
Guided Patch-Grouping Wavelet Transformer with Spatial Congruence for
Ultra-High Resolution Segmentation

Deyi Ji1,2 , Feng Zhao1∗ , Hongtao Lu3,4

1University of Science and Technology of China
2Alibaba Group

3Department of Computer Science and Engineering, Shanghai Jiao Tong University
4MOE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

jideyi@mail.ustc.edu.cn, fzhao956@ustc.edu.cn, htlu@sjtu.edu.cn

Abstract
Most existing ultra-high resolution (UHR) segmen-
tation methods always struggle in the dilemma
of balancing memory cost and local characteriza-
tion accuracy, which are both taken into account
in our proposed Guided Patch-Grouping Wavelet
Transformer (GPWFormer) that achieves impres-
sive performances. In this work, GPWFormer is a
Transformer (T )-CNN (C) mutual leaning frame-
work, where T takes the whole UHR image as
input and harvests both local details and fine-
grained long-range contextual dependencies, while
C takes downsampled image as input for learning
the category-wise deep context. For the sake of
high inference speed and low computation com-
plexity, T partitions the original UHR image into
patches and groups them dynamically, then learns
the low-level local details with the lightweight
multi-head Wavelet Transformer (WFormer) net-
work. Meanwhile, the fine-grained long-range con-
textual dependencies are also captured during this
process, since patches that are far away in the
spatial domain can also be assigned to the same
group. In addition, masks produced by C are uti-
lized to guide the patch grouping process, pro-
viding a heuristics decision. Moreover, the con-
gruence constraints between the two branches are
also exploited to maintain the spatial consistency
among the patches. Overall, we stack the multi-
stage process in a pyramid way. Experiments show
that GPWFormer outperforms the existing methods
with significant improvements on five benchmark
datasets.

1 Introduction
The analysis of ultra-high resolution (UHR) geospatial im-
age with millions or even billions of pixels has opened new
horizons for the computer vision community, playing an in-
creasingly important role in a wide range of geosciences and
urban construction applications, such as disaster control, en-
vironmental monitoring, land resource protection and urban
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planning [Chen et al., 2019; Guo et al., 2022; Ji et al., 2023].
The focus of this paper is on semantic segmentation, provid-
ing a better understanding by assigning each pixel into a spec-
ified category.

Fully convolution neural networks (FCN) based methods
have driven rapid growth in segmentation for regular resolu-
tion images, but overlook the feasibility of larger scale input.
Due to the memory limitation, earliest works for UHR image
segmentation basically follow two paradigms: (1) downsam-
pling the image to a regular resolution, or (2) cropping the
image into small patches, feeding them to network sequen-
tially and merging their predictions. Intuitively both the two
paradigms will result in inaccurate results, the former loses
many local details while the latter lacks of global context. Af-
ter that, methods specially designed for UHR images are pro-
posed and most of them follow the global-local collaborative
framework to preserve both global and local information with
two deep branches, taking the downsampled entire image and
cropped local patches as inputs respectively. The most rep-
resentative works are GLNet [Chen et al., 2019] and FCtL
[Li et al., 2021]. Despite the considerable performance, their
memory cost is high and inference speed is very low, due to
the deep branches and sequentially inference. Later, follow-
ing the bilateral architecture [Yu et al., 2018], ISDNet [Guo et
al., 2022] proposes to combine a shallow and a deep branch.
The shallow branch takes the whole UHR image as input and
extracts multi-scale shallow features, while the deep branch
takes the highly downsampled image as input to extract one
deep feature, then the features are fused for final prediction
with a specially designed fusion module. This type of archi-
tecture avoids local patches cropping and sequentially pre-
diction thus improves the inference speed with a large mar-
gin, but also results in weaker performance, especially in lo-
cal characterization, since the local details will never be fully
addressed in the shallow branch with UHR input. In addi-
tion, their proposed fusion module also introduces much ex-
tra memory cost. In a word, due to enormous pixels, existing
methods for UHR segmentation usually struggle in the press-
ing dilemma of balancing memory cost and local characteri-
zation accuracy.

To this end, in this paper we propose a novel Guided Patch-
Grouping Wavelet Transformer (GPWFormer) network to ad-
dress the above balance problem for UHR image segmenta-
tion. In general, we formulate a hybrid CNN-Transformer
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framework in dual-branch style, where the Transformer
branch takes locally cropped UHR image as input and har-
vests both local details and fine-grained long-range depen-
dencies, while the CNN branch takes downsampled UHR
image as input for learning the category-wise deep context.
For the sake of high inference speed and low computation
complexity, different from the classical global-local frame-
work, the local patches are fed into the Transformer branch
all at once and dynamically grouped, then each group is fed
into a different Transformer head to extract local texture de-
tails. Meanwhile fine-grained long-range dependencies are
also captured during this process, since patches that are far
away in spatial domain can also be assigned to a same group.
In addition, inspired by [Yao et al., 2022], invertible down-
sampling operations with dense wavelets are integrated into
the Transformer for lightweight memory cost, and masks pro-
duced by CNN branch are utilized to guide the patch group-
ing process, providing a heuristics decision. Moreover, the
congruence constraint between the two branches are also ex-
ploited to maintain the spatial consistency among the patches.
In general, we stack the multi-stage process in a pyramid way.

Overall, our contributions are summarized as follows:

• We propose a novel Patch-Grouping Wavelet Trans-
former (GPWFormer) network for ultra-high resolu-
tion image segmentation, which is a hybrid CNN-
Transformer in dual-branch style to harvest fine-grained
both low-level and high-level context simultaneously in
an efficient way.

• Specifically, we introduce a Wavelet Transformer to
integrate the Transformer branch with dense wavelets
for lightweight memory cost, and further decrease its
computation complexity with heuristics grouping masks
guided by the corresponding deep features of CNN
branch.

• Moreover, the congruence constraints between the two
branches are also exploited to maintain the spatial con-
sistency among the patches.

• Extensive experiments demonstrate that the proposed
GPWFormer obtains an excellent balance between
memory cost and local segmentation accuracy, and out-
performs the existing methods with significant improve-
ments on five public datasets.

2 Related Work
2.1 Generic Semantic Segmentation
Deep learning based methods have taken a big step forward
on computer vision [Goodfellow et al., 2016; He et al., 2016;
Ji et al., 2019; Feng et al., 2018; Wang et al., 2021a;
Wang et al., 2021b; Ji et al., 2021]. The development of
deep CNN and Transformer over the past few years has driven
rapid growth of methods in generic semantic segmentation
for natural images and daily photos [Hu et al., 2020; Chen
et al., 2018; Zhu et al., 2021]. Earlier semantic segmenta-
tion models for generic images was mainly based on the fully
convolutional networks (FCN) [Long et al., 2015] and re-
cent ones followed the design of Transformer network. FCN-
based methods usually relied on large receptive field and fine-

grained deep features, such as DeepLab [Chen et al., 2017;
Chen et al., 2018], DANet [Fu et al., 2019], OCRNet [Yuan et
al., 2020a]. While Transformer-based networks viewed seg-
mentation as a Sequence-to-Sequence perspective and have
become a new research hotspot. Representative works in-
cluded SETR [Zheng et al., 2021] and Swin [Liu et al.,
2021]. However, Transformer networks usually took amounts
of memory cost and computation complexity, limiting its de-
velopment on UHR image segmentation. In this paper, we
aim to take advantage of the strong representation ability of
Transformer meanwhile decrease its memory cost for UHR
segmentation. In addition, knowledge distillation methods
[Ji et al., 2022] have also been applied to make the network
lightweight.

2.2 Ultra-High Resolution Image Segmentation
Benefited from the advancement of photography and sensor
technologies, the accessibility and analysis of ultra-high res-
olution geospatial images has opened new horizons for the
computer vision community, playing an increasingly impor-
tant role in a wide range of geosciences and urban construc-
tion applications, including but not limited to disaster control,
environmental monitoring, land resource protection and ur-
ban planning [Ji et al., 2023]. According to [Ascher and Pin-
cus, 2007; Chen et al., 2019], an image with at least 4.1×106

pixels can reach the minimum bar of ultra-high definition me-
dia, usually deriving from a wide range of scientific applica-
tions, for example, geospatial and histopathological images.
For ultra-high resolution image segmentation, CascadePSP
[Cheng et al., 2020] proposed to improve the coarse segmen-
tation results with a pretrained model to generate high-quality
results. GLNet [Chen et al., 2019] incorporated both global
and local information deeply in a two-stream branch manner.
FCtL [Li et al., 2021] exploited a squeeze-and-split structure
to fuse multi-scale features information. ISDNet [Guo et al.,
2022] integrated the shallow and deep networks. These exist-
ing works lack of a further in-depth analysis and have obvious
drawbacks analyzed in the Introduction section. WSDNet [Ji
et al., 2023] was proposed as an efficient and effective frame-
work for UHR segmentation especially with ultra-rich con-
text.

3 Method
In this section, we introduce the proposed Guided Patch-
Grouping Wavelet Transformer (GPWFormer) in detail.
Firstly, we introduce the overall structure. Subsequently, we
illustrate the Guided Patch-Grouping strategy and Wavelet
Transformer respectively. Next the details of spatial congru-
ence are explained.

3.1 Overview
Figure 1 shows the overall framework of the proposed GPW-
Former, which consists of dual branches. The upper branch is
a lightweight Transformer network taking the original UHR
image as input to harvest both local structured details and
fine-grained long-range spatial dependencies, while the lower
is a deep CNN network taking the downsampled UHR image
as input to learn category-wise deep context. For simplicity,
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Figure 1: The overview of the proposed GPWFormer. Upper: Transformer branch (T ); Lower: CNN branch (C). In each stage of T , the
input UHR image/feature is evenly partitioned into patches and fed into the network all at once. Then, they are grouped guided by a mask
generated from the corresponding features in C. Next, intra-group relations in each group are learned with their respective WFormer heads.
In C, DeeplabV3+ (ResNet18) integrated with pyramid wavelets is employed, taking downsampled UHR image with wavelet transform as
input to capture deep category-wise context (“ResNet-S1” means the first stage of ResNet and so on). After each stage of T , we maintain the
inter-patch relation consistency with a congruence constraint by C. Finally, the outputs of T and C are fused and supervised with a focal loss.

we denote the two branches as T and C respectively. In C, any
classical generic segmentation architecture can be utilized,
here DeepLabV3+ with a lightweight backbone ResNet18 is
employed. Besides, in order to further reduce its computation
complexity, we integrate each stage of ResNet18 with dis-
crete wavelet transform (DWT) to reduce the dimension of
intermediate features, followed by the Atrous Spatial Pyra-
mid Pooling (ASPP) module and inverse wavelet transform
(IWT).

In T , the input UHR image is firstly evenly partition into
local patches. Different from existing global-local frame-
works that take into patches sequentially, all the patches are
fed into T at once in our framework, which can greatly ac-
celerate the inference process. In order to decrease the mem-
ory cost in this situation, we divide these patches into mul-
tiple groups, then intra-group relations for each group are
learned with a corresponding shallow Wavelet Transformer
(WFormer) head respectively, which is proposed for more ef-
fective and efficient learning. The relations consist of both
local structured relations and long-range dependencies, since
both spatially adjacent and nonadjacent patches can be as-
signed to a same group. Meanwhile all the low-level pixel-
wise details are also captured during the process. Multiple
stages can be stacked in a pyramid way for fully characteriza-
tion, and the stage number is set to 2 here for higher inference
speed, which can also be set to a flexible number according to
the practical needs. The number of groups among stages are
set in a pyramid manner to obtain representations of different
granularity. It is worthy noted that the corresponding features
from C are employed to guide the patch-grouping, providing a
heuristics decision. Moreover, after the learning of each stage
in T , we also add a congruence constraint to the inter-patch
relations by the corresponding stage of C to maintain the spa-
tial consistency. Finally the output of T and C are fused and

supervised with a focal loss.

3.2 Guided Patch-Grouping
In each stage of T , we produce a guidance for patch-grouping
from the corresponding feature from C, as shown in Figure
1, and the first stage is taken as example for the following
illustration. Given the UHR input I ∈ RHI×WI in T , we
evenly partition it into m×n patches, which are then divided
into G groups for the subsequent WFormer heads. Let h,w
denote the height and width of each patch respectively. Our
aim is to produce a guidance mask M ∈ Rm×n from the C,
Mi,j ∈ [1, G] denotes the group index of patch (i, j), where
(i ∈ [1,m], j ∈ [1, n]).

Concretely, we employ the low-frequency subband FLL ∈
RC1×H1×W1 of wavelet transform for the feature after
ResNet-S1 in C to produce M , since low-frequency subband
is able to preserve more spatial details. C1, H1, and W1 de-
note the channel, height, width of FLL respectively. Firstly,
channel of FLL is decreased to G with an intuitive PCA
method instead of a typical convolution operator, so that the
whole mask-producing process is not necessary to be learn-
able, thereby reducing the amount of calculation, while avoid-
ing the design of complex forward propagation and gradient
backward processes. Next following the same partition oper-
ations for I in T , we apply a patch-wise average pooling to
FLL, resulting in the mask feature FM ∈ RG×m×n. For-
mally, the process of patch-wise average pooling is denoted
as,

FM
i,j = GAP (FLL

{i×h1 : (i+1)×h1, j×w1 : (j+1)×w1})

h1 = H1/m,w1 = W1/n, i ∈ [1,m], j ∈ [1, n],
(1)

where GAP (·) denotes global average pooling. The above
process can also be viewed as an average pooling with
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Figure 2: The details of WFormer.

row stride = h1 and column stride = w1. Then we ap-
ply a softmax function to FM , generate the score mask
S ∈ RG×m×n, and argmax S along the last two dimension to
generate the mask M ,

M = argmax
m,n

(S). (2)

Noted that M may not divide the groups evenly, that is,
not all groups may have equal number of patches, and some
groups may have more than m×n

G patches, thus we sort the
patches in descending order of scores in these groups re-
spectively, then re-distribute their last extra patches to other
groups based on scores.

3.3 Wavelet Transformer
In our framework, the input to each Transformer head is a
group of patch features. Taking any group in first stage of T
as example for illustration, let {Fu ∈ Rh×w×C} denote the
set of input patch features in the group, where u is patch in-
dex. Following the design of [Yao et al., 2022], we introduce
the Wavelet Transformer to make the network lightweight.
For each Fu, we first reduce its channel to C/4 with a convo-
lution layer, then 2D DWT is utilized to decompose its four
wavelet subbands {FLL

u , FLH
u , FLL

u , FLL
u } with four filters

fLL, fLH , fHL, fHH . The dimension of both the subbands
is Rh

2 ×
w
2 ×C

4 . FLL
u is the low-frequency subbands while the

others are high-frequency ones, next the four subbands are
concatenated to F̆u ∈ Rh

2 ×
w
2 ×C . By this way, the dimen-

sion of all patch features are reduced so that the computa-
tion complexity is squarely decreased. Noted that despite the
downsampling operation is deployed, due to the biorthogonal
property of DWT, the original feature can be accurately re-
constructed by the inverse wavelet transform (IWT) in sub-
sequent steps. Finally, {F̆u} is projected into a sequence
F̆ ∈ RL×C and embedded spatial information as previous
general Transformer networks [Zheng et al., 2021], and for-
mulated as input to corresponding Transformer head.

As shown in Figure 2, following the general design of
Transformer for segmentation, WFormer also contains an en-
coder and a decoder, where encoder consists of Le layers of
multi-head self-attention (MSA) and MLP blocks. The input
to self-attention of each layer l is in a triplet of (Q,K, V ), cal-
culated by the current input Y l−1 ∈ RL×C (the input for the
first layer is F̆ ), with three learn-able linear projection layers
WQ,WK ,WV ∈ RC×d (d is the dimension), as:

Q = Y l−1WQ,K = Y l−1WK , V = Y l−1WV . (3)

Noted that the computational complexity of ordinary Self-
Attention (SA) grows quadratically with dimensions, so we
further apply the similar procedure of wavelet transform to
K and V to decrease the size, denoted as K̆ and V̆ , by
which we propose the Wavelet-SA (WSA) and Wavelet-MSA
(WMSA), formulated as:

WSA(Y l−1) = Y l−1 + softmax(
QK̆⊤
√
d

)(V̆ ), (4)

WMSA(Y l−1) = [SA1(Y
l−1), SA2(Y

l−1), ..., SAm(Y l−1)]WO,
(5)

where m is number of WSA operations in WMSA, WO is
the transformation matrix. Then IWT is utilized to restore the
same dimension of output as the input. In the light of basic
theory of DWT and IWT, WFormer is able to harvest stronger
both local details and spatial long-range dependencies with-
out loss of essential information, compared to Transformer
with traditional pooling operations.

3.4 Spatial Consistency Congruence
With multiple Transformer heads, the patches of input feature
are learned in groups, which affects the translation-invariant
and results in the spatial in-consistency among the patches.
Since C learns the input image globally and is able to preserve
the overall spatial consistency, we propose to utilize congru-
ence constraints from C to each stage of T , to maintain the
spatial congruence of inter-patch relations in T .

Considering the stage s in T , given the patch features set
{P Ts

k } (k ∈ [1,ms × ns]) after WFormer heads, where
ms × ns is the number of patches in stage s of T (denoted
as Ts), we first calculate their inter-patch relations CT

s , which
defines as the sum of relations between any two patch centers.
The center of a patch is defined as the average of its all pixel
features. To capture the high-order relations in an efficient
manner, inspired by the theory of SVM [Han et al., 2012],
we employ the metric with Gaussian Radial Based Function
(RBF) kernel to calculate the inter-patch relations. Therefore
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CT
s can be formulated as,

CT
s =

ms×ns∑
k1=1

ms×ns∑
k2=1

R(A(P Ts

k1
), A(P Ts

k2
)), (6)

where R(·), A(·) are the RBF kernel and Average function
respectively. To simplify the calculation, we replace the RBF
calculation with its sum of T -order Taylor series,

R(A(P Ts

k1
),A(P Ts

k2
)) = e−θ·||A(PTs

k1
)−A(PTs

k2
)||2

=
T∑

t=0

(2θ)t

t!
(A(P Ts

k1
) ·A(P Ts

k2
)⊤)te−2θ,

(7)

where θ is temperature parameter, ⊤ is matrix transposition
operator.

Similarly, given the feature in corresponding stage of C, we
partition it as the same style of {P Ts

k }, and calculate its inter-
patch relations CC

s , so the spatial consistency constraint can
be formulated,

C =
∑
s

1

ms × ns
||CC

s − CT
s ||22, (8)

which is implemented as a loss cooperating with the main
focal loss.

So the overall loss L is a weighted combination of a main
focal loss and the above spatial consistency constraint,

L = Lfocal + αC, (9)

where α is the loss weight and set to 0.8.

4 Experiments
4.1 Datasets and Evaluation Metrics
In order to validate the effectiveness of our proposed method
in a wide perspective, we perform experiments on five
datasets, including DeepGlobe, Inria Aerial, Cityscapes, ISIC
and CRAG.

DeepGlobe
The DeepGlobe dataset [Demir et al., 2018] have 803 UHR
images, with 455/207/142 images for training, validation and
testing. Each image contains 2448 × 2448 pixels and the
dense annotation contains seven classes of landscape regions.

Inria Aerial
The Inria Aerial Challenge dataset [Maggiori et al., 2017]
has 180 UHR images captured from five cities. Each image
contains 5000 × 5000 pixels and is annotated with a binary
mask for building/non-building areas, with 126/27/27 images
for training, validation and testing.

CityScapes
The Cityscapes dataset [Cordts et al., 2016] has 5,000 im-
ages of 19 semantic classes, with 2,979/500/1,525 images for
training, validation and testing.

ISIC
The ISIC Lesion Boundary Segmentation Challenge dataset
[Tschandl et al., 2018] contains 2596 UHR images, with
2077/260/259 images for training, validation and testing.

CNN Trans
former P.G. Wave. Cong. mIoU

(%)
Mem
(M)

✓ 62.7 -
✓ ✓ ✓ ✓ 73.6 -

✓ ✓ ✓ ✓ ✓ 75.8 2380
✓ ✓ ✓ ✓ 74.5 2380
✓ ✓ ✓ ✓ 75.9 3370
✓ ✓ ✓ 76.1 6090

Table 1: Effectiveness of each component in GPWFormer. “P.G.,
Wave., Cong.” indicate Patch-Grouping, Wavelet Transform, and
Spatial Congruence, respectively.

Grouping
Strategy

Linear
(row)

Linear
(column) Rectangle Guided

mIoU 74.1 74.0 74.8 75.8

Table 2: Comparisons of patch-grouping strategy.

CRAG
CRAG [Graham et al., 2019] dataset includes two classes and
exhibits different differentiated glandular morphology, with
173/40 images for training/testing. Their average size is 1512
× 1516.

Evaluation Metrics
In all experiments, we adopt the mIoU, F1 score, Accuracy
and memory cost to study the effectiveness.

4.2 Implementation Details
We use the MMSegmentation codebase [MMSegmentation,
2022] following the default augmentations without bells and
whistles, and train on a server with Tesla V100 GPUs with
batch size 8. During the image cropping of Transformer
branch, the size of patches are 500×500 pixels and neighbor-
ing patches have 120 × 580 pixels overlap region in order to
avoid boundary vanishing. The input image of CNN branch
is also downsampled to size 500 × 500 to trade-off perfor-
mance and efficiency. We employ three layers in WFormer
encoder and pre-train the Transformer on the Imagenet-1K
dataset. During training, Focal loss [Lin et al., 2017] with
λ = 2 is used to supervise training, and Adam [Kingma and
Ba, 2014] optimizer is used in the optimization process. We
set the initial learning rate to 5 × 10−5, and it is decayed
by a poly learning rate policy where the initial learning rate
is multiplied by (1 − iter

total iter )
0.9 after each iteration. The

maximum iteration number set to 40k, 80k, 160k and 80k for
Inria Aerial, DeepGlobe, Cityscapes and ISIC respectively.
We use the command line tool “gpustat” to measure the GPU
memory, with the mini-batch size of 1 and avoid calculating
any gradients.

4.3 Ablation Study
In this section, we delve into the modules and settings of our
proposed model and demonstrate their effectiveness. All the
ablation studies are performed on DeepGlobe test set.
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Metric Mean Inner-Dot RBF
order-1

RBF
order-2

RBF
order-3

mIoU 74.7 74.7 75.0 75.5 75.8

Table 3: The impact of spatial congruence.

Method Average
Pooling

Transposed
Convolution

Wavelet
Transform

mIoU 74.8 75.0 75.8
Mem 2219 2701 2380

Table 4: Comparisons of downsampling methods.

Effectiveness of GPWFormer
We conduct experiments to verify the effectiveness of dif-
ferent components in GPWFormer, as shown in Table 1.
Firstly, only CNN branch or Transformer branch will lead to
lightweight memory cost but lower performance, indicating
the effectiveness of the hybrid CNN-Transformer architec-
ture. Then dual-branch with all components achieves impres-
sive and balanced results. Removing “Spatial Congruence”
module leads to a lower mIoU since the spatial consistency
among groups is mismatched, while memory cost is steady
as this module is only used in training. Using an ordinary
Transformer without wavelets has a less memory, showing
that WFormer is able to improve the efficiency while main-
taining a comparable performance. Applying WFormer on
the whole image results in better performance while severely
degraded inference speed, proving that patch-grouping strat-
egy indeed decreases the computation complexity.

Comparisons of Patch-Grouping Strategies
We show the superiority of the proposed guided patch-
grouping strategy in Table 3, and several other strategies are
also utilized for comparison. “Linear (row)” and “Linear
(column)” mean grouping the patches in order of rows and
columns respectively, and “Rectangle” means in the order of
rectangular boxes. Experiments show that guided grouping
shows best performance, proving that CNN branch indeed
provides an effective guidance for patch grouping of Trans-
former branch.

Comparisons of Downsampling Methods in WFormer
We show the comparison of self-attention block with dif-
ferent downsampling methods in Table 4. Classical self-
attention with ordinary average pooling or transposed convo-
lution shows much lower performance, since both of them are
irreversible and lose much information during the downsam-
pling operations, while wavelet transform is invertible thus
all the information can be persevered. A self-attention block
with transposed convolution achieves a high mIoU than with
average pooling, but also introducing extra memory cost.

The Impact of Settings in Spatial Congruence
The comparison of different congruence methods is shown in
Table 3. Here besides the Gaussian RBF kernel, we also im-
plement some other metrics, including “Mean” and “Inner-
Dot”. The former indicates calculating inter-patch relation of

Generic Model mIoU
(%)↑

F1
(%)↑

Acc
(%)↑

Mem
(M)↓

Local Inference
U-Net 37.3 - - 949
DeepLabv3+ 63.1 - - 1279
FCN-8s 71.8 82.6 87.6 1963

Global Inference
U-Net 38.4 - - 5507
ICNet 40.2 - - 2557
PSPNet 56.6 - - 6289
DeepLabv3+ 63.5 - - 3199
FCN-8s 68.8 79.8 86.2 5227
BiseNetV1 53.0 - - 1801
DANet 53.8 - - 6812
STDC 70.3 - - 2580
UHR Model
CascadePSP 68.5 79.7 85.6 3236
PPN 71.9 - - 1193
PointRend 71.8 - - 1593
MagNet 72.9 - - 1559
MagNet-Fast 71.8 - - 1559
GLNet 71.6 83.2 88.0 1865
ISDNet 73.3 84.0 88.7 1948
FCtL 73.5 83.8 88.3 3167
WSDNet 74.1 85.2 89.1 1876
GPWFormer (Ours) 75.8 85.4 89.9 2380

Table 5: Comparison with state-of-the-arts on DeepGlobe test set.

two patches as distance between their mean feature, while the
latter as the Inner-Product. Experiments shown that Gaussian
RBF is more flexible and powerful in capturing the complex
non-linear relationship between high-dimensional patch fea-
tures.

4.4 Comparison with State-of-the-Arts
In this section, we compare the proposed framework with
existing state-of-the-art methods, including U-Net [Ron-
neberger et al., 2015], ICNet [Zhao et al., 2018], PPN [Wu
et al., 2020], PSPNet [Zhao et al., 2017], SegNet [Badri-
narayanan et al., 2017], DeepLabv3+ [Chen et al., 2018],
FCN-8s [Long et al., 2015], CascadePSP [Cheng et al.,
2020], BiseNet [Yu et al., 2018], PointRend [Kirillov et al.,
2020], DenseCRF [Krähenbühl and Koltun, 2011], DGF [Wu
et al., 2018], DANet [Fu et al., 2019], SegFix [Yuan et al.,
2020b], MagNet [Huynh et al., 2021], STDC [Fan et al.,
2021], GLNet [Chen et al., 2019], FCtL [Li et al., 2021],
ISDNet [Guo et al., 2022] and WSDNet [Ji et al., 2023],
on DeepGlobe, Inria Aerial, Cityscapes, ISIC and CRAG
datasets, in terms of mIOU (%), F1 (%), Accuracy (%), Mem-
ory Cost (M).

Some of these methods are specially designed for UHR im-
ages (denoted as “UHR Model”) and the others are not (de-
noted as “Generic Model”). We show the results of “Generic
Model” on both “Global Inference” and “Local Inference”.
The former obtains the prediction with downsampled global
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Generic Model mIoU
(%)↑

F1
(%)↑

Acc
(%)↑

Mem
(M)↓

DeepLabv3+ 55.9 - - 5122
FCN-8s 69.1 81.7 93.6 2447
STDC 72.4 - - 7410
UHR Model
CascadePSP 69.4 81.8 93.2 3236
GLNet 71.2 - - 2663
ISDNet 74.2 84.9 95.6 4680
FCtL 73.7 84.1 94.6 4332
WSDNet 75.2 86.0 96.0 4379
GPWFormer (Ours) 76.5 86.2 96.7 4710

Table 6: Comparison with state-of-the-arts on Inria Aerial test set.

Generic Model mIoU (%)↑ Mem (M)↓
BiseNetV1 74.4 2147
BiseNetV2 75.8 1602
PSPNet 74.9 1584
DeepLabv3 76.7 1468
UHR Model
DenseCRF 62.9 1575
DGF 63.3 1727
SegFix 65.8 2033
MagNet 67.6 2007
MagNet-Fast 66.9 2007
ISDNet 76.0 1510
GPWFormer (Ours) 78.1 1897

Table 7: Comparison with state-of-the-arts on Cityscapes test set.

image, and the latter obtains the prediction with local cropped
patches sequentially and then merges their results by post-
processing.

DeepGlobe
As shown in Table 5, we first compare GPWFormer with
above-mentioned methods on DeepGlobe test dataset. Due to
the diversity of land cover types and the high density of an-
notations, this dataset is very challenging. The experiments
show that GPWFormer outperforms all other methods on both
mIoU, F1 and Accuracy. Specifically, we outperform GLNet,
ISDNet and FCtL by large margins on mIoU respectively,
directly showing the segmentation effectiveness and perfor-
mance improvement. Besides, the categories in the dataset
are often seriously unbalanced distributed, so we exploit
the F1 score and Accuracy metrics to reflect the improve-
ments and experiment results show the proposed method also
achieves the highest scores among all the models. With
such impressive performance, our methods is economic in the
memory cost, attaining an excellent balance among accuracy
and memory cost.

Inria Aerial
We also show the comparisons on Inria Aerial test dataset in
Table 6. This dataset is more challenging, since the number

Method
ISIC CRAG

mIoU (%) mIoU (%)

PSPNet 77.0 88.6
DeepLabV3+ 70.5 88.9
DANet 51.4 82.3
GLNet 75.2 85.9
GPWFormer (Ours) 80.7 89.9

Table 8: Comparison with state-of-the-arts on CRAG and ISIC test
set.

of pixels for each image reaches 25 million, which is around
four times than DeepGlobe, and the foreground regions are
also finer. Experiment results show that GPWFormer outper-
forms GLNet, ISDNet and FCtL by large margins again on
mIOU respectively, with comparable memory cost.

Cityscapes
To further validate the generality of our method, we also show
the results on Cityscapes dataset, as shown in Table 7. GPW-
Former also outperforms all other methods on mIoU, with a
bright results on memory cost.

ISIC and CRAG
The image resolution of ISIC is comparable to Inria Aerial,
and CRAG is of lower image resolution than other datasets.
Table 8 shows the experimental results. GPWFormer once
achieves excellent performances.

5 Conclusion
In this paper, we focus on the ultra-high resolution image
segmentation and develop a novel Guided Patch-Grouping
Wavelet Transformer network. We firstly analyze the limita-
tions of existing state-of-the-art methods, and the unique dif-
ficulties of ultra-high resolution image segmentation. With
CNN-Transformer dual-branch, we propose the Wavelet
Transformer with a Guided Patch-Grouping strategy to learn
local details and long-range spatial dependencies simulta-
neously, while the CNN branch takes the downsampled in-
put UHR image with wavelet transform to capture deep
category-wise context. Moreover, the congruence constraint
is also introduced to maintain the spatial consistency from
CNN branch to Transformer branch. Our proposed frame-
work achieves new state-of-the-art results on five benchmark
datasets.
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