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Abstract

Neural Architecture Search (NAS) aims to automati-
cally excavate the optimal network architecture with
superior test performance. Recent neural architec-
ture search (NAS) approaches rely on validation loss
or accuracy to find the superior network for the tar-
get data. In this paper, we investigate a new neural
architecture search measure for excavating architec-
tures with better generalization. We demonstrate
that the flatness of the loss surface can be a promis-
ing proxy for predicting the generalization capabil-
ity of neural network architectures. We evaluate our
proposed method on various search spaces, showing
similar or even better performance compared to the
state-of-the-art NAS methods. Notably, the resultant
architecture found by flatness measure generalizes
robustly to various shifts in data distribution (e.g.
ImageNet-V2,-A,-0), as well as various tasks such
as object detection and semantic segmentation.

1 Introduction

Recently, Neural Architecture Search (NAS) [Liu et al., 2018b;
Liu et al., 2018a; Hong er al., 2020] has evolved to achieve
remarkable accuracy along with the development of human-
designed networks [He et al., 2016; Dosovitskiy er al.,
2020] on the image recognition task. Several NAS meth-
ods [Zoph et al., 2018; Chu ef al., 2020; Zhang et al., 2021;
Liu er al., 2018b; Xu et al., 2019; Hong er al., 2020] fur-
ther have demonstrated generalization ability (generalizabil-
ity) of automatically designed networks with test accuracy
and transfer performance onto the other datasets. For the
widespread leverage of architectures found by NAS on the
various tasks such as object detection [Lin et al., 2014] and
segmentation [Cordts ef al., 2016] (task-generalizability), in-
vestigating generalizability of each architecture candidate is
prerequisite and indispensable. Despite its importance, quanti-
tative measurement of generalizability during the architecture
search process is still under-explored. In this paper, we aim to
find an optimal proxy measurement to discriminate generaliz-
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Figure 1: Shape of local loss minima found by angle-based search
(ABS) and flatness-based search (FBS). (a) The architecture found
by ABS can not guarantee to be located within flat local minima. (b)
FBS searches for architectures with flat local minima by inspecting
loss values of local neighborhood weights.

Kendall’s Tau
CIFAR-10 \ CIFAR-100 \ ImageNet16-120
0.4302 \ 0.4724 \ 0.4097

Table 1: Low correlation of angle measure with flatness measure on
NAS-Bench-201 [Dong and Yang, 2020] search space. We evaluated
the angle and flatness of all architectures and compared Kendall’s
Tau [Kendall, 1938] rank correlation between these search metrics
on CIFAR-10, CIFAR-100, and ImageNet16-120 [Chrabaszcz et al.,
2017] dataset.

able architectures during the search process. ! 2

Previous NAS algorithms including the pioneering differen-
tiable search method, DARTS [Liu et al., 2018b] and evolu-
tionary search method, SPOS [Guo et al., 2020] use validation
performance as a proxy measure for the generalizability as
follows:

a™ = argmax S(a), )

acA
where a and A denote an architecture candidate and the entire
search space, respectively, and S(+) represents a measurement

Code is available at https://github.com/clovaai/GeNAS.

*Extended paper (including the appendix) is available at
https://arxiv.org/abs/2305.08611.
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function which is broadly defined by accuracy [Guo er al.,
2020] or negative of loss value [Liu ef al., 2018b] on a valida-
tion dataset. Although these performance-based search (PBS)
methods find the optimal architecture for generalization on the
validation set, they show poor generalizability on the test set
and other tasks, caused by overfitting on validation set [Zela
et al., 2019; Oymak et al., 2021]. In addition, PBS methods
represent a large discrepancy between the validation accu-
racy and ground truth test accuracy provided by NAS bench-
mark [Dong and Yang, 2020] as shown in [Guo er al., 2020;
Zhang et al., 2021].

To search generalizable architectures, several litera-
tures [Shu et al., 2019; Zhang et al., 2021] empirically ob-
serve that architectures with fast convergence during train-
ing have a tendency to show better generalizability on test
set. Based on the empirical connection between convergence
speed and generalization, RLNAS [Zhang et al., 2021] pro-
posed an Angle-Based Search (ABS) method, which estimates
angle between initial and final network parameters after con-
vergence of the model (i.e. convergence speed) as a proxy
performance measure during the search process. However,
we argue that ABS still has a large headroom for better gen-
eralization in terms of flat (wide) local minima, which has
been considered as one of the key signals for inspecting
generalizability of a trained network [Keskar et al., 2016;
Zhang et al., 2018; Pereyra et al., 2017; Cha et al., 2020;
He et al., 2019]. Intuitively, since the architecture with flat
loss minima has widely low loss values around the minimum,
it can achieve a low generalization error even if the loss sur-
face is shifted due to the distribution gap from the test dataset.

Since ABS only concerns the angle between initial model
wights and trained ones in terms of convergence speed, found
architectures can not be guaranteed to have flat local minima,
as shown in Figure 1. Specifically, architectures not chosen
by ABS (i.e. small angle) might have better generalizability
based on the flat property of loss minima. Table 1 corroborates
that angle is indeed in short of correlation with flatness of local
minima.

To explicitly design a search proxy measure that has a high
correlation with the generalizability of the found model, we
propose a flatness-based search method, namely FBS, which
excavates a well-generalizable architecture by measuring the
flatness of loss surface. FBS can find out robust architecture
with low generalization error on shifted data distribution (e.g.
test data, out-of-distribution datasets, downstream tasks) by
inspecting both the depth and flatness of loss curvature near
local minima through injecting random noise. In addition,
FBS can be either replaced or incorporated with other state-
of-the-art search measures to enhance performance as well as
generalizability.

Consequently, building upon our search method FBS, we
propose a novel flatness-based NAS framework, namely
GeNAS, to exactly discriminate generalizability of architec-
tures during searching. We show the effectiveness of the
proposed GeNAS for both cases when using FBS solely
or integrated into the conventional architecture score mea-
surements such as PBS and ABS. Specifically, our GeNAS
achieves comparable or even better performances on several
NAS benchmarks compared to PBS- and ABS-based search
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methods [Liu et al., 2018b; Zhang et al., 2021; Xu et al., 2019;
Guo et al., 2020; Chu et al., 2020; Chen et al., 2019;
Hong et al., 2020]. Furthermore, we also show that the pro-
posed FBS can be combined with conventional search metrics
(e.g. PBS, ABS), inducing significant performance gain. Fi-
nally, we also demonstrate that our FBS can well-generalize
on various data distribution shifts, as well as on multiple down-
stream tasks such as object detection and semantic segmenta-
tion.
Our contributions can be summarized as follows:

* We firstly demonstrate that the flatness of local minima
can be employed to quantify generalizability of archi-
tecture in NAS domain, which only had been a means
of confirming the generalizability after training a neural
network.

We propose a new architecture search proxy measure,
flatness of local minima, well-suited for finding archi-
tectures with better generalization, which can replace or
even significantly enhance the search performance of the
existing search proxy measures.

The found architecture induced by our FBS demonstrates
the state-of-the-art performance on various search spaces
and datasets, even showing great robustness on data dis-
tribution shift and better generalization on various down-
stream tasks.

2 Related Work

2.1 Neural Architecture Search

Early NAS methods are based on the reinforcement learn-
ing (RL) [Baker et al., 2016; Zoph et al., 2018], which train
the agent network to choose better architecture. The RL-
based methods require the test accuracy of each candidate
network for reward value, so training every candidate net-
work from scratch is also required to measure that. For this
reason, it is not feasible on a large-scale dataset such as Im-
ageNet [Krizhevsky er al., 2012]. To solve this problem, the
weight-sharing NAS methods are introduced [Liu ez al., 2018b;
Xu et al., 2019; Xie et al., 2018; Guo et al., 2020; Zhang et al.,
2021]. The weight-sharing NAS generally uses the SuperNet,
which contains all operations in objective search space, and
chooses several operations from the SuperNet to decide the fi-
nal architecture, which is called SubNet. Among these weight-
sharing NAS frameworks, [Liu et al., 2018b; Xu et al., 2019]
introduced a gradient-based architecture search method, where
they jointly train the architecture parameters with weight pa-
rameters using gradient descent. After training, the final ar-
chitecture is decided according to the architecture parameters.
Meanwhile, the one-shot NAS methods [Guo et al., 2020;
Bender et al., 2018; Brock et al., 2017] pointed out the criti-
cal drawback of these gradient-based search methods as there
exists a strongly coupled and biased connection between Su-
perNet weight parameters and its architecture parameters; only
a small subset of SuperNet weight parameters with large archi-
tecture parameter value will be intensely optimized, leaving
the others trained insufficiently. Therefore, [Guo et al., 2020;
Bender et al., 2018; Brock et al., 2017] sequentially decoupled
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the optimization process for SuperNet and architecture param-
eters, showing superior search performance over the gradient-
based search methods. Inspired by these breakthroughs and its
flexibility of introducing various search proxy measures, we
construct our GeNAS based on the one-shot NAS framework.

2.2 Architecture Search Proxy Measure

During the search time, it is hard to check the actual test per-
formance of each architecture candidate when it is trained
from scratch, so the proxy measure has to be employed for the
candidate evaluation. Several approaches proposed to predic-
tively discriminate well-trained neural networks without any
training by inspecting either the correlation between the lin-
ear maps of variously augmented image [Mellor er al., 2021]
or spectrum of Neural Tangent Kernel (NTK) [Chen er al.,
2021]. Although these training-free search proxy measures
significantly reduced the search costs within even four GPU
hours, actual test performance was inferior to that of training-
involved search proxy measures such as validation accuracy
and loss. Meanwhile, ABS methods [Zhang er al., 2021;
Hu et al., 2020] introduced a new search proxy measure, an-
gle, for indicating the generalizability of a neural network
architecture, showing search accuracy improvement [Zhang
et al., 2021] over conventional search proxy measures such
as validation accuracy [Guo er al., 2020]. Since ABS method
only investigates the convergence speed of an architecture,
[Zhang et al., 2021] successfully searched a well-trainable
architecture under ground truth label absent during SuperNet
training. However, searching with randomly-distributed label
still shows large performance gap (about 0.15 Kendall’s Tau
score gap on NAS-Bench-201) to that of searching with the
ground-truth label. Therefore, in order to fulfill higher test
generalization of a searched architecture, we train SuperNet
and searched architecture under ground-truth label setting.

2.3 Flatness of Local Minima

The flatness of loss landscape near local minima has been
considered as a key signal for representing generalizability.
[Keskar et al., 2016; Jastrzebski et al., 2017; Hoffer et al.,
2017] empirically observed that appropriate training hyper-
parameters such as batch size, learning rate, and the number of
training iterations can implicitly enable a model to have wide
and flat minima, enhancing test generalization performance.
[Chaudhari et al., 2019] further explicitly drives a neural net-
work model to the flat minima through an entropy-regularized
SGD. Several works also promoted the flat local minima in
terms of regularization during training using Label Smoothing
[Pereyra er al., 2017] and Knowledge Distillation [Zhang et
al., 2018], enjoying test performance gain. Based on these em-
pirical connections between test generalizability and flatness
of local minima of a neural network, we investigate the role of
flatness of minima on the architecture search process. [Zela
et al., 2019] has in common with our work in that they also
employed a flatness of local minima during the architecture
search process, but in an indirect manner. They proposed an
early-stopping search process to prevent overfitting on the
validation set when the approximated sharpness of local min-
ima exceeds the threshold. Similarly, [Chen and Hsieh, 2020;
Wang et al., 2021] tackled to alleviate fluctuating loss surface
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and accuracy caused by the discretization of architecture pa-
rameters in DARTS [Liu et al., 2018b]. We point out these
previous similar works lack general usage on various NAS
frameworks since they heavily depend on the DARTS [Liu et
al., 2018b] framework. Meanwhile, our method can be applied
to any architecture search framework without dependence on
the architecture parameters of DARTS, such as evolutionary-
based search algorithm [Guo et al., 2020].

3 Method

3.1 GeNAS: Generalization-Aware NAS With
Flatness of Local Minima

GeNAS is aimed to search for network architectures with
better generalization performance. To this end, we introduce
a procedure for quantitatively estimating the flatness of an
architecture’s converged minima as a search proxy measure
Fuai(+) as follows:

a* = argmax Fy,q(W3(a)).
a€A

@

Namely, we select the maximal flat architecture a* by eval-
uating flatness of every SubNet extracted from the pre-trained
SuperNet W . From the previous studies [Zhang et al., 2018;
Cha et al., 2020] that empirically investigated the landscape of
converged local minima, the neural networks having flat local
minima where the changes of the validation loss around the
local minima are relatively small show better generalization
performance at the test phase. Based on these simple but ef-
fective empirical connections, we introduce a novel method
that searches for the architecture with maximal loss flatness
around converged minima which can be formulated as below,
following [Zhang et al., 2018]:

t—1

(0) = (Z L(0 + N(0i41)) — L(6 + N(Ui)))_

Oi+1 — 04

Fval 17 (3)

i=1

where L(6) denotes validation loss value given weight pa-
rameter ¢ abbreviating W} (a), and N(o;) denotes random
Gaussian noise with its mean and standard deviation being
0 and oy, respectively. Namely, we inspect the flatness of
minima near converged weight parameter space by injecting
random Gaussian noise. The hyper-parameters o denote the
range for inspection of flatness and ¢ denotes the number of
perturbations. To perturb the weight parameters, we use unidi-
rectional random noise, much more cost-efficient than recent
flatness measuring approaches using Hessian [Yao et al., 2019]
and bidirectional random noise [He et al., 2019] which can
induce a considerable amount of computational cost. We ob-
serve that our choice is sufficient to discriminate architectures
with high generalization performance.

Eq (2) and (3) would find architecture a* having the flattest
local minima in the entire search space, but a* might have
sub-optimal local minima far from the global minimum. In
Figure 2, bottom-K architectures with the lowest ground test
accuracy given by NAS-Bench-201 show the flattest local min-
ima with relatively large loss values compared to the middle-K
and top-K architectures. Therefore, naive investigation of the
flatness of an architecture comes to achieve such sub-optimal
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Figure 2: Validation loss curvatures of top-k, middle-k, bottom-k
architectures sorted by the ground-truth test accuracy which is given
by NAS-Bench-201 [Dong and Yang, 2020] on CIFAR-100.

architecture in terms of loss value. Note that the top-K archi-
tectures have the lowest loss values compared to middle and
bottom architectures, equipped with flatness near converged
minima. Correspondingly, considering both the flatness of
loss landscape and the depth of minima is essential for exca-
vating a generalizable architecture. For this reason, we add an
additional term on Eq (3) to search for architectures with deep
minima, along with flatness as follows:

Fo(8) = (3" | 2OF N(ai:)) - 5(9 FNE)
i=1 i+1 % (4)
Q‘M‘)—l

o1
Here, o; denotes the smallest perturbation degree among o,
hence the second term inspects how low the loss value nearest
converged minima is. The term « denotes the balancing coef-
ficient term between flat and deep minima, which is set to 1
unless specified.

3.2 Searching With Combined Metrics

Recent works [Hosseini et al., 2021; Mellor et al., 2021]
adopted a combined search metric for enhancing the perfor-
mance of the resultant architecture. [Hosseini et al., 2021]
employed an integrated search metric where the conventional
cross-entropy loss over a clean image is combined with ap-
proximately measured adversarial robustness lower bound to
enhance test accuracy of both clean images and adversarially
attacked images. Inspired by the weak correlation between
the existing search metrics (e.g. angle) and flatness (Table 1),
we target to explicitly fulfill the large headroom of conven-
tional search metrics to find better generalizable architectures
in terms of our proposed flatness-based search measure (Eq
(4)). Formally, we combine the existing metrics with flatness
as a search proxy measure as follows:

at = argmax S(Wi(a)) +vBFya(Wi(a)) &)
ac
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Figure 3: Test loss curvatures of architectures found by Angle, An-
gle+Accuracy, Angle+Flatness.

where S denotes conventional search metrics such as angle
and validation accuracy, -y is a balancing parameter between
the existing metric and flatness, and [ is a normalization term,
which is fixed as o *, for matching scale of flatness term with
the existing search metric.

4 Experiments

We first evaluate our proposed GeNAS framework on widely
used benchmark dataset, ImageNet with DARTS [Liu ez al.,
2018b] search space. Furthermore, we thoroughly conduct
ablation studies with regard to the components of GeNAS
on NAS-Bench-201 [Dong and Yang, 2020] benchmark. We
refer the reader to the appendix for more experimental de-
tails. For better confirming robust generalization effect with
regard to data distribution shift, we evaluate the found ar-
chitectures on ImageNet variants (ImageNetV2 [Recht er al.,
2019],-A,-O [Hendrycks et al., 2021]). Furthermore, we test
the transferability of our excavated architectures onto other
task domains, object detection, and semantic segmentation,
with MS-COCO [Lin et al., 2014] and Cityscapes [Cordts et
al., 2016] dataset.

4.1 ImageNet

Searching on CIFAR-10

We analyze the transferability of architectures found on small
datasets such as CIFAR-10 and CIFAR-100 onto ImageNet.
Specifically, we search architectures with 8 normal cells (i.e.,
stride = 1) and 2 reduction cells (i.e., stride = 2) on CIFAR-
10/100, and transfer these normal / reduction cell architectures
onto ImageNet by training from scratch and evaluating top-1
accuracy on ImageNet validation set. We compare our pro-
posed FBS with other search metrics on CIFAR-10 in the
upper part of Table 2. As a stand-alone search metric, flatness
measure shows the best search performance among the other
metrics including accuracy and angle with comparable FLOPs
(~=0.6G) and parameters, when transferring searched archi-
tecture from CIFAR-10 onto ImageNet. Furthermore, when
the angle is combined with flatness, loss landscape of found
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Search Dataset | Search Metric || Params (M) | FLOPs (G) [ Top-1 Acc (%) | Top-5 Acc (%)

Angle 53 0.59 75.70 92.45

Accuracy 54 0.60 75.32 92.20

CIFAR-10 Flatness 5.6 0.61 75.95 92.74
Angle + Flatness 53 (+0.0) | 0.59 (+0.00) | 76.06 (+0.36) | 92.77 (+0.32)
Accuracy + Flatness || 5.6 (+0.2) [ 0.61 (+0.01) | 75.72 (+0.40) | 92.39 (+0.39)

Angle 54 0.61 75.00 92.31

Accuracy 54 0.60 75.37 92.23

CIFAR-100 Flatness 5.2 0.58 76.05 92.64
Angle + Flatness 54 (+0.0) | 0.60(-0.01) | 75.72(+0.72) | 92.46 (+0.15)
Accuracy + Flatness || 5.4 (+0.0) | 0.60 (+0.00) | 75.85 (+0.48) | 92.74 (+0.51)

Angle 54 0.60 75.09 92.30

Accuracy 5.3 0.58 74.78 92.11

ImageNet Flatness 5.3 0.59 75.49 92.38
Angle + Flatness 55+0.1) | 0.60 (+0.00) | 75.66 (+0.57) | 92.62 (+0.32)
Accuracy + Flatness || 5.3 (+0.0) [ 0.59 (+0.01) | 75.33 (+0.55) | 92.41 (+0.30)

Table 2: Performance of various search metrics on ImageNet. The amount of change from adding Flatness term is denoted with blue color.

architecture becomes to be flatter and deeper as shown in Fig-
ure 3. As a result, search performance is further improved by
0.36% top-1 accuracy without any increase of either FLOPs
or parameters. Also, the accuracy-based proxy measure also
achieves performance gain when flatness is combined. The
results show that our proposed flatness search metric indeed
serves as a powerful search proxy measure for finding well-
transferable architectures and also enhances the other search
metrics to have a stronger ability to find architectures with
better test generalization performance.

Searching on CIFAR-100

In middle part of Table 2, we analyze transferability of ar-
chitectures found on CIFAR-100 onto ImageNet. The results
show that flatness consistently reports significantly superior
search performance even with fewer flops and parameters com-
pared to ABS or PBS metrics, about 1.05% and 0.68% better
top-1 accuracy, respectively. Furthermore, when flatness is
appended onto angle and accuracy as a search proxy measure,
top-1 accuracy drastically increases by 0.72% and 0.48%, re-
spectively, which was consistently shown in CIFAR-10.

Searching on ImageNet

In the bottom part of Table 2, we directly search architectures
on ImageNet and evaluate validation accuracy on ImageNet
to compare in-domain search performance. Similar to the
trend of the transfer experiments, our flatness metric achieves
the best search performance compared to the existing search
metrics and improves generalizability of them.

Comparison With SOTA NAS Methods

In Table 3, our GeNAS clearly represents large headroom com-
pared to the other state-of-the-art NAS methods. Especially in
comparison with SDARTS [Chen and Hsieh, 2020] which is a
similar approach to GeNAS by using an implicit regularization
for smoothing accuracy landscape, our GeNAS outperforms
with a comparable number of FLOPs. Table 2 and 3 results
show that our proposed flatness search metric indeed serves as
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a powerful search proxy measure for finding well-transferable
architectures and also enhances the other search metrics to
have a stronger ability to find architectures with better test
generalization performance.

4.2 Generalization Ability

For a more sophisticated investigation of generalization abil-
ity, we analyze GeNAS in terms of robustness towards data
distribution shift and transferability onto various downstream
tasks in Table 4.

Distribution Shift Robustness

To measure robustness towards data distribution shift, we eval-
uate our found architectures on ImageNet variants, ImageNet-
V2 matched frequency [Recht ef al., 2019] and ImageNet-
A [Hendrycks et al., 20211, where the test-set is distinct from
the original ImageNet validation set. The results demonstrate
superior robustness compared to the other NAS methods. Our
GeNAS widens the performance gap especially when the dis-
tribution shift is severe as in ImageNet-A, which has extremely
confusing examples.

Task Generalization

Object Detection We evaluate the generalization capability of
architectures found by GeNAS on the downstream task, specif-
ically object detection. We firstly re-train architectures found
on CIFAR-100 onto ImageNet, and finetune on MS-COCO
[Lin er al., 2014] dataset. For training, we adopt the default
training strategy of RetinaNet [Lin et al., 2017] from Detec-
tron2 [Wu et al., 2019]. We only replace the backbone network
of RetinaNet for analyzing the sole impact of architectures
found by each NAS method. The result shows that our GeNAS
framework guided by the flatness measure clearly achieves
the best AP scores. In case of RLNAS (angle) combined with
flatness as a search metric, AP is enhanced by about 0.61%,
without an increase of FLOPs or number of parameters.
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Search Dataset] Method

| Search Metric [[Params (M)[FLOPs (G)[Top-1 Acc (%)[Top-5 Acc (%)

DARTS [Liu et al., 2018b] Val. loss 4.7 0.57 73.3 91.3
PC-DARTS [Xu et al., 2019] Val. Toss 53 0.59 74.9 922
FairDARTS-B [Chu et al., 2020] Val. loss 4.8 0.54 75.1 925
P-DARTS [Chen ef al., 2019] Val. loss 4.9 0.56 75.6 92.6
CIFAR-10 DropNAST [Hong e al., 2020] Val. loss 54 0.60 76.0 92.8
SANAS [Hosseini and Xie, 2022] Val. loss 4.9 0.55 75.2 91.7
SPOS [Guo et al., 2020] Val. acc 5.4 0.60 75.3 92.2
MF-NAS [Xue et al., 2022] Val. acc 4.9 0.55 75.3 -
Shapley-NAS [Xiao et al., 2022] Shapley value 5.1 0.57 75.7 -
RLNAS [Zhang et al., 2021] Angle 53 0.59 75.7 92.5
SDARTS-RS [Chen and Hsieh, 2020] Flatness 55 0.61 755 927
SDARTS-ADYV [Chen and Hsieh, 2020] Flatness 55 0.62 75.6 924
GeNAS (Ours) Flatness 5.6 0.61 76.0 92.7
GeNAS (Ours) Angle + Flatness 53 0.59 76.1 92.8
PC-DARTS [Xu et al., 2019] Val. loss 5.3 0.59 74.8 92.2
DropNAST [Hong et al., 2020] Val. loss 5.1 0.57 75.1 92.3
P-DARTS [Chen et al., 2019] Val. loss 5.1 0.58 75.3 92.5
CIFAR-100 SPOS [Guo et al., 2020] Val. acc 5.4 0.60 75.4 92.2
RLNAS [Zhang ef al., 2021] Angle 5.4 0.61 75.0 92.3
GeNAS (Ours) Flatness 5.2 0.58 76.1 92.6
GeNAS (Ours) Angle + Flatness 54 0.60 75.7 92.5

Table 3: ImageNet performance comparison of SOTA NAS methods searched with DARTS search space on CIFAR-10 and CIFAR-100 dataset.
T denotes that SE [Hu et al., 2018] module is excluded for fair comparison with other methods.

Search ImageNet-V2 | ImageNet-A | COCO | Cityscapes
Method Measure Params (M) | FLOPs (G) gAcc z(ilcc AP nZI 05
PC-DARTS [Xu et al., 2019] Val. loss 53 0.59 62.53 3.85 35.56 70.68
DropNAS [Hong et al., 2020] Val. loss 5.1 0.57 63.14 4.28 36.39 71.16
SPOS [Guo et al., 2020] Val. acc 5.4 0.60 62.84 391 36.04 71.70
RLNAS [Zhang et al., 2021] Angle 5.4 0.61 62.95 3.81 35.98 70.84
SDARTS-ADV [Zhang et al., 2021] Flatness 5.5 0.62 62.88 424 36.36 | 71.77
GeNAS (Ours) Flatness 5.2 0.58 63.38 5.65 37.05 72.58
GeNAS (Ours) Angle + Flatness 5.4 0.60 63.32 4.37 36.59 72.05

Table 4: Comparison with SOTA NAS methods on various ImageNet variants and downstream tasks (object detection with COCO [Lin et al.,

2014] and segmentation with Cityscapes [Cordts et al., 2016]).

Semantic Segmentation We also test the generalization
of our GeNAS on Semantic Segmentation task with
Cityscapes [Cordts et al., 2016] dataset. Based on the
DeepLab-v3 [Chen et al., 20171, we only replaced the back-
bone network and trained with MMSegmentation [Contribu-
tors, 2020] framework. The results demonstrate the effective-
ness of our flatness-guided architectures with a large perfor-
mance margin. Consistently, our flatness guidance ensures a
large performance gain, about 1.21%, when added onto angle-
based search.

4.3 Ablation Study

To better analyze our proposed FBS-based GeNAS framework,
we conduct an ablation study of each component and hyper-
parameters consisting of GeNAS.

Flatness Range

We analyze the effect of range of inspecting flatness near
converged local minima in Table 5. The results demonstrate
that searching flat architectures within too small area near
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converged minima (1st row in Table 5) is not sufficient for dis-
criminating generalizable architectures. When o is increased
to {2e — 3,1le — 2,2e — 2}, Kendall’s Tau is considerably
improved, while further widening the flatness inspection range
(4th row in Table 5) only significantly degrades the search
performance on various datasets.

Deep and Low Minima

We further investigate the effect of searching architectures
equipped with not only flatness but also the depth of loss
landscape near converged minima. Specifically, we adjust a in
Eq (4), where oo = 0 denotes searching with only flatness of
local minima. Results on Table 6 demonstrate that as o value
increases from zero to one, search performance is drastically
enhanced, indicating the indispensability of searching with
both flatness and depth of minima. Note that @ = 0 case can
search out a sub-optimal architecture that has highly flat loss
curvature but its loss values near local minima are too high,
as shown in Figure 2. When « is further increased to o > 1,
Kendall’s Tau rank correlation starts to decrease, denoting that
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Kendall’s Tau

7 CIFAR-10 | IN16-120
{Te—6,5c —6,1e—5} | 05756 | 05524
{Fe —4,1c —3,2¢ — 3} | 05770 | 0.5531
{2¢—3,1e—2,2¢ —2} | 06047 | 0.5800
{2¢—3,2¢—2,4e—2} | 05416 | 02364

Table 5: Kendall’s Tau on the NAS-Bench-201 search space accord-
ing to the perturbation range o, inspecting the effect of flatness range
near local minima. IN16-120 denotes ImageNet16-120 dataset [Dong
and Yang, 2020].

|la=0 a=01a=05 a=1 a=4 a=16

Perturbation Position Perturbation Direction  Kendall’s Tau

All Random 0.6047
Search Cells Random 0.5612 (-0.0435)
All Hessian 0.5908 (-0.0139)

Table 7: Ablation study of perturbation position and direction on
CIFAR-10 with NAS-BENCH-201 [Dong and Yang, 2020] search
space. All denotes perturbing all the weight parameters of a given
network, while Search Cells denotes perturbing only the weight
parameters of search cells. The quantities in the parentheses denote

the amount of change compared to the default case (first row).

v [ Flatness (%) ]| Top-1 Acc (%) | Top-5 Acc (%)

Kendall’s Tau
(CIFAR-10) 0.1777 0.4026 0.5890 0.6047 0.5898 0.5820

Table 6: Kendall’s Tau on CIFAR-10 with different o in Eq (4).

searching with largely depending on the depth of converged
minima is not optimal for discriminating better generalizable
architectures.

Perturbation Methodology

To quantitatively measure flatness of loss landscape, all the
weight parameters of a given network are perturbed with ran-
dom direction following Gaussian distribution as in Eq (4).
Here, we investigate the effect of perturbation positions and
directions. In Table 7, perturbing only weight parameters of
target search cells (i.e. excluding stem conv layer and final
fully-connected layer) only harms Kendall’s Tau. Moreover,
with regard to the perturbation directions, strongly perturb-
ing the given models’ parameters across the hessian eigen-
vectors [Yao er al., 2019] suffers from a slight decrease of
Kendall’s Tau (Table 7) with large computational overhead
induced by approximation of hessian.

Effect of Flatness on ABS

We analyze the effect of integrating flatness on ABS. Specif-
ically, we adjust v in Eq (5), which balances the coefficient
concerning the ratio of flatness to angle term. In Table 8,
integrating flatness with a small proportion to angle mildly
improves top-1 accuracy. As < increases, top-1 accuracy of
searched architecture gradually increases to reach 0.72% im-
provement over v = 0 (ABS) case.

4.4 Search Cost Analysis

In Figure 4, we compare the required architecture search time
of GeNAS with the other SOTA NAS frameworks. We mea-
sured the execution time spent for the SuperNet training and
the search process, using a single NVIDIA V100 GPU. Our
required search time is competitive to the other NAS meth-
ods while exhibiting shortened time compared to the other
flatness-based search method (i.e., SDARTS-ADV).

5 Conclusion

This paper demonstrates that the flatness of local minima can
be directly employed as a proxy of discriminating and search-
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0 0 75.00 92.31
05 20 7522 (+0.22) | 92.39 (+0.08)
5 i3 7558 (+0.58) | 92.44 (+0.13)
6 76 75.63 (+0.63) | 92.54 (+0.23)
6 89 75.72 (+0.72) | 92.46 (+0.15)

Table 8: Search performance of Angle + Flatness with different -y
values, where searched on CIFAR-100 and transferred onto ImageNet.
Flatness (%) denotes the average ratio of Flatness compared to
Angle during evaluation of architectures on evolutionary search
algorithm. The quantities in the parentheses denote the amount of
change compared to the v = 0O case.

4.0

Search Cost (GPU-days)

Figure 4: Comparison of search cost with the SOTA NAS frameworks.

ing for generalizable architectures. Based on the quantitative
benchmark experiments on various search spaces and datasets,
we demonstrate the superior generalizability of our flatness-
based search over conventional search metrics, while showing
comparable or even better search performance compared to
recent state-of-the-art NAS frameworks. We further analyze
the insufficient generalizability of conventional search met-
rics in terms of the flatness of local minima. Consequently,
integrating conventional search metrics with our proposed flat-
ness measure can further lead to significantly boosting search
performance. We also demonstrate superior generalization
capability of GeNAS on the downstream object detection and
semantic segmentation tasks while showing great robustness
with regard to the data distribution shift.
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