costs, since we only fine-tune models 15 epochs
with very limited attack steps, the computational overheads
are marginal. For instance, TAF will bring 25% and 15% ad-
ditional computational costs for TSM and TPN, respectively.
For inference, TAF is only applied to the training stage, the
inference costs will be identical to the baseline models.

4.4 Visualization
To qualitatively analyze the effect of TAF, a set of representa-
tive visualizations are provided in Figure 6 and Appendix E.

Each group of visualizations includes a misclassified example
and its corresponding CAM generated by the baseline model
(Row 1), as well as the CAM generated by the model fine-
tuned with TAF (Row 2). Generally, CAMs from TAF and
the baseline model share similar trends, which is expected
as TAF only fine-tunes the model for a limited number of
epochs and is not expected to fundamentally change the un-
derlying model. However, it is clear that the CAMs generated
by TAF fine-tuned models are broader and uniform compared
to the primitive results. This observation further verifies our
hypothesis that fine-tuning models with TAF can regularize
temporal modeling and achieve wider attention distributions.

4.5 Robustness Analysis
Spurred by [Hendrycks and Dietterich, 2018], we conduct ex-
periments to evaluate the performance of TAF under (Out-of-
distribution) OOD settings. Three types of noise (i.e., Gaus-
sian, Impulse, Speckle), three types of blur (i.e., Gaussian,
Defocus, Zoom), and two kinds of weather corruption (i.e.,
Snow and Bright) are adopted. Results are presented in Ta-
ble 3. TPN fine-tuned with TAF outperforms the vanilla TPN
by 1.5% on Weather corruptions and 1% on other noises or
blurs. Similar results are also observed on TSM. It reflects
that the proposed TAF not only benefits the generalization of
NNs but also strengthens the robustness against natural per-
turbations from the physical world. Evaluations of other mod-
els in resisting natural corruption are provided in Appendix F.

5 Conclusions
In this work, we propose TAF, a Temporal Augmentation
Framework, to regularize temporal attention distributions and
improve generalization in video understanding tasks. TAF
leverages specifically designed temporal adversarial augmen-
tation during fine-tuning to enhance the performance of mod-
els. Our experiments on three challenging benchmarks using
four powerful models demonstrate the improvements of TAF
are multi-faceted: improving video representation, relieving
over-fitting issues, and strengthing OOD robustness.

To the best of our knowledge, this is the first work to en-
hance video understanding tasks with the help of adversar-
ial machine learning. We believe that we have established a
novel and practical connection between the field of adversar-
ial machine learning and the video understanding community.
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Analysis and extensions of adversarial training for video
classification. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
3416–3425, 2022.

[Kurakin et al., 2018] Alexey Kurakin, Ian J Goodfellow,
and Samy Bengio. Adversarial examples in the physical
world. In Artificial intelligence safety and security, pages
99–112. Chapman and Hall/CRC, 2018.

[Lee et al., 2021] Jungbeom Lee, Eunji Kim, and Sungroh
Yoon. Anti-adversarially manipulated attributions for
weakly and semi-supervised semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4071–4080, 2021.

[Li et al., 2018a] Shasha Li, Ajaya Neupane, Sujoy Paul,
Chengyu Song, Srikanth V Krishnamurthy, Amit K Roy
Chowdhury, and Ananthram Swami. Adversarial perturba-
tions against real-time video classification systems. arXiv
preprint arXiv:1807.00458, 2018.

[Li et al., 2018b] Yingwei Li, Yi Li, and Nuno Vasconcelos.
Resound: Towards action recognition without representa-
tion bias. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 513–528, 2018.

[Li et al., 2021] Shasha Li, Abhishek Aich, Shitong Zhu,
Salman Asif, Chengyu Song, Amit Roy-Chowdhury, and
Srikanth Krishnamurthy. Adversarial attacks on black box

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

715



video classifiers: Leveraging the power of geometric trans-
formations. Advances in Neural Information Processing
Systems, 34:2085–2096, 2021.

[Lin et al., 2019] Ji Lin, Chuang Gan, and Song Han. Tsm:
Temporal shift module for efficient video understanding.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7083–7093, 2019.

[Luo and Yuille, 2019] Chenxu Luo and Alan Yuille.
Grouped spatial-temporal aggretation for efficient action
recognition. In Proceedings of the IEEE International
Conference on Computer Vision, 2019.

[Petsiuk et al., 2021] Vitali Petsiuk, Rajiv Jain, Varun Man-
junatha, Vlad I Morariu, Ashutosh Mehra, Vicente Or-
donez, and Kate Saenko. Black-box explanation of ob-
ject detectors via saliency maps. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11443–11452, 2021.

[Selvaraju et al., 2017] Ramprasaath R Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, pages 618–626, 2017.

[Shi et al., 2020] Xiaoshuang Shi, Fuyong Xing, Kaidi Xu,
Pingjun Chen, Yun Liang, Zhiyong Lu, and Zhenhua Guo.
Loss-based attention for interpreting image-level predic-
tion of convolutional neural networks. IEEE Transactions
on Image Processing, 30:1662–1675, 2020.

[Su et al., 2018] Dong Su, Huan Zhang, Hongge Chen, Jin-
feng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness
the cost of accuracy?–a comprehensive study on the ro-
bustness of 18 deep image classification models. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 631–648, 2018.

[Tanay and Griffin, 2016] Thomas Tanay and Lewis Griffin.
A boundary tilting persepective on the phenomenon of
adversarial examples. arXiv preprint arXiv:1608.07690,
2016.

[Thakur and Li, 2022] Nupur Thakur and Baoxin Li. Pat:
Pseudo-adversarial training for detecting adversarial
videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 131–138,
2022.

[Tsipras et al., 2018] Dimitris Tsipras, Shibani Santurkar,
Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In Inter-
national Conference on Learning Representations, 2018.

[Wang et al., 2016] Limin Wang, Yuanjun Xiong, Zhe
Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van
Gool. Temporal segment networks: Towards good prac-
tices for deep action recognition. In European conference
on computer vision, pages 20–36. Springer, 2016.

[Wang et al., 2018] Xiaolong Wang, Ross Girshick, Abhinav
Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7794–7803, 2018.

[Wang et al., 2022] Ningfei Wang, Yunpeng Luo, Takami
Sato, Kaidi Xu, and Qi Alfred Chen. Poster: On the
system-level effectiveness of physical object-hiding adver-
sarial attack in autonomous driving. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 3479–3481, 2022.

[Wei et al., 2022] Chen Wei, Haoqi Fan, Saining Xie, Chao-
Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
Masked feature prediction for self-supervised visual pre-
training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14668–
14678, 2022.

[Xie et al., 2018] Saining Xie, Chen Sun, Jonathan Huang,
Zhuowen Tu, and Kevin Murphy. Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video
classification. In Proceedings of the European conference
on computer vision (ECCV), pages 305–321, 2018.

[Xie et al., 2020] Cihang Xie, Mingxing Tan, Boqing Gong,
Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial
examples improve image recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 819–828, 2020.

[Xu et al., 2018] Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen,
Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang,
and Xue Lin. Structured adversarial attack: Towards gen-
eral implementation and better interpretability. In Interna-
tional Conference on Learning Representations, 2018.

[Xu et al., 2020] Kaidi Xu, Gaoyuan Zhang, Sijia Liu,
Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen,
Yanzhi Wang, and Xue Lin. Adversarial t-shirt! evading
person detectors in a physical world. In European confer-
ence on computer vision, pages 665–681. Springer, 2020.

[Yang et al., 2020] Ceyuan Yang, Yinghao Xu, Jianping Shi,
Bo Dai, and Bolei Zhou. Temporal pyramid network
for action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 591–600, 2020.

[Yuan and Moghaddam, 2020] Chenxi Yuan and Mohsen
Moghaddam. Attribute-aware generative design with gen-
erative adversarial networks. Ieee Access, 8:190710–
190721, 2020.

[Yuan et al., 2023] Chenxi Yuan, Tucker Marion, and
Mohsen Moghaddam. Dde-gan: Integrating a data-driven
design evaluator into generative adversarial networks for
desirable and diverse concept generation. Journal of Me-
chanical Design, 145(4):041407, 2023.

[Zhou et al., 2016] Bolei Zhou, Aditya Khosla, Agata
Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, pages 2921–2929, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

716


	Introduction
	Related Works
	Adversarial Machine Learning for Good
	Robustness of Video Understanding
	Class Activation Mapping

	Approach
	Vanilla Adversarial Augmentation
	Temporal Adversarial Augmentation
	Adversarial Fine-Tuning Framework for Video Understanding

	Experiments
	Datasets and Baselines
	Comparisons with State-of-the-Art Models
	Ablation Study
	Comparison with Vanilla Adversarial Augmentation
	Impacts of  and Attack Settings
	Relieving Over-Fitting
	Computational Cost

	Visualization
	Robustness Analysis

	Conclusions
	Procedures of TAF
	Dataset Introduction
	Long-term motions
	Additional Ablation Study
	Number of Attacked Frames
	Compositions of Training Batches
	Comparisons With Other Augmentations


	Visualization
	Robustness Analysis
	Dataset Bias

