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Abstract
Modeling and capturing the 3D spatial arrangement
of the human and the object is the key to perceiving
3D human-object interaction from monocular im-
ages. In this work, we propose to use the Human-
Object Offset between anchors which are densely
sampled from the surface of human mesh and ob-
ject mesh to represent human-object spatial rela-
tion. Compared with previous works which use
contact map or implicit distance filed to encode
3D human-object spatial relations, our method is a
simple and efficient way to encode the highly de-
tailed spatial correlation between the human and
object. Based on this representation, we propose
Stacked Normalizing Flow (StackFLOW) to infer
the posterior distribution of human-object spatial
relations from the image. During the optimiza-
tion stage, we finetune the human body pose and
object 6D pose by maximizing the likelihood of
samples based on this posterior distribution and
minimizing the 2D-3D corresponding reprojection
loss. Extensive experimental results show that
our method achieves impressive results on two
challenging benchmarks, BEHAVE and InterCap
datasets. Our code has been publicly available at
https://github.com/huochf/StackFLOW.

1 Introduction
For a decade, the 3D information recovery of the human and
the object from the image was studied alone, without consid-
ering their interaction. Recent studies suggest that the inte-
gration of humans and surrounding objects can produce phys-
ically consistent results [Hassan et al., 2019], and that the
reconstruction accuracy of both can be improved even more
[Chen et al., 2019; Sun et al., 2021; Zhang et al., 2023a]. In
the monocular human-object reconstruction task, which aims
at reconstructing human mesh and object mesh jointly from
a single-view image, the interaction plays an important role
in providing constraints for human pose and object position.
However, how to utilize the interaction between the human
and the object to refine themselves still remains unsolved.
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Human-Object Interaction Instance

Human-Object Offset

Figure 1: Human-Object Offset di,j describes how far from the hu-
man anchor point ph

i to object anchor point po
j through the direction

of the vector di,j . They are calculated between two sets of anchors
which are densely sampled from the surface of human mesh and ob-
ject mesh beforehand. The dense offset captures a highly-detailed
correlation between human parts and object parts. It is a quantitative
representation to encode the 3D spatial relationship between the hu-
man and the object given human-object interaction instance.

The visible presentation of interaction between the human
and the object in the 3D world is their spatial arrangement,
which involves the posture of the human and the 6D pose of
the object. Creating an appropriate representation for human-
object spatial arrangement is vital for both human-object in-
teraction capture from images and post-optimization for re-
finement. Contact map is a recently popular fine-grained
representation to model the interaction between the human
and the object. It has been applied to model human-scene
interaction [Huang et al., 2022a] and human-object interac-
tion [Zhang et al., 2020a; Xie et al., 2022]. The contact
map defines the contact regions in human mesh and object
mesh and is suitable to be applied in the post-optimization
step to generate plausible results by drawing closer contact
points in human and object mesh. However, it only pre-
serves the local contact information and cannot model the
non-contact interaction types. Moreover, it relies on plau-
sible initialization of the human and the object during opti-
mization, and therefore it is not an independent representation
to encode human-object spatial arrangement. Another way
to encode human-object spatial arrangement is using the im-
plicit distance field, which is a neural function that maps 3D
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points to point-to-face distances [Karunratanakul et al., 2020;
Xie et al., 2022]. It is suitable to model 3D object shapes but
some shortcomings may show up in modeling human-object
spatial relationships. First, it is low-efficient since we need to
sample many points to approximate the surface of the mesh.
Moreover, spatial arrangement is encoded using functional-
ized representation implicitly rather than vectorized represen-
tation which results in applying probabilistic models to model
the distribution of human-object spatial arrangement is diffi-
cult and indirect. In this paper, we pursue an efficient and
unifying representation to encode the 3D spatial relationship
between the human and the object.

The relative distance frequently assumes a prominent role
in numerous descriptions of 3D spatial relations, serving as a
conspicuous and widely employed method of encoding. But
in the scenario of human-object interaction, things may be-
come complicated because of the articulated human body.
In this work, we present a novel representation to encode
human-object spatial relations using human-object offset. In
order to involve all human body parts and cover various object
shapes, we randomly sample anchor points from the surface
of human mesh and object mesh. The offsets are calculated
between all human anchors and object anchors for a given
human-object pair as depicted in Figure 1. We treat the off-
set as the numerical description of the spatial relation pattern
for a target human-object pair. These offsets are representa-
tive since they encode highly detailed correlations between
human parts and object parts. We can use them to recover
the posture of the human and the position of the object by
adjusting the position of human anchors and object anchors.
Due to the regular topological structure of human mesh and
rigid object mesh, these offsets are very redundant. Then we
use PCA to transform these offsets from high-dimension off-
set space to low-dimension latent space by linear projection.
The human-object offset is a generalized representation from
the contact map since the contact map only keeps the anchors
with zero offsets.

Regressing accurate offsets from the image is hard due to
the variety of spatial relations, the ambiguity of monocular
capture, the indeterminacy of viewports, and the diversity of
object scale. To tackle these problems, we design our method
from two aspects. First, we use a probabilistic model to in-
fer the distribution of spatial relationship instead of single
point regression following [Kolotouros et al., 2021]. This
distribution narrows down the search space of human-object
spatial relations during the post-optimization step and more
convincing results can be produced. Moreover, we decou-
ple the process of inferring human-object spatial relation into
two stacked subprocesses: human pose estimation and pose-
conditioned distribution inference. With the guide of human
pose, distribution for human-object spatial relations can be
learned more stably and efficiently.

Our contributions can be summarized as:
1. A new 3D spatial relation encoding technique is pro-

posed to encode highly informative global correlation
between the human and the object. The proposed
Human-Object Offset (HO-offset) is densely sampled
from the surface of human mesh and object mesh to con-
struct latent spatial relation space.

2. We propose a novel Stacked Normalizing Flow to infer
the posterior distribution of human-object spatial rela-
tion for an input image. During inference, a new post-
optimization process is designed with relative offset loss
to constrain the body pose of the human and the 6D pose
of the object.

3. Our method outperforms the previous SOTA method
with 16% relative accuracy improvement and 88% rel-
ative optimization time reduction.

2 Related Works
Monocular 3D human-object reconstruction. Although
there are extensive works in 3D human mesh recovery
[Kanazawa et al., 2018; Kolotouros et al., 2019; Lin et al.,
2021; Liang et al., 2023; Zhang et al., 2023b] and 6D ob-
ject pose estimation [Kehl et al., 2017; Li et al., 2019;
Chen et al., 2022a], reconstructing human and object jointly
is yet a newly proposed problem. 3D human-object recon-
struction can be divided into various settings, we only fo-
cus on reconstructing 3D human-object from a single-view
RGB image. Towards reconstructing and understanding hu-
man activity in 3D scenes, [Chen et al., 2019] presents the
3D holistic scene understanding task, which combines 3D
scene reconstruction and 3D human pose estimation. Phys-
ical commonsense about human-object interaction is utilized
to improve the performance of these two tasks. Its follow-
up work [Weng and Yeung, 2021] extends this direction to
holistic human-object mesh reconstruction. They present an
end-to-end trainable model that reconstructs both the human
body and object meshes from a single RGB image. In the
other direction, the scale of observed objects is zoomed in
from the global human-scene to local human-object pairs.
[Zhang et al., 2020a] tackles the problem of reconstructing
human-object spatial arrangement in the wild. They propose
an optimization-based framework which incorporates prede-
fined 3D commonsense constraints to reduce the likely 3D
spatial layout between the human and the object. [Xie et al.,
2022] presents a unified data-fitting model that learns human-
object spatial configuration priors from dataset [Bhatnagar et
al., 2022] which is collected using multi-view capture sys-
tems. More recently, [Xie et al., 2023] tackles the challenge
of single-view human-object tracking under heavy occlusion.
Our work focuses on the second direction.
Spatial relationship modeling. Modeling and capturing
human-object spatial relationships are inescapable topics
throughout various human-object interaction tasks. In the
2D human-object interaction detection task, spatial relation
is encoded using relative 2D coordinates between the human
bounding box and the object bounding box [Gkioxari et al.,
2018], 2-channels mask map of human and object [Ulutan
et al., 2020], relative locations between human parts and the
center point of the object [Wan et al., 2019] and two-direction
spatial distributions between human body parts and object
parts [Liu and Tan, 2022]. Similarly, in 3D human-object re-
construction tasks it can be encoded using 3D space positions
of human center and object center [Chen et al., 2019] or 3D
relative spatial positions and orientations between object and
person parts [Savva et al., 2016]. But recently, more works
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admit that the contact map is a more fine-grained way to de-
scribe how humans and objects interact. [Zhang et al., 2020a]
uses commonsense knowledge to define which parts in human
and object mesh are participated in the interaction. [Xie et al.,
2022] utilizes contact loss between human and object to get a
more physically plausible and accurate reconstruction. This
idea is also applied in human-scene interaction [Huang et al.,
2022a]. Another popular way to model spatial relationships
is using an implicit relative distance field. [Karunratanakul
et al., 2020] proposes the grasping field that is a continu-
ous function mapping any points in 3D space to two point-
to-surface signed distances. Towards hand-object reconstruc-
tion, they use a variational encoder-decoder network to learn
it from data. This similar idea is also applied to human-scene
interaction [Zhang et al., 2020b] and human-object interac-
tion [Xie et al., 2022]. Different from these works, we encode
spatial relations using offset vectors between anchors densely
sampled from the surface of human mesh and object mesh,
while previous works just use the coarse relative distance be-
tween human parts and the center of the object or just focus
on the local regions in contact.

Probabilistic models in 3D reconstruction. Due to the
inherent ambiguity of monocular 3D reconstruction, prob-
abilistic models are more appropriate for inferring distribu-
tion from partial observation rather than deterministic predic-
tion. [Bui et al., 2020] devises a multi-hypotheses method
that continuously models the orientation of camera pose using
Bingham distribution and camera position using multivariate
Gaussian. [Sengupta et al., 2021] infers multivariate Gaus-
sian distribution of occluded or invisible body from a single
image. Except for multivariate Gaussian, normalizing flow
is another popular probabilistic model which is proposed in
the context of variational inference [Rezende and Mohamed,
2015] and density estimation [Dinh et al., 2017]. In the con-
text of 3D reconstruction, more recent works utilize normal-
izing flow for human pose estimation [Wandt et al., 2022],
human mesh recovery [Kolotouros et al., 2021], two-hand
reconstruction [Wang et al., 2022], conditioned human pose
generation [Aliakbarian et al., 2022] and human motion syn-
thesis [Henter et al., 2020]. Following these previous works,
we deploy normalizing flow to learn the distribution of po-
tential spatial arrangement between the human and the object
from monocular images.

3 Method
Given an input image and target object category, we aim at
predicting the SMPL parameters including person shape β,
person pose θ and object 6D pose i.e. rotation matrix R and
translation t. Since predicting these parameters in isolation
will produce inconsistent results such as a floating object in
the air or interpolation between the human and the object, we
propose to use directed offset to place constraints on the body
pose of the person and the relative position of the object in
3D space. As shown in Figure 2, our method can be divided
into three steps: 1) human-object spatial relation encoding, 2)
posterior distribution inference, and 3) post-optimization. In
the first step, we construct latent spatial relation space to get
a vectorized representation for human-object spatial relation,

which is shown in Sec. 3.1. In Sec. 3.2, we present how to
infer a coarse distribution for all possible 3D human-object
relative arrangements by using normalizing flow. During the
optimization stage, we attempt to get a harmonious result that
is both aligned well with the image by minimizing the 2D-3D
reprojection loss and coherent with posterior knowledge by
maximizing the likelihood of potential spatial relation. The
details for this optimization process are shown in Sec. 3.3.

3.1 Spatial Relation Encoding with Human-Object
Offset

Human-object interaction instance. To study how human
interacts with object in 3D space, we consider the human and
the object as a whole and treat this human-object pair as the
minimal atomic unit, which is named as human-object inter-
action instance (HOI instance). For a given human-object
pair, there is a trivial way to model it using three compo-
nents: 1) human mesh modeled by a parametric human body
model SMPL [Loper et al., 2015] which defines a mapping
M(θ,β) from pose parameters θ and shape parameters β to
a body mesh MSMPL ∈ R6890×3, 2) a pre-scanned object
mesh template M object for target object category, 3) spatial
arrangement which is parameterized by the relative transla-
tion t and rotation R of object mesh with respect to the root
joint of SMPL. We assume the SMPL is rooted at the origin
with zero translation and identity rotation since we actually
do not care about the global orientation and translation of
SMPL mesh in the context of human-object spatial relation
encoding. In this representation, an HOI instance is parame-
terized using human shape β, human pose θ, object relative
translation t and object relative rotation R. Since the human
and the object are treated separately, the relation between the
human and the object in 3D space cannot be captured clearly
using only relative translation and rotation between human
mesh and object mesh. Based on this observation, we pro-
pose to use the dense offsets between anchors in human mesh
and object mesh to capture a highly detailed correlation be-
tween human parts and object parts.
Human-object offset vector. Since humans can interact
with objects in different ways, there will be quite diverse
human-object spatial relation patterns. To cover all possi-
ble interaction types, we design a simple but general way to
encode this. First, we randomly sample m points from the
surface of a human mesh to form human anchor set ASMPL
and n points from the surface of object mesh to form object
anchor set Aobject. These anchors are sampled only once and
we keep them fixed across all human-object interaction in-
stances. Given a human-object interaction instance, the off-
sets between human anchors and object anchors are calcu-
lated by

di,j = po
j − ph

i ,p
o
j ∈ Aobject,p

h
i ∈ ASMPL, (1)

where ph
i is i-th anchor in SMPL mesh MSMPL and po

j is the
j-th anchor in object mesh Mobject. We connect all anchors
in human anchor set with all anchors in object anchor set to
get m× n offsets. These offsets are concatenated together to
form human-object offset vector x = (di,j) ∈ R3mn. This
spatial relationship between the human and the object is en-
coded within the offset vector.
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(c) Post-optimization with Reprojection and HO-Offset(b) Posterior Distribution Inference by StackFLOW

Stacked Normalizing Flow
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(a) Human-Object Spatial Relation Encoding with Human-Object Offset

Human-Object Offset Reconstructed HOI Instance
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Object Coordinate Map

extract

Input Image
HOI Instance

joint 
optimization

Training Set

sampling

Figure 2: Main framework for our method. (a) We use human-object offset to encode the spatial relation between the human and the object.
For a human-object pair, offsets are calculated and flattened into an offset vector x. Based on all offset vectors calculated from training set,
the latent spatial relation space is constructed using principle component analysis. To get a vectorized representation for human-object spatial
relation, the offset vector is projected into this latent spatial relation space by linear projection. Inversely, given a sample γ from this latent
spatial relation space, we can reproject it to recover offset vector x̂. The human-object instance can be reconstructed from x̂ by iterative
optimization. (b) With pre-constructed latent spatial relation space, we use stacked normalizing flow to infer the posteriori distribution of
human-object spatial relation for an input image. The details are shown in Sec. 3.2. (c) In post-optimization stage, we further finetune the
reconstruction results using 2D-3D reprojection loss and offset loss which is illustrated in Sec. 3.3.

Latent spatial relation space construction. To obtain a
more compact representation for human-object spatial re-
lation, auto-encoder [Hinton and Salakhutdinov, 2006] has
been used. However, principal components analysis (PCA)
[Wold et al., 1987] is more adequate in some cases due to its
simplicity and efficiency. Based on these considerations, we
use PCA to construct latent spatial relation space. We first
collect all human-object instances from the training dataset
and calculate offsets between anchors using Eq. (1). For each
HOI instance, offsets are concatenated together to form an
offset vector x. If there are t HOI instances in the training
dataset, we will get a matrix X ∈ Rt×3mn. PCA is then
applied to this matrix to extract the top k component vectors
which are mutually orthogonal. These main component vec-
tors form the basis for the latent spatial relation space. Given
x, we can project it onto this latent space by linear projection,
i.e.

γ = V T(x− µ), (2)
where V ∈ R3mn×k is the projection matrix composed by
these component vectors, µ is the mean vector for offset vec-
tor x, and γ is a latent vector in this latent spatial relation
space. Inversely, we can reproject an arbitrary sample γ from
latent space Rk to offset space R3mn as follows,

x̂ = V γ + µ. (3)
By constructing latent spatial relation space in this way, com-
pactness and continuity can be satisfied because of linear pro-
jection. Another benefit is that the latent space can be con-
structed efficiently using PCA technique and there is no need
to train a complex neural network.

Recover HOI instance from HO-offset. An important
characteristic of a good representation is that original infor-
mation can be recovered from it. Human-object offset vector
encodes not only spatial arrangement between the human and
the object, but also provides constraints on human pose which
indicates that we can recover human body pose and object 6D
pose from dense human-object offsets by controlling the po-
sition of anchors in the surface of the human and the object
mesh. Given an arbitrary sample from latent spatial relation
space, the offset vectors x̂ can be recovered according to Eq.
(3). Variables {β,θ,R, t} are calculated from this offset vec-
tor approximately by minimizing the `2 norm between target
offset d̂i,j and actual offset from the i-th anchor of human
ph
i (θ,β) to the j-th anchor object po

j(R, t), i.e.

LHO-offset(θ,β,R, t) =
∑
i

∑
j

‖ph
i (θ,β)+d̂i,j−po

j(R, t)‖2.

(4)
Note that the positions of human anchor points are controlled
by human shape β and human pose θ, since they are sampled
from SMPL mesh and the position of object anchor points are
calculated by:

po
j(R, t) = Rp̂o

j + t, (5)

where p̂oj is the j-th anchor points in object template mesh.
Directly optimizing Eq. (4) needs many iterations and may
be stuck in local minimum points. The optimization steps can
be greatly reduced if we initialize {β,θ,R, t} properly. We
first use the neural network to predict human shape βinit and
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human pose θinit as described in Sec. 3.2 and then substitute
βinit and θinit into (4) to obtain the initial value of Rinit and
tinit, i.e., solving the following optimization problem:

Rinit, tinit = arg min
R,t

LHO-offset(θinit,βinit,R, t). (6)

Note that Eq. (6) admits a closed-form solution as described
in [Choy et al., 2020].

3.2 Posterior Distribution Inference by Stacked
Normalizing Flow

Given an image I , we attempt to recover the spatial arrange-
ment of the human-object pair which is encoded using HO-
offset. Reconstructing human-object interaction instances
from a single-view image is ambiguous due to self-occlusion
and mutual-occlusion. Instead of regressing latent human-
object spatial arrangement features from the image directly,
we follow previous work [Kolotouros et al., 2021] to model it
as probabilistic distribution inference. This distribution infer-
ence process requires us to predict the conditional probability
pΓ|I(γ|c) using a bijective function foffset, which transforms
a random variable zγ sampled from normal distribution to
latent spatial relation feature γ with the input image I as con-
dition, i.e.

γ = foffset(zγ |c), (7)

where c is visual feature extracted from input image I using
CNN encoder. However, we find that it is not easy to learn
this distribution from images directly in practice. To ease the
training process, we decouple it into two stacked conditional
probabilities:

pΓ|I(γ|c) =

∫
θ

pΓ|I,Θ(γ|c,θ)pΘ|I(θ|c)dθ. (8)

We model it using two different flows: (1) human pose flow
conditioned on the input image, (2) offset flow conditioned
on the human pose and input image, i.e.

θ = fSMPL(zθ|c), zθ ∼ N(0, I), (9)

and
γ = foffset(zγ |c,θ), zγ ∼ N(0, I). (10)

The structure of these stacked normalizing flows is de-
picted in Figure 2(b). Given an input image, the CNN is used
to extract visual feature c from the image I . The initial hu-
man shape β and the translation of camera T cam are predicted
from c. To infer the posterior distribution of γ after observ-
ing image I , StackFLOW is employed. StackFLOW contains
two normalizing flows: human pose flow and offset flow. As
formulated in Eq. (9) and Eq. (10), the human pose flow takes
visual feature c as condition to transform a random variable
zθ sampled from normal distribution to human pose distribu-
tion pΘ|I(θ|c). We take θinit = arg maxθ pΘ|I(θ|c) as initial
value for human pose. Human pose θ is combined with visual
feature c as the conditions for offset flow to transform ran-
dom variable zγ to distribution pΓ|I,Θ(γ|c, θ). Combining
these two distributions, we can get the posterior distribution
pΓ|I(γ|c) according to Eq. (8).

To train these two normalizing flows, we optimize the net-
work by minimizing the negative log-likelihood of ground-
truth θgt and γgt, i.e. the loss function is

LNLL = − ln pΓ|I;Θ(γgt|c,θgt)− ln pΘ|I(θgt|c). (11)

In addition to the loss LSMPL for supervising SMPL param-
eters shown in [Kolotouros et al., 2021], we introduce another
loss for spatial relation feature γ:

Lγ = λexpEγ∼pΓ|I [‖γ − γgt‖1] + ‖γ? − γgt‖1, (12)

where γ? = arg maxγ pΓ|I(γ|c). The total training loss is

Ltrain = λSMPLLSMPL + λNLLLNLL + λγLγ . (13)

3.3 Joint Optimization with Reprojection and
Human-Object Offset

During inference, we begin with zθ = 0, zγ = 0 to get ini-
tial human pose θinit and latent relation feature γ?. We then
use Eq. (3) to project latent spatial relation feature γ? back
to offset vector x. The offset di,j can be obtained from x by
taking corresponding elements. Finally, we obtain the initial
prediction {θinit,βinit,Rinit, tinit} from Eq. (6). This initial
prediction is based on the distribution with the most likeli-
hood. To make results aligned well with the input image, we
need to finetune results with 2D-3D reprojection loss.

Let J3D ∈ RK×3 be the 3D joints of human body and
Ĵ2D ∈ RK×2 be 2D locations of corresponding joints which
are extracted using OpenPose [Cao et al., 2019], then the 2D-
3D reprojection loss for human is defined as

LJ =
K∑
i=1

‖Π(J3D
i )− Ĵ2D

i ‖1, (14)

where Π : R3 → R2 is the camera projection function.
As for object, we use EPro-PnP [Chen et al., 2022b] to get
3D object coordinates x3D ∈ RN×3, 2D image coordinates
x2D ∈ RN×2 and 2D weights w2D ∈ RN×2

+ , then the 2D-3D
reprojection loss for object is defined as

Lcoor =
N∑
i=1

‖w2D
i ◦ (Π(Rx3D

i + t)− x2D
i )‖1. (15)

We also place constraints on human 3D body pose by max-
imizing the posteriori probabilities of the human body pose
Lθposteriori = −‖zθ‖2. The loss for 2D-3D reprojection loss is
defined as

L2D-3D = λJLJ + λcoorLcoor + λθposterioriLθposteriori. (16)

The 2D-3D reprojection loss aims at aligning results with
image content without considering the interaction between
the human and the object. To restrict the relative offset
between the human and the object, we add the offset loss
LHO-offset shown in Eq. (4) and posteriori distribution loss
Lγposteriori = −‖zγ‖2, which form the loss for human-object
spatial relation

Loffset = λHO-offsetLHO-offset + λγposterioriL
γ
posteriori. (17)

Finally, optimization loss is defined as

Loptim = L2D-3D + Loffset. (18)
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Figure 3: Visualized reconstruction results on BEHAVE dataset. The red regions depict the contact region in BSTRO or the relative distance
of our method. The red circles mark the incorrect reconstruction results. These results show that our method performs well in some heavy
occlusion cases.

4 Experiments
Dataset. We conduct experiments on two indoor datasets:
BEHAVE [Bhatnagar et al., 2022] and InterCap [Huang et al.,
2022b]. BEHAVE is a recently released dataset that captures
8 subjects interacting with 20 different objects indoors using
a multi-view camera capture system. We follow the official
train/test split to train and test our method. Due to the cost
of collecting annotations, BEHAVE doesn’t provide enough
training data which will easily cause the overfitting problem.
To prevent this, we render fake images with new viewpoints
and new subjects to augment the original training dataset. In-
terCap is a larger dataset which contains 4M images of 10
subjects interacting with 10 objects. We randomly select 20%
sequences for testing and the rest for training which results in
326, 955 images in the training split and 73, 541 images in
the testing split.
Free-viewport augmentation. We apply free-viewport
data augmentation to generate new images. For each HOI in-
stance sampled from the training dataset, we first use MetaA-
vatar [Wang et al., 2021] trained on CAPE dataset [Ma et
al., 2020; Pons-Moll et al., 2017] to generate clothed human
mesh given human pose θ and place it with object mesh tem-
plate, which is transformed by R and t, in world coordinate.
We then render new images by changing the viewport of the
camera to simulate all possible occlusions between the human
and the object. In the end, we render 12 images with different
viewports for each HOI instance in the training dataset. These
rendered fake images are used as a supplementary dataset to
train our model.
Evaluation metric. Following previous works [Bhatnagar
et al., 2022], we use Chamfer distance to evaluate the quality
of the reconstructed mesh. For a fair comparison, we assume
the object label and bounding box are known before, what we
need to predict are the SMPL parameters and the object’s 6D

pose. With the reconstructed SMPL mesh and object mesh,
we first align them with ground truth meshes using Procrustes
analysis, then Chamfer distance is calculated based on the
point clouds sampled from reconstructed meshes and ground
truth meshes.

4.1 Comparisons with the State-Of-The-Arts
We compare our method with three state-of-the-art methods:
PHOSA [Zhang et al., 2020a], CHORE [Xie et al., 2022]
and BSTRO [Huang et al., 2022a] on BEHAVE and Inter-
Cap dataset. PHOSA is an optimization-based framework
that targets at reconstructing human-object spatial arrange-
ment from image in the wild. CHORE is a learning-based
method that learns to jointly reconstruct the human and the
object from a single RGB image. BSTRO is a powerful model
which predicts human-scene contact from a single image. To
compare with contact-based models, we adapt it to the task
of human-object reconstruction. We name this baseline as
BSTRO-HOI. More details about BSTRO-HOI can be found
in supplementary Materials.

BEHAVE InterCap

Method SMPL ↓ Object ↓ SMPL ↓ Object ↓
PHOSA 12.17 ± 11.13 26.62 ± 21.87 6.06 ± 11.13 14.81 ± 11.96
CHORE 5.58 ± 2.11 10.66 ± 7.71 6.86 ± 2.45 15.49 ± 10.13
BSTRO-HOI 4.77 ± 2.46 11.08 ± 13.14 4.80 ± 2.82 9.70 ± 11.05

Ours 4.61 ± 2.04 9.86 ± 9.59 4.42 ± 1.85 8.04 ± 7.37
Ours† 4.33 ± 1.83 8.87 ± 8.76 - -

Table 1: Comparison of mean and standard deviation of Chamfer
distance (cm) over all HOI instances on BEHAVE and InterCap
datasets. † indicates the model is trained with augmented dataset.
Blod indicates the best result.
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Quantitative evaluation. As shown in Table 1, we com-
pare our method with baseline methods on BEHAVE dataset
and InterCap dataset. Our method achieves competitive re-
sults compared with state-of-the-art methods. Compared with
pure optimization-based method PHOSA, all learning-based
methods show incomparable advantages. Compared with
other learning-based methods, our method achieves more ac-
curate results, which indicates that human-object offset is a
more suitable representation to encode human-object spatial
relation.

Qualitative evaluation. We also compare our method
against CHORE and BSTRO-HOI qualitatively for heavy oc-
clusion cases in Figure 3. From these cases, we can see that
when objects are heavily occluded by human or some human
body parts are heavily occluded by object, our method can
still draw hints from visible human body parts or objects to
guess the potential position of object or potential human body
pose by means of HO-offset. As BSTRO-HOI depends on
good initilization of human pose and object pose, it fails on
the cases in which the object or the human is almost unseen.
CHORE also has the same problem. On the contrary, our
method is more robust on these heavy occlusion cases.

Method complexity comparison. We compare different
methods in terms of space efficiency and time efficiency in
Table 2. Our method makes a good balance between space
complexity and computation complexity. It is noteworthy
that our method outperforms CHORE from 7.90 to 6.60 (with
16% improvement) in terms of reconstruction accuracy with
a dramatic reduction from 366.04 to 43.39 (with 88% reduc-
tion) during the optimization stage. This dramatic reduction
of time consumed in the post-optimization stage benefits from
two aspects. First, before post-optimization, we have already
got a good initialization which is predicted by StackFLOW,
only a few iterations are needed to get the optimal results.
The other factor that contributes to dramatic time reduction is
the simplicity and efficiency of our optimization loss terms.
On the contrary, CHORE relies on multi-stage optimization
and complex losses for CHORE field fitting to get accurate
reconstruction results.

Method #Params (M) GFLOPs Time (s) Chamfer Dist.

PHOSA - - 14.23 19.40
CHORE 18.19 396.39 366.04 7.90
BSTRO-HOI 146.99 40.20 18.90 7.40

Ours (w/o optim.) 77.02 5.50 1.15 9.34
Ours (w optim.) 77.02 5.50 43.39 6.60

Table 2: Time and space complexity comparisons on BEHAVE
dataset. The second and third columns compare the size and compu-
tation of neural network during inference. The fourth column com-
pares the time spent processing each image. The time is tested on a
single NVIDIA GeForce RTX 2080 Ti GPU. The last column com-
pares the reconstruction error of different methods. The chamfer
distance is averaged between SMPL and object.

4.2 Ablation Study
Effectiveness of offset loss. To demonstrate the effective-
ness of offset loss in the stage of post-optimization, we report
the results with and without the offset loss in Table 3. Without
any optimization, our method can already achieve compara-
ble performance. If we optimize only with reprojection loss,
the accuracy of reconstruction becomes worst due to the in-
correct of coordinate map predicted by EPro-PnP [Chen et al.,
2022b]. Only if we jointly optimize with offset loss and 2D-
3D reprojection loss, the best performance can be achieved.

BEHAVE InterCap

Loffset L2D-3D SMPL ↓ Object ↓ SMPL ↓ Object ↓
4.83 ± 2.06 13.85 ± 11.88 4.96 ± 2.26 11.53 ± 10.56

X 5.68 ± 2.25 13.85 ± 12.17 5.75 ± 2.52 12.25 ± 10.83
X 4.79 ± 2.44 15.15 ± 18.19 5.71 ± 3.35 17.27 ± 15.30

X X 4.33 ± 1.83 8.87 ± 8.76 4.42 ± 1.85 8.04 ± 7.37

Table 3: Effectiveness of different loss during the process of post-
optimization. Loffset denotes the loss about offset loss and L2D-3D
denotes the loss about 2D-3D reprojection in Eq. (18).

Effectiveness of data augmentation. In Table 4, we list
the performance of different methods trained with augmented
dataset or without augmented dataset. After trained along
with our augmented dataset, the performance can be im-
proved across all methods. Whether using generated data or
not, our method outperforms other state-of-the-art methods.

Method Data AUG. SMPL ↓ Object ↓

CHORE 7 5.58 ± 2.00 10.66 ± 7.71
X 5.52 ± 2.00 10.27 ± 7.75

BSTRO-HOI 7 4.77 ± 2.46 11.08 ± 13.14
X 4.50 ± 2.28 10.29 ± 12.09

Ours 7 4.61 ± 2.04 9.86 ± 9.59
X 4.33 ± 1.83 8.87 ± 8.76

Table 4: Ablation studies on BEHAVE dataset for the effectiveness
of data augmentation.

5 Conclusion
In this work, we show how to encode and capture highly
detailed 3D human-object spatial relations from single-view
images using Human-Object Offset. Towards monocular
human-object reconstruction, a Stacked Normalizing Flow is
proposed to infer the posterior distribution of human-object
spatial relation from a single-view image. During the opti-
mization stage, offset loss is proposed to constrain the body
pose of humans and the relative 6D pose of objects. Our
method outperforms state-of-the-art models on two challeng-
ing benchmarks including BEHAVE or InterCap dataset. Es-
pecially, our model is good at handling heavy occlusion cases.
Even if the objects are heavily occluded by the human, our
method can still draw cues from visible human pose to infer
the potential pose of the objects.
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