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Abstract
In semi-supervised domain adaptation (SSDA), a
few labeled target samples of each class help the
model to transfer knowledge representation from
the fully labeled source domain to the target do-
main. Many existing methods ignore the bene-
fits of making full use of the labeled target sam-
ples from multi-level. To make better use of this
additional data, we propose a novel Prototype-
based Multi-level Learning (ProML) framework to
better tap the potential of labeled target samples.
To achieve intra-domain adaptation, we first intro-
duce a pseudo-label aggregation based on the intra-
domain optimal transport to help the model align
the feature distribution of unlabeled target samples
and the prototype. At the inter-domain level, we
propose a cross-domain alignment loss to help the
model use the target prototype for cross-domain
knowledge transfer. We further propose a dual
consistency based on prototype similarity and lin-
ear classifier to promote discriminative learning of
compact target feature representation at the batch
level. Extensive experiments on three datasets, in-
cluding DomainNet, VisDA2017, and Office-Home,
demonstrate that our proposed method achieves
state-of-the-art performance in SSDA. Our code is
available at https://github.com/bupt-ai-cz/ProML.

1 Introduction
The deep neural network has achieved great success in var-
ious visual tasks. However, due to the high cost of labeled
data it requires and the degradation of model performance
when deploying models in a new domain (target), unsuper-
vised domain adaptation (UDA) has been proposed. To fur-
ther improve the model performance, many semi-supervised
domain adaptation (SSDA) works are proposed by adding a
few (e.g., one sample per class) labeled target samples based
on UDA. Compared to UDA, the key to SSDA is whether
the model can make better use of the additional limited target
samples to help the model better fit the learned features from
the source domain to the target domain.
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Figure 1: Overview of our Prototype-based Multi-level Learning
(ProML) framework. Our ProML framework helps models transfer
knowledge using the target prototype from (1) intra-domain level,
(2) inter-domain level, and (3) batch level. The arrows represent the
feature alignment, and aug. represents augment.

In recent years, to help model knowledge transfer, some ex-
isting SSDA studies make better use of unlabeled samples in
target domains by combining self-supervised learning [Pérez-
Carrasco et al., 2022] and semi-supervised learning [Li et al.,
2021a; Yan et al., 2022]. However, they ignore the potential
of labeled samples in the target domain. Although [Li et al.,
2021b; Singh, 2021] use few target samples by building a pro-
totype, they only use the prototype from one level unilaterally
and ignore the additional knowledge learned from other levels
(e.g. intra-domain level). At the same time, it is not robust
to use only a very limited number of label or pseudo-label
samples to build prototypes. To fill this gap, we propose a
robust prototype-based multi-level learning (ProML) frame-
work. Our prototype is updated by both labeled and unla-
beled target samples which helps the model to transfer knowl-
edge across domains more robustly. Our ProML makes full
use of the target prototype from three levels: intra-domain,
inter-domain, and batch-wise to help the model better trans-
fer knowledge through target samples, as shown in Figure 1.

Specifically, at the intra-domain level, we propose a
pseudo-labeling strategy based on the optimal transport to
help the model align the data distribution of labeled and unla-
beled samples in the target domain, obtaining a more compact
intra-domain feature distribution and robust pseudo-labels.
This method improves the pseudo-labels of target samples by
resolving the optimal transport plan between the weakly aug-
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mented target samples and the target prototype. At the same
time, the transport plan is also applied to the strongly augment
view to form a consistency constraint. At the inter-domain
level, we cross-align the source samples with the same class
of the target prototype. Inter-domain prototype alignment
helps the model learn better about cross-domain knowledge
transfer and category alignment. At the batch level, differ-
ent from work [Yan et al., 2022], we consider a mini-batch
of samples to calculate class correlation matrices between
predictions with different augments from two perspectives
of prediction probability and prototype similarity, increasing
the correlation in the same class and reducing the correlation
from different classes. Classifiers from different perspectives
represent features comprehensive to learn the relationship be-
tween the batch-wise target samples. Combining the above
three, through our ProML framework, the model can capture
the knowledge of target domain samples from different lev-
els, to better enable the model to learn more comprehensive
and complementary domain-adaptive knowledge.

Our main contributions can be summarized as follows:
(1) We propose a novel Prototype-based Multi-level Learn-

ing (ProML) framework, which exploits the potential of la-
beled target samples by making full use of the target proto-
type from multiple levels.

(2) We propose a pseudo-label aggregation based on intra-
domain optimal transport to SSDA, which helps the model
form a more compact target domain robustly.

(3) We propose a batch-wise dual consistency, which helps
the model learn more distinctive target representations from
different perspectives.

(4) Experiments have shown that our ProML implements a
new state-of-the-art result in most SSDA problems.

2 Related Works
Unsupervised domain adaptation. Unsupervised domain
adaptation (UDA) [Pan et al., 2010] has made some excit-
ing achievements. It aims to transfer the knowledge learned
from the labeled source domain to the unlabeled target do-
main. The methods based on feature space alignment [Long
et al., 2017; Sun and Saenko, 2016] usually use joint distri-
bution to make the two domains as close as possible in the
feature space, to reduce the differences between the two do-
mains. Some methods based on GAN [Chen et al., 2019;
Long et al., 2018; Pei et al., 2018] are also popular. They
calibrate the distribution of the source domain and target do-
main by generating codes that cannot be distinguished from
the perspective of the discriminator, which is trained to clas-
sify the target domain. Despite significant advances in UDA,
UDA methods do not perform well in SSDA [Saito et al.,
2019], which is our main reason for focusing on SSDA.
Semi-supervised domain adaptation. In SSDA, the prob-
lem assumes that there are a few labeled samples in the tar-
get domain. It can be thought of as a combination of semi-
supervised learning (SSL) and DA. Some methods [Saito et
al., 2019; Li et al., 2021a] propose using Adversarial train-
ing to adjust source and target distributions, clustering similar
target samples together through different clustering strategies,
and separating different samples to reduce intra-domain gaps.

Some methods [Li et al., 2021b; Singh, 2021] use the idea of
self-supervised learning to build target prototypes and help
model transformation across domains by comparing learning
methods. They only build the prototype with very limited la-
bels or high-noise pseudo-labels, ignoring the importance of
different sample relationships. The methods based on SSL
[Pérez-Carrasco et al., 2022] use different losses to enhance
the consistency between the feature representations of unla-
beled samples and [Yan et al., 2022] standardizes the con-
sistency of different views of target domain samples at three
levels, which facilitates learning more representative target
features from each other. However, they all ignore the impor-
tance of making further use of the labeled target samples. In
this work, we use the prototype to tap the potential of labeled
target samples from multiple levels to help the model learn
comprehensive and complementary feature representations.

3 Methodology
In this section, we first specify the definition and notation
of SSDA and then introduce the proposed Prototype-based
Multi-level Learning (ProML) framework from three levels.

3.1 Framework
In SSDA, we sample datasets from two different distribu-
tions. In this setting, we can access labeled source samples
Ds = {(xsi, ysi)}Ns

i=1 sampled from the source distribution
Ps(X,Y ). We also have a limited number of labeled target

samples Dl
t =

{(
xl
ti, y

l
ti

)}N l
t

i=1
and a large number of unla-

beled samples Du
t = {(xu

ti)}
Nu

t
i=1 both from the target distribu-

tion Pt(X,Y ). This two distribution satisfy: Ps(Y ) = Pt(Y )
and Ps(X|Y ) ̸= Pt(X|Y ). The framework is composed of
a feature extractor G and a linear classifier F . An outline of
our ProML framework is illustrated in Figure 2.

Following [Sohn et al., 2020], we feed the labeled source
samples and the labeled target samples into G to obtain their
feature representations fs, f l

t ∈ Rd, and then get the proba-
bility prediction ps, plt ∈ Rc through F . Similarly, we gener-
ate two different views, for each unlabeled target sample xu

ti
by weak and strong augment, represented as xuw

ti and xus
ti .

Then the target samples of these two views are fed to the
same feature extractor G to generate representations fuw

ti and
fus
ti . Finally, the probability prediction puwti , pusti are obtained

through the same classifier F . We can calculate the standard
cross-entropy loss by using labeled sample pairs from two do-
mains and consider a simple pseudo-label regularization with
different views of unlabeled samples. Specifically, we opti-
mize the following baseline:

Lbase = −

 ∑
x∈xs∪xl

t

y log p+
∑
x∈xu

t

1{puw
t ≥τ1} log p

us
t

 ,

(1)

where 1 is an indicator function, y is the label of labeled
samples x, and τ1 is the pseudo-label threshold of the reg-
ularization. In the following, we will further introduce our
framework from three different levels.
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Figure 2: The structure of our ProML framework. First, the target samples are weakly and strongly augmented and then pass through the
classifier together with the source samples to calculate the base loss. For the intra-domain level, the weakly augmented target samples generate
pseudo-labels with the optimal transfer plan computed with the target prototype and compute the consistency loss with the strongly augmented
samples. For the inter-domain level, the similarity loss between source samples and the target prototype of corresponding categories is
computed to achieve cross-domain knowledge transfer. Finally, the dual consistency loss of the two augmented views in each mini-batch is
considered from the perspective of linear and prototype-based classifiers.

3.2 Intra-domain Pseudo-label Aggregation
A compact target domain can help the model make better use
of pseudo-labels and cross-domain knowledge transfer. We
propose a novel pseudo-label aggregation strategy to align the
unlabeled and labeled target data robustly and accurately.

To make full use of the labeled target samples, we initialize
the target prototype:

ckt =

∑i=N l
t

i=1 1{yl
ti=k}f

l
ti∑i=N l

t
i=1 1{yl

ti=k}
, (2)

where ylti is the label of the i-th labeled target sample. The
optimal transport (OT) is used to align the inter-domain level
representation for domain adaptation [Courty et al., 2017;
Yan et al., 2022]. It finds the optimal coupling plan γ0 ac-
cording to the given transport function to minimize the total
transport cost. To make better use of the additional data pro-
vided by SSDA, we propose to apply OT to the intra-domain
feature aggregation instead of the inter-domain. For labeled
and weakly augment unlabeled samples, we assume that:

γ0 = argmin
γ∈B

⟨γ,Cw⟩F , (3)

B =
{
γ ∈

(
R+

)Ns×Nu
t | γ1Nu

t
= µs, γ

⊤1Ns
= µt

}
, (4)

where γ0i,j means the transport plan between the i-th la-
beled sample and the j-th unlabeled sample in the target do-
main, ⟨·, ·⟩F represents Frobenius inner product, 1d is 1s’ d-
dimensional vector, µs ∈ RNs , µt ∈ RNu

t are the empirical

distributions of labeled and unlabeled samples respectively,
and the default is a uniform distribution. Cw ∈ RNs×Nu

t is
a cost matrix for indicating each transportation. In consid-
eration of the robustness and accuracy of the transportation,
we propose to use the target prototype to replace the labeled
samples in the transport plan. This not only makes the fea-
ture representation more representative but also alleviates the
negative alignment caused by the lack of some classes in the
minibatch of samples. The cost matrix is as follows:

Cw
i,j = 1− ci⊤t fuw

tj , (5)

where each element in the cost matrix Cw
i,j represents the de-

gree of difference between the i-th target prototype cit and the
j-th weak augment target feature fuw

tj . The resulting OT plan
γ0 helps the model better align the distribution of different
samples in the target domain.

To further improve the robustness of the prototype, we add
unlabeled target samples to the update of the prototype and re-
gard the OT plan as a supplement to the pseudo-label strategy.
Specifically, we consider the following pseudo-label strategy:

ỹuwi =

{
argmax(p̃uwti ), if p̃uwti ≥ τ1
γ0i, if p̃uwti < τ1 and p̃uwti ≥ τ2,
0, otherwise

(6)
where τ2 is the confidence threshold for using a pseudo-
label supplementation strategy, p̃uwti is the maximum predic-
tion probability of the i-th unlabeled weak sample in all cate-
gories, and argmax(·) represents the category corresponding
to the prediction probability. When the distribution of unla-
beled data is close to that of labeled data, this module can
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better use the prototype initialized by labeled data to assign
pseudo-labels to unlabeled data through the proposed strat-
egy. We make better use of labeled data to improve the ro-
bustness of prototypes through the pseudo-label strategy.

For each minibatch, we calculate the feature average of la-
beled and pseudo-labeled target samples for clustering, and
then use the exponential moving average to update the target
prototype during training:

ckt = αckt + (1− α)c̃kt , (7)

where c̃kt is the target prototype clustered by target samples
with labels and pseudo-labels in this minibatch. Under the
guidance of the optimal coupling γ0, the feature representa-
tion of each strongly augment view target sample can have a
consistent mapping plan with the weak augment view, form-
ing a consistency constraint:

Lintra = ⟨γ0,Cs⟩F , (8)

where Cs is the similarity matrix between the strong augment
target sample and the target prototype similar to Equation 5.
As mentioned above, the model can effectively align the dis-
tribution of the target prototype and unlabeled samples and
pay more attention to the details of the intra-domain level.

3.3 Inter-domain Alignment
Knowledge transfer is an essential capability of models in
SSDA. For the cross-domain level, we can use the relation-
ship between the target prototype and the source sample to
naturally transfer the knowledge of the model in the source
domain to the target domain.

Specifically, for each category of target prototype, we can
calculate the softmax of the similarity of the corresponding
target prototype in the feature space according to the category
of the source sample:

ski =
exp

(
sim

(
fsi, c

k
t

)
/T1

)∑Ns

i=1 exp
(
sim

(
fsi, ckt

)
/T1

) , (9)

where sim(·, ·) means cosine similarity, fsi is the feature of
i-th source samples, T1 is a scale temperature, and Ns is the
number of source samples. Then, we can calculate the cross-
domain prototype alignment loss for each source sample:

Linter = −
C∑

k=1

Ns∑
i=1

1 (ys = k) log ski , (10)

where C is the number of classes. Our prototype is not
only composed of labeled targets but also adopts a more ro-
bust pseudo-label update strategy to alleviate negative trans-
fer caused by the dispersion of target samples.

3.4 Batch-wise Dual Consistency
To make the model more comprehensively learn the repre-
sentation in the target domain, different from [Yan et al.,
2022], we consider the dual relationship between target fea-
tures at the batch level. We increase the confidence differ-
ence between different views by sharpening the confidence
and then model the clustering of each class as the classifi-
cation confidence and prototype similarity for all samples of

that class in the batch. Maintain the consistency of the strong
and weak views of the class allocation as the positive pair in
the same batch, and reduce the similarity between different
classes as the negative pair, instead of the sample-wise con-
trastive learning.

Given the prediction Puw ∈ RNt×C of the target sample of
a batch, we use the sharpening function to reduce the entropy
of label distribution, widening the gap between different con-
fidence, and enhancing the contrast between different views:

p̂uwi =
p
uw 1

T2
i∑C

j=1 p
uw 1

T2
j

, (11)

where T2 is a temperature hyperparameter, C is the number
of classes. However, it is one-sided to optimize only from the
perspective of linear classifiers. Due to the existence of the
target prototype, we propose that batch level relationships be
learned dually not only from the perspective of linear clas-
sifier but also from the perspective of prototype similarity.
Since linear classifier can assign learnable parameters to each
class, while prototype-based classifier only relies on excellent
feature representation, we calculate the cross-correlation ma-
trix of strong and weak views from the perspective of linear
classifier and prototype-based classifier respectively:

Rws
l = P̂uw⊤P̂us

Rws
p = Suw⊤Sus,

(12)

where P̂uw, P̂us are sharpening batch probability matrices
and Suw, Sus are batch similarity matrices with the proto-
type from weak and strong views similar to Equation 9. Rws

l ,
Rws

p are asymmetric matrices, and each element represents
two similarities of different views at the batch level. From
this, the dual contrast loss of batch class can be calculated:

Lbatch =
1

2C
(∥ϕ(Rws

l )− I∥1 +
∥∥ϕ (

Rws⊤
l

)
− I

∥∥
1︸ ︷︷ ︸

linear classifier

+

∥ϕ(Rws
p )− I∥1 +

∥∥ϕ (
Rws⊤

p

)
− I

∥∥
1
)︸ ︷︷ ︸

prototype-based classifier

,
(13)

where ϕ(·) is a normalized function that keeps the row total
as 1. I ∈ RC×C is the identity matrix, and || · ||1 represents
the sum of the absolute values of the matrix.

Dual consistency can benefit the framework in learning
cross-domain knowledge from two perspectives. Linear clas-
sifiers can use learnable parameters to focus more on the
distinguishing dimensions represented by features while sup-
pressing unrelated feature dimensions by assigning higher or
lower weights to different dimensions. In contrast, prototype-
based classifiers cannot take advantage of this which requires
more discriminative feature representation [Xu et al., 2022].

At the same time, due to the setting of DA, the prediction of
the linear classifier may be biased toward the source domain.
Comparing with target prototype similarity can alleviate the
inaccurate contrast caused by over-fitting the source domain.
We combine the two to encourage the model to learn a more
discriminative and accurate relationship between batch level
objectives from different perspectives.
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Method R→C R→P P→ C C→S S→P R→S P→R Mean
1-shot 3-shot 1 -shot 3-shot 1 -shot 3-shot 1-shot 3-shot 1-shot 3-shot 1 -shot 3-shot 1-shot 3-shot 1 -shot 3-shot

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
ENT 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
BiAT 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7
APE 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7

Con2DA 71.3 74.2 71.8 72.1 71.1 75.0 60.0 65.7 63.5 67.1 65.2 67.1 75.7 78.6 68.4 71.4
CDAC 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0

DECOTA 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
CLDA 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3

ECACL 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4
MCL 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5

ProML 78.5 80.2 75.4 76.5 77.8 78.9 70.2 72.0 74.1 75.4 72.4 73.5 84.0 84.8 76.1 77.4

Table 1: Accuracy (%) on DomainNet under the settings of 1-shot and 3-shot using ResNet34 as backbone networks.

Method 1-shot 3-shot

S+T 60.2 64.6
ENT 63.6 72.7
MME 68.7 70.9
APE 78.9 81.0

CDAC 69.9 80.6
DECOTA 64.9 80.7
ECACL 81.1 83.3

MCL 86.3 87.3

ProML 87.6 88.4

Table 2: Mean Class-wise Accuracy (MCA)(%) on VisDA2017 us-
ing ResNet34 as the backbone network.

3.5 Overall Framework and Training Objective
To sum up, the overall training objectives of the framework
are as follows:

Lall = Lbase + λintraLintra + λinterLinter + λbatchLbatch, (14)

where λintra, λinter and λbatch are the hyper-parameters that bal-
ance different levels. We train the model in our framework by
employing the overall training loss described in Equation 14.

4 Experiments
4.1 Experimental Setup
Datasets. We verified our ProML framework on three pop-
ular SSDA datasets. DomainNet is the latest large-scale
multi-source domain adaptive dataset, with 6 domains and
345 categories [Peng et al., 2019]. According to [Saito et al.,
2019], four fields (Real, Clipart, Painting, Sketch) and 126
categories were selected for SSDA evaluation. VisDA2017
consists of 150k synthetic images and 55k real images, in-
cluding two domains and 12 categories [Peng et al., 2017].
For each category of each dataset, we randomly select one
or three labeled samples (1-shot or 3-shot) as labeled target
samples. Office-Home is also a mainstream domain adaptive
dataset, including 4 domains (Real, Clipart, Art, Product) and
65 classes [Venkateswara et al., 2017]. We follow the stan-
dard of most SSDA work [Saito et al., 2019], and report the

overall accuracy as an indicator of DomainNet and Office-
Home, and report the average class accuracy (MCA) as an
evaluation indicator of VisDA2017.
Implementation details.1 To ensure the fairness of the ex-
periment, similar to [Saito et al., 2019; Li et al., 2021a], we
use ResNet34 [He et al., 2016] pre-trained on Imagenet as the
backbone of the model. The settings of batch size, optimizer,
feature size, and learning rate are also consistent with [Saito
et al., 2019]. Similar to [Yan et al., 2022], RandomFlip and
RandomCrop are used as weak image augment methods, and
RandAugment [Cubuk et al., 2020] is used as strong augment
methods. The momentum α used to update prototypes is set
to 0.9, and the threshold τ1 is set to 0.95 and τ2 is set to 0.4
for VisDA2017, 0.3 for DomainNet and 0.1 for Office-Home.
For the OT solver, we solve it through Sinkhorn-Knopp iter-
ation [Fatras et al., 2021]. The temperature T1 and T2 in the
similarity function are set to 0.05 and 0.1. Balance hyparam-
eter λintra and λinter is set to 1. λbatch is set to 1 for DomainNet,
1 for Office-Home, and 0.1 for VisDA2017.

4.2 Analysis of Experimental Results
In the experiments, we compare our ProML with two base-
lines: S+T uses only source and labeled target data, and ENT
[Grandvalet and Bengio, 2004] uses entropy minimization for
unlabeled samples; and several popular SSDA methods, i.e.,
DANN [Ganin et al., 2016], MME [Saito et al., 2019], BiAT
[Jiang et al., 2020], APE [Kim and Kim, 2020], Con2DA
[Pérez-Carrasco et al., 2022], CDAC [Li et al., 2021a], DE-
COTA [Yang et al., 2021], CLDA [Singh, 2021], ECACL [Li
et al., 2021b] and MCL [Yan et al., 2022].
DomainNet. As shown in Tab. 1, our proposed ProML
achieves 76.1% and 77.4% average accuracy and SOTA per-
formance in 7 scenarios of 1-shot and 3-shot, respectively.
VisDA2017. VisDA2017 demonstrates the validity of ProML
in Tab. 2, our ProML achieves 87.6% MCA in 1-shot and
88.4% in 3-shot, which are superior to the SOTA methods.
Office-Home. As shown in Tab. 3, ProML outperforms the
existing SOTA methods in both 1-shot and 3-shot scenarios,
with accuracy reaching 74.6% and 77.8%, respectively.

1https://bupt-ai-cz.github.io/ProML/
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Method R→ C R→P R →A P →R P →C P→ A A→P A→C A→ R C → R C → A C → P Mean
1-shot

S+T 52.1 78.6 66.2 74.4 48.3 57.2 69.8 50.9 73.8 70.0 56.3 68.1 63.8
DANN 53.1 74.8 64.5 68.4 51.9 55.7 67.9 52.3 73.9 69.2 54.1 66.8 62.7
ENT 53.6 81.9 70.4 79.9 51.9 63.0 75.0 52.9 76.7 73.2 63.2 73.6 67.9
MME 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
APE 60.7 81.6 72.5 78.6 58.3 63.6 76.1 53.9 75.2 72.3 63.6 69.8 68.9

CDAC 61.9 83.1 72.7 80.0 59.3 64.6 75.9 61.2 78.5 75.3 64.5 75.1 71.0
DECOTA 56.0 79.4 71.3 76.9 48.8 60.0 68.5 42.1 72.6 70.7 60.3 70.4 64.8

MCL 67.0 85.5 73.8 81.3 61.1 68.0 79.5 64.2 81.2 78.4 68.5 79.3 74.0
ProML 67.5 86.1 73.7 81.9 61.4 69.3 79.7 64.5 81.7 79.0 69.1 80.5 74.6

3-shot
S+T 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2

DANN 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
ENT 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0

CDAC 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
CLDA 66.0 87.6 76.7 82.2 63.9 72.4 81.4 63.4 81.3 80.3 70.5 80.9 75.5

DECOTA 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7
MCL 70.1 88.1 75.3 83.0 68.0 69.9 83.9 67.5 82.4 81.6 71.4 84.3 77.1

ProML 71.0 88.6 75.8 83.8 68.9 72.5 83.9 67.8 82.2 82.3 72.1 84.1 77.8

Table 3: Accuracy (%) on Office-Home under the settings of 1-shot and 3-shot using ResNet34 as the backbone network.

(a) Iteration:100 (b) Iteration:1000 (c) Iteration:5000 (d) Iteration:10000

Figure 3: The t-SNE visualization of the feature alignment progress through our ProML during the training time on DomainNet P→R.

Lintra Linter Lbatch 1-shot 3-shot

① % % % 74.1 78.1
② ! % % 77.6 82.9
③ % ! % 76.2 81.4
④ % % ! 75.1 80.0
⑤ % ! ! 83.1 84.6
⑥ ! % ! 82.6 85.2
⑦ ! ! % 83.9 86.0
⑧ ! ! ! 87.6 88.4

Table 4: Ablation studies of ProML’s different components. We
report the MCA (%) on VisDA2017 under the settings of 1-shot and
3-shot using a ResNet34 backbone.

4.3 Additional Analysis
Ablation studies. We performed ablation experiments on
VisDA2017 at the settings of 1-shot and 3-shot, as shown in
Tab. 4. Row ② ③ ④ show that each component can be signif-

linear
pred.

proto.
pred.

update
proto. 1-shot 3-shot

① ! % % 84.6 85.8
② % ! ! 80.7 84.2
③ ! % ! 85.8 86.7
④ ! ! % 82.0 85.1
⑤ ! ! ! 87.6 88.4

Table 5: Ablation study on the effectiveness of prototype-based con-
trast and update of our ProML on VisDA2017 under the settings of
1-shot and 3-shot using a ResNet34 backbone.

icantly improved. Row ⑤ ⑥ ⑦ show that each combination
still improves performance, indicating the universality of the
proposed module. Due to the integrity of our framework, one
aspect of the lack of consideration may not be optimal in per-
formance, but the best performance can be achieved when all
components are activated.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

889



Figure 4: Mean Class Accuracy (MCA)(%) under different pseudo-
label confidence thresholds on VisDA2017 for 1-shot and 3-shot,
where τ2 = 0.95 means no intra-domain OT.

Method
Epoch

100
Epoch
1000

Epoch
10000 Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
Linear 23.4 36.0 53.1 67.2 65.6 76.5 65.6 75.6
Proto. 18.8 37.5 56.3 64.0 65.6 74.9 65.5 74.1
Our 23.4 37.5 57.3 68.1 68.1 78.1 66.9 76.8

Table 6: The label accuracy (%) of different pseudo label methods
under the 1-shot and 3-shot settings of DomainNet C→S. Linear
represents the linear classifier probability, Proto. represents the pro-
totype similarity, and Our represents our intra-domain OT strategy.

Prototype-based contrast and update. Tab. 5 shows ab-
lation studies of prototype-based classifier and updated pro-
cedure. Row ① shows only linear prediction, and its per-
formance degrades a lot, which proves that the knowledge
learned only by using a linear classifier is limited. The com-
parison with row ③ proves that the model will benefit from
the dynamic update of the prototype. The global static pro-
totype that only uses labeled data is not robust, so its gen-
eralization ability is limited. Row ② shows only prototype-
based predictions and dynamic updates during training. Its
performance is much lower, which means that without the
help of a linear classifier, the prototype-based classifier can-
not learn consistency under limited label data settings, so it
cannot make full use of the additional knowledge brought
by prototypes. Row ④ only adds the prototype-based clas-
sifier on row ①, but its performance does not increase but
decreases, which indicates that biased prototypes will bring
negative knowledge transfer. Row ⑤ achieves the optimal
performance after integrating all methods, which shows that
our method can complement knowledge from multi-level.
Intra-domain OT pseudo-labels. Tab. 6 shows the pseudo-
label accuracy of different methods. By making the target do-
main more compact, our strategy gives more accurate pseudo-
labels at different training stages than simple methods only
using maximum linear classifier prediction (Linear) or maxi-
mum prototype similarity (Proto.) under the same confidence
threshold τ2 in Equation 6.
Convergence analysis. To further analyze the convergence
of our method, we describe the feature t-SNE [Van der
Maaten and Hinton, 2008] visualization of source and tar-
get domains during different training times in Figure 3. We
randomly selected seven categories of the feature on Domain-

Figure 5: Accuracy with different numbers of labeled samples per
class in target domain on DomainNet R→S.

Net R→S for clearer visualization. Figure 3(a) clearly shows
the initial domain difference between the source and the tar-
get domain. Early feature descriptions often show many
misaligned source and target clusters, so the model initially
performs poorly in the target domain. As the training pro-
gresses, it can be seen from Figure 3(b) and Figure 3(c) that
our method converges and aggregates the feature of the target
domain. Accumulated good target feature is obtained and it
proves that our method can obtain a compact target domain
distribution, as shown in Figure 3(d).
Parameter sensitivity. We will use the pseudo-labels thresh-
old τ2 of intra-domain OT strategy in Equation 6 as a vari-
able, analyze changes in MCA with VisDA2017 under the
settings of 1-shot and 3-shot, and experimental results sup-
port our argument. As shown in Figure 4, with the change
of the threshold, MCA floats within 1%, which demonstrates
the robustness of the strategy. When this strategy is not used,
i.e. τ2 = 0.95, MCA decreased significantly. This result is
reasonable and shows that this strategy can help the model
make use of unlabeled target samples.
Impact of the number of target labels. We studied the per-
formance impact of different target label numbers on Domain
R→S. From Figure 5, all methods can improve performance
by labeling more target samples. By contrast, our ProML
always achieves optimal performance in all cases. This con-
firms that our method can make use of a flexible number of
labeled target samples to help model knowledge transfer.

5 Conclusion
In this paper, we propose a novel prototype-based multi-level
learning (ProML) framework to make better use of target
samples. ProML leverages prototypes constructed from target
samples at three levels, (i) intra-domain level, aligns labeled
and unlabeled sample distributions within the target domain
using pseudo-label aggregation help models based on optimal
transport, (ii) inter-domain level, it aligns source and target
domain, and (iii) batch level, it learns compact classes and
partition clusters from two dual perspectives. Extensive ex-
perimental studies have demonstrated its advantages.
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