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Abstract
Optical flow estimation have shown significant im-
provements with advances in deep neural networks.
However, these flow networks have recently been
shown to be vulnerable to patch-based adversarial
attacks, which poses security risks in real-world ap-
plications, such as self-driving cars and robotics.
We propose SADL, a Spatially constrained adver-
sarial Attack Detection and Localization frame-
work, to detect and localize these patch-based at-
tack without requiring a dedicated training. The
detection of an attacked input sequence is per-
formed via iterative optimization on the features
from the inner layers of flow networks, without any
prior knowledge of the attacks. The novel spatially
constrained optimization ensures that the detected
anomalous subset of features comes from a local
region. To this end, SADL provides a subset of
nodes within a spatial neighborhood that contribute
more to the detection, which will be utilized to lo-
calize the attack in the input sequence. The pro-
posed SADL is validated across multiple datasets
and flow networks. With patch attacks 4.8% of
the size of the input image resolution on RAFT,
our method successfully detects and localizes them
with an average precision of 0.946 and 0.951 for
KITTI-2015 and MPI-Sintel datasets, respectively.
The results show that SADL consistently achieves
higher detection rates than existing methods and
provides new localization capabilities.

1 Introduction
Motion estimation is a key problem in computer vision. Mo-
tion in video is often represented in the form of dense op-
tical flow fields, which specify the motion of each pixel
from one frame to the next. It has diverse application ar-
eas, such as tracking [Shi and Tomasi, 1994], action recog-
nition [Diba et al., 2017], 3D reconstruction [Agarwal et al.,
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Figure 1: Effect of 153 × 153 patch attacks on flow estimations
from FlowNetC (top) and RAFT (bottom) using KITTI 2015 and
MPI-Sintel datasets.

2009], video interpolation [Kim et al., 2022b], and video
compression [Le Gall, 1991].

With the emergence of deep learning techniques and avail-
ability of large scale datasets, optical flow estimation perfor-
mance has been significantly improved [Dosovitskiy et al.,
2015; Ilg et al., 2017; Sun et al., 2018; Teed and Deng, 2020]
across existing benchmarks [Butler et al., 2012; Menze and
Geiger, 2015]. However, recent work [Ranjan et al., 2019;
Schrodi et al., 2021; Schrodi et al., 2022] demonstrated that
these networks are also vulnerable to adversarial attacks just
as any other deep learning approaches [Papernot et al., 2017;
Akhtar and Mian, 2018; Akinwande et al., 2020; Kim et al.,
2022a], thereby raising security issues, e.g., in self-driving
cars. These attacks on flow estimators come in the form of
patches that are pasted onto the input image frames at the
same pixel coordinates. This is motivated by cases where
something gets stuck on the video camera (see Figure 1).
These patch-based attacks cause occlusions on areas where
the attack is placed, and motion boundaries along the bound-
aries of the attack, which is where current flow estimators
suffer [Kim et al., 2021; Yu et al., 2022].

Schrodi et al. [2019] is the first work to tackle optical flow
estimators with adversarial patches that are optimized so that
the direction of the original flow estimations are shifted to-
wards the opposite direction. They continue this work to
show that the location these adversarial patches are applied on
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the input images is important [Schrodi et al., 2021; Schrodi
et al., 2022]. Figure 1 shows the effect of these patch attacks
on two flow estimators, FlowNetC [Dosovitskiy et al., 2015]
(top) and RAFT [Teed and Deng, 2020] (bottom), the current
state of the art on flow estimation. While RAFT is more ro-
bust to these attacks than FlowNetC, these attacks still disrupt
the flow estimations nearby these attacks, e.g. estimations on
moving white car and on arm and face. Schrodi et al. [2021;
2022] further explain that the vulnerability of flow estimators
comes from the attacks’ self-similar patterns. However, there
is no existing work, to the best of the authors’ knowledge,
that was proposed to detect, localize, and characterize these
potential attacks.

We present a Spatially constrained adversarial Attack De-
tection and Localization (SADL) framework that aims to de-
tect and localize patch-based attacks given any pre-trained
flow estimators in an unsupervised fashion without prior
knowledge about these attacks. Specifically, we propose ana-
lyzing the inner layers’ activations with a local-neighborhood
constraint across the spatial dimension.

The main contributions of this paper are:
• First to detect and localize patch-based adversarial at-

tacks for optical flow networks based on spatially con-
strained subset scanning on the inner layer activations,
without any training of a dedicated model nor prior
knowledge of the patch-based attacks.

• Analysis of the effect of the attacks across various inner
layers of the flow networks.

• Validate our method across several state-of-the-art opti-
cal flow networks and datasets.

2 Related Work
In this Section, we reviewed the related work on flow net-
works, adversarial attacks on flow networks, and subset scan-
ning techniques from anomalous pattern detection literature.
Flow networks Recent methods [Sun et al., 2018; Xu et
al., 2017; Dosovitskiy et al., 2015; Teed and Deng, 2020]
on optical flow estimation employed deep learning to achieve
promising results with a faster inference speed. Starting with
Chen and Koltun [2016], these deep learning approaches used
cost volumes [Rhemann et al., 2013], which comprised of
feature correspondence scores between frames to compute
optical flow. PWCNet [Sun et al., 2018] built the cost vol-
umes at multiple scales, and FlowNet [Dosovitskiy et al.,
2015] included the full cost volume at a single scale. Ilg
et al. [2017] proposed FlowNet2 by stacking four FlowNet-
based models. Teed and Deng [2020] achieved state-of-the-
art performance with RAFT using a four-dimensional cost
volumes for all pairs of pixels on the input images.
Adversarial attacks in optical flow neural networks Ran-
jan et al. [2019] is the first work to apply adversarial attacks
on optical flow models, by pasting an p× p adversarial patch
onto the input image frames I1, I2 at the same location. This
adversarial patch can be obtained using any pre-trained flow
network by minimizing the cosine similarity between the es-
timated flow maps before f̂ = (u, v) and after the attack
f̃ = (ũ, ṽ), i.e., f̂ · f̃/||̂f ||||̃f ||. This work was later extended

by Schrodi et al. [2021] to show that patch-based attacks trig-
ger matching ambiguities in the correlation output, which are
successively spread in the decoder into a wider neighborhood.
In their subsequent work, Schrodi et al. [2022] demonstrated
the importance of the spatial location that these adversarial
patches applied on the input image frames. Large flow re-
gions, e.g., fast-moving objects, are susceptible to a severe
deterioration of flow estimations. Yamanaka et al. [2021]
used patch-based adversarial attacks to simultaneously attack
two CNNs developed for optical flow and monocular depth
estimation. Wortman [2021] showed that these patch attacks
for optical flow estimation can be hidden by adjusting their
alpha values while still affecting the flow estimations. Global
noise-based attacks were recently reported [Schrodi et al.,
2022; Schmalfuss et al., 2022]. Schrodi et al. showed that
optical flow networks are robust to white-box global noise-
based attacks, and Schmalfuss et al. [2022] proposed pertur-
bation constrained flow attack. Unlike the existing works, we
focus on detecting the patch-based attacks in an unsupervised
fashion without requiring any prior knowledge of the attacks.
Our work further localizes these patch attacks in the input im-
ages, finding the origin of the attack, which can be useful in
future mitigation efforts. To the best of the author’s knowl-
edge, we are the first work to detect or localize adversarial
attacks on optical flow estimators.
Subset Scanning for Anomalous Pattern Detection in Neu-
ral Networks Subset scanning has been used to detect
anomalous samples in various computer vision and audio
tasks, including creativity sample characterization [Cintas et
al., 2022], audio adversarial attacks [Akinwande et al., 2020]
and skin condition classification [Kim et al., 2022a]. To
detect anomalous samples, subset scanning searches for the
“most anomalous” subset of node activations from the inner
layers of the given test sample on any pre-trained networks,
and uses these subset of nodes to obtain the anomalousness
score of the test sample.

While existing works employed subset scanning to detect
adversarial attacks, we are the first to use it to detect patch-
based attacks as opposed to global noise-based attacks, on se-
quential images across temporal dimension, and on networks
for regression instead of classification task. Since patch at-
tacks in flow estimation occur in a local region, we propose
to apply spatial constraints to the scanning step to improve
the detection and localization of the attacks.

3 Proposed Approach: Spatially Constrained
Subset Scanning

Given node activations of an inner-layer, L, of a pre-trained
optical flow network Θ, we aim to detect a subset of test sam-
ples with adversarial attacks and localize these attacks. To
this end, we propose SADL: Spatially constrained Adversar-
ial attack Detection and Localization framework (see Fig. 2)
to be applied on any pre-trained flow estimators, in an unsu-
pervised fashion without any prior knowledge of the attacks.

3.1 Overview
Figure 2 illustrates an overview of our proposed method. We
extract the node-level activations across a given inner-layer
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Figure 2: Overview of our spatially constrained subset scanning method for adversarial patch-attack detection and localization.

of the flow network for a pair of input images. We compare
this observed activation against an empirical distribution of
expected activations extracted from clean (un-attacked) im-
ages at that same node. This node-level comparison provides
a p-value for each node’s observed activation. If the test im-
age pair has the same representation as un-attacked images in
this flow network layer, then these observed p-values across
nodes should appear uniformly distributed. However, if an ad-
versarial attack systematically increases the activations, then
the observed p-values would appear non-uniform.

Our scoring function, to quantify the deviation of the ob-
servation from the expectation, is a non-parametric goodness-
of-fit statistic which measures the Kullback–Leibler diver-
gence between the observed distribution of p-values and the
expected, uniform distribution [Berk and Jones, 1979]. A
high-scoring image pair suggests it has a different inner-layer
representation than the clean, un-attacked images. Critically,
this scoring function satisfies the Linear-time subset scan-
ning (LTSS) property [Neill, 2012; McFowland et al., 2013]
which allows for exact, efficient maximization over subsets
of nodes. However, un-constrained maximization across all
subsets of nodes may lead to high scores even when a test
pair of images is not attacked (false positive due to match-
ing to noise). Therefore, SADL implements channel con-
straints and proximity constraints which result in higher de-
tection power and accuracy for localized patch attacks. The
end result of SADL is a high-scoring subset of node activa-
tions in a local, spatial neighborhood and subset of channels.
The score is used for detection power calculations, while the
subset of spatial nodes is used for detection accuracy. Details
on the constrained optimization process are provided below.

3.2 p-value Computation

Let DH0
be a dataset of M background images that have

not been attacked. Feeding the background image pairs into
Θ, we can extract M background activations AH0

j from each
node Oj ∈ L. Given a test sample I ̸∈ DH0

, we extract the
activation aj at node Oj in L. We can compute the p-value of
the activation aj of this test sample by computing the propor-

tion of activations in AH0
j that are greater than aj :

pj =

∑
M [AH0

j ≥ aj ] + 1

M + 1
, (1)

where [·] is the indicator function.

3.3 Spatial Alignment
The inner layer under consideration, L, has spatial dimen-
sions w (width), h (height) and channels c. In order to prop-
erly incorporate spatial information across channels, we make
the alignment assumption that if spatial location w′ × h′ is to
be evaluated, then activations (p-values) from all channels un-
der consideration also located at w′ and h′ must be scored as
well. This intuitive assumption is visualized at the top of Fig-
ure 2. Although spatial alignment is always enforced, SADL
does not require all channels to be included in the returned
subset. This extension is covered in the Spatial-Channel Op-
timization section below.

3.4 Non-parametric Scan Statistics
Given a tensor of p-values, P , computed with Eq. 1 and with
the same w×h×c dimensions as the inner layerL, our goal is
to find the subset of nodes, aligned at spatial locations, such
that the corresponding p-values of these node activations is
the most non-uniform. We quantify divergence away from
the uniform distribution using a non-parametric scan statistic
(NPSS), such as Berk-Jones [Berk and Jones, 1979], with a
general form:

F (S) = max
α

ϕ(α,Nα(S), N(S)) , (2)

where S is the subset p-values (nodes) under consideration,
N(S) is the number of p-values in S, Nα(S) is the number of
significant p-values less than a threshold α (OptimizeNPSS).
NPSS is preferred as we make minimal assumptions on how
the activations at a given node are distributed.

Without spatial alignment enforced, NPSS can be trivially
maximized by creating a subset consisting of all-and-only p-
values that are less than α. However, this naive maximization
would likely violate the spatial alignment requirement by not
necessarily including all p-values from the same spatial lo-
cation. Enforcing spatial alignment makes this maximization
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Algorithm 1: Scanning over p-values P to find the
highest-scoring subset of features within a k × k spa-
tial neighborhood and for some subset of channels.

input : P ∈ [0, 1]w×h×c

output: Fmax, rmax, cmax

1 Fmax ← −1 ;
2 for hk in H = LinearSpace(0, h, k) do
3 for wk in W = LinearSpace(0, w, k) do
4 Pk ∈ [0, 1]kk×c ←

FlattenSpatial(P [hk : hk + k,wk :
wk + k, :]);

5 rk ← RandomlySelectRows(Pk) ;
6 ck ← RandomlySelectRows(PT

k ) ;
7 F ← −1 ;
8 while F is increasing do
9 F , rk ← OptimizeNPSS(Pk[:, ck]) ;

10 F , ck ← OptimizeNPSS(Pk[rk, :]T) ;
11 if Fmax < F then
12 Fmax, rmax, cmax ← F, rk, ck ;

13 return Fmax, rmax, cmax

more difficult because some not-significant p-values may be
included in the highest-scoring spatially aligned subset, and
some significant p-values may be excluded.

To this end, we employ the Linear-time Subset Scanning
(LTSS) property of the Berk-Jones scan statistic [Neill, 2012;
McFowland et al., 2013]. Returning to the dimensions of
the tensor, P , each of the wh spatial locations contains up
to c p-values. There are 2wh − 1 possible subsets of spa-
tial locations to consider with each location contributing c p-
values to the scoring function. The LTSS property reduces
this search space from exponential, O(2wh) to linear O(wh)
while still guaranteeing exactness [Neill, 2012]. To do this,
each spatial location is sorted by a priority function, Nα

c . A
spatial location with a priority of 1 means every one of the
p-values at that location across the c channels is significant
at level α. A priority value of 0.5 means only half of the p-
values at that spatial location are less than α. Once the wh
locations are sorted by this priority, the LTSS property states
that the highest-scoring subset is guaranteed to be one of the
linearly-many subsets created by incrementally including the
c p-values of the next-highest priority location. Critically,
the LTSS property turns the Berk-Jones from a metric that
measures divergence into an objective scoring function that
can be efficiently maximized over exponentially-many sub-
sets. SADL, in its base form, searches over the exponentially
many subsets of spatial locations, Ψ, to find spatially-aligned
subset of p-values, S∗, with the highest score, F ∗:

F ∗ = F (S∗) = maxS∈ΨF (S) (3)

where F (S) is a NPSS that satisfies the LTSS property such
as the Berk-Jones scan statistic.

3.5 Spatial-Channel Optimization (SCO)
The base version of SADL optimizes a scoring function over
the 2wh − 1 possible subsets of spatial locations in a tensor

with w×h×c dimensions and is forced to include all c chan-
nels in the returned subset. See the top part of Figure 2 for a
visual example. This forced inclusion of all channels naively
implies that all channels in the inner layer being scanned are
impacted by a patch attack on an optical flow neural network.
The more complicated reality is that only some subset of the
c channels may be affected by the attack. By introducing
Spatial-Channel Optimization features to SADL we are re-
turning a subset of spatial locations rmax crossed with a sub-
set of channels cmax. Without SCO in place, SADL is forced
to return a subset of spatial locations spanning all channels.

Including SCO in the search process can be done through
two additional insights. The first is recognizing that the same
process that maximizes a scoring function over subsets of
spatial locations can also be used to maximize over a subset
of channels. In other words, the LTSS property can be ap-
plied across a different mode of the tensor, P . The second is
using an iterative ascent procedure that optimizes over spatial
locations first, then over channels, and then back to spatial lo-
cations. Each step of the ascent is conditioned on the highest-
scoring subset found so far, and this ascent is guaranteed to
converge to a local maxima such that any change to either
the subset of spatial locations or a subset of channels would
decrease the score [McFowland et al., 2013]. Two random
restarts are used to approach the global maximum.

3.6 Proximity Constraint (PC)
While SCO allows us to find an anomalous subset of node
activations across spatial locations, these detected anomalous
locations may be far apart from each other, spanning the en-
tire frame of the given test image pairs. We want to further
constrain the subset scanning so that the detected anomalous
locations strictly come from a local spatial neighborhood.
Thus, we enforce a proximity constraint where our optimiza-
tion is only applied to the k× k spatial region (yellow region
in Figure 2) within the given h×w×c p-values where k << h
and k << w (see Algorithm 1). This will ensure that the de-
tected subset of anomalous locations only comes from this
k×k spatial neighborhood. We do this for all k×k locations
in the given h × w locations with a stride of s = k/2, and
return the subset of p-values from a k × k neighborhood that
yields the highest NPSS score Fmax.

3.7 Patch Attack Localization
Given the subset of detected p-values from a k× k neighbor-
hood with Fmax, we can easily localize the attack by find-
ing which locations these detected p-values occur in the inner
layer feature map. These detected locations in the feature
maps can be up-sampled, if needed, to match the resolution
of the input images, or vice versa. For instance, if a pixel at
location (10, 10) is detected as anomalous in a feature map of
size 20×20×c under consideration, then SADL predicts 3×3
attack to be in the input images of size 60× 60× 3 centered
at location (30, 30). The localized attacks can be utilized for
attack mitigation, which we leave for future work.

4 Experimental Setup
Flow Networks We validate our approach using four state-
of-the-art flow estimators, namely, FlowNetC [Dosovitskiy
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Network FlowNetC FlowNet2 PWCNet RAFT

Attack Size p 0 153 51 0 153 51 0 153 51 0 153 51

KITTI 2015 11.50 38.85 31.60 10.07 12.24 12.09 12.55 17.01 16.27 5.86 8.85 7.37
MPI-Sintel 3.18 42.45 29.64 2.22 3.10 2.71 3.98 5.37 4.77 1.663 2.85 2.23

Table 1: Effect of adversarial patch attacks as measured by end-point error on four flow estimators for KITTI 2015 and MPI-Sintel. We use
p× p adversarial patches (p ∈ [153, 51]) to attack our test images (p = 0 show original performances without any attacks).

et al., 2015], FlowNet2 [Ilg et al., 2017], PWCNet [Sun et
al., 2018], and RAFT [Teed and Deng, 2020]. When select-
ing inner layers to apply our proposed method, we choose
the first layer in each of the network’s components. Specif-
ically, we select the first layer of the encoder and decoder
module, and their correlation layer. FlowNet2 contains four
FlowNet-based models and a fusion module, and we apply
our proposed subset scanning on the first layer in each of the
components. For PWCNet, we select the first layer from the
encoder, the cost volume layer and the optical flow estima-
tor. Finally, for RAFT, we select the first layer in the feature
encoder and context encoder, and correlation and flow layer
in the iterative update block. For layers that process multiple
features, (e.g. Siamese encoder of RAFT), we concatenate
the features across the channel dimension and apply subset
scanning on the concatenated features.

Datasets Following the literature [Schrodi et al., 2022;
Teed and Deng, 2020], we use KITTI 2015 [Menze and
Geiger, 2015], raw KITTI [Geiger et al., 2013], MPI-
Sintel [Butler et al., 2012], and raw Sintel [Liu et al., 2019]
datasets. KITTI consists of road scene images with sparse
optical flow labels (2015) and without labels (raw). MPI-
Sintel contains 23 sequences from computer-animation short
“Sintel” with flow labels. Its raw frames without labels have
also been used in previous un- or semi-supervised flow esti-
mators [Liu et al., 2019; Yuan et al., 2022; Yuan et al., 2023].

Generating patch-based attacks Following Ranjan et
al. [2019] and Schrodi et al. [2022], we construct patch-based
adversarial attacks on the four flow networks. Table 1 shows
the change in end-point error with and without the adversarial
patch attack. We use patches of four different sizes (p× p) in
respect to the input image resolution, 4.8% (p = 153), 2.1%
(p = 102), 0.5% (p = 51), 0.1% (p = 25). These patches
are trained using KITTI raw and Sintel raw datasets for each
network, and evaluated on the labeled test set of KITTI 2015
and on MPI-Sintel, respectively. As expected, we see worse
performances as we increase the patch attack sizes. In terms
of flow networks, these patch attacks harm the performance
of FlowNetC the most and RAFT the least (see Figure 1).

4.1 Performance Evaluation
We use the labeled data of Sintel and KITTI datasets to eval-
uate the attack detection and localization method. For KITTI
2015 dataset, we use the test split of its data as the training
split has been used in training the existing flow networks. The
test split of KITTI 2015 consists of 200 image pairs, and we
use 100 of these image pairs as background image pairs (IH0

1

and IH0
2 ) to obtain our expected distribution of activation, the

other 100 sample pairs as our test images (It1 and It2), where
50 are non-attacked clean image pairs and the other 50 are
anomalous image pairs with the patch attacks. Similarly, for
Sintel dataset, we randomly select 200 image pairs for evalu-
ation, 100 image pairs for background image pairs (IH0

1 and
IH0
2 ), 50 sample pairs for anomalous test samples, and the

last 50 sample pairs for clean test samples (It1 and It2).
To evaluate the detection power of adversarial attacks, we

follow the subset scanning in neural networks literature [Cin-
tas et al., 2020; Kim et al., 2022a] and use the area under
the receiver operating characteristic curve (AUC). For local-
ization of the attacks, we report average precision (AP) and
average recall (AR), where we compute precision and recall
of the correctly detected patch attack locations for each sam-
ple and average over the entire test set. Here, the correctly
detected locations occur when the detected anomalous loca-
tions on the given inner layer feature overlap with the true
attacked location in the input space, down-sampled to match
the resolution of the feature.

5 Results
In this section, we show our results on the detection and local-
ization of adversarial patch attacks on optical flow estimation.
As SADL is the first work to detect and localize these patch
attacks, we use a naive scanning method without any spatial
constraints as the baseline method.
Patch Attack Detection We show in Table 2 the perfor-
mance of patch attack detection in terms of AUC comparing
the proposed SADL (ours) with the baseline ([Cintas et al.,
2020]). Overall, we see higher detection performance with
our proposed method (bolded). Figure 3 visualizes the dis-
tribution of Fmax of the clean (blue) and attacked (orange)
test set corresponding to the values in Table 2 for a patch at-
tack of size p = 153 on KITTI 2015. The two distributions
are more separable using SADL than the baseline. While
our method shows clear improvements across multiple net-
works and datasets, both methods suffer on MPI-Sintel for
FlowNetC and on KITTI 2015 for PWCNet. We show in Sec-
tion 6 that the hyper-parameter k can be optimized to improve
their performance.
Patch Attack Localization Table 3 lists the performance
of patch attack localization in terms of average precision and
average recall (see Section 4). As expected, we see higher lo-
calization performances for larger patches. While our method
sometimes fails to localize patch attacks of size p = 51,
these small patch attacks comprise 0.5% of the input images
and do not have much effect on the flow estimation perfor-
mance as shown in Table 1. Similar to attack detection re-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

969



Network FlowNetC FlowNet2 PWCNet RAFT

p 153 51 153 51 153 51 153 51

KITTI 2015
[Cintas et al., 2020] 0.50 0.51 0.55 0.59 0.53 0.54 0.52 0.58

SADL (ours) 0.98 0.78 0.72 0.57 0.58 0.52 1.00 0.61

MPI-Sintel
[Cintas et al., 2020] 0.50 0.54 0.64 0.59 0.66 0.63 0.54 0.53

SADL (ours) 0.58 0.77 1.00 0.56 0.88 0.62 1.00 0.61

Table 2: Performance (AUC) of patch-based attack detection using subset scanning on FlowNetC, FlowNet2, PWCNet, and RAFT using a
KITTI 2015 and a MPI-Sintel dataset compared to the baseline subset scanning method without spatial constraint. We list the performance
of two sizes of patch attacks p, i.e., p = 153 and p = 51. Bold is the best in each column.

FlowNetC FlowNet2 PWCNet RAFT

[Cintas et al., 2020]

SADL (ours)

Figure 3: Distribution of anomalous scores obtained from the clean (blue) and the attacked (orange) test set with 153 × 153 patch attacks
on FlowNetC, FlowNet2, PWCNet, and RAFT using the KITTI 2015 corresponding to the results in Table 2. The two distributions are more
separable with our proposed method. See appendix for the distributions of other attack sizes and on MPI-Sintel.

sults above, SADL struggles to localize attacks on KITTI
2015 for PWCNet and on MPI-Sintel for FlowNetC, partly
because our hyper-parameters are not optimized (see Section
6). Figure 5 shows an example visualization of a detected
subset of anomalous locations in the feature space for the at-
tacks of size p = 153 for KITTI 2015 (top) and MPI-Sintel
(bottom). SADL successfully detects a subset of anomalous
locations that align with the location of the patch attack.

6 Ablation Study
Performance across Layers Figure 4 shows the change
in AUC for detecting 153 × 153 patch attacks as we go
deeper in the four flow networks on KITTI 2015 dataset. For
FlowNetC, we see better detection power as we go deeper
into the network. This supports the claim made by Schrodi et
al. [2022] that states that FlowNetC amplifies the effect of the
patch attack going deeper into the decoder layers, making it
easier to detect these anomalous behaviors in the deeper lay-
ers. The flow estimation by FlowNetC in Figure 1 also shows
this pattern, where the effect of the patch attack is amplified
to its neighborhood. For the other three networks, FlowNet2,
PWCNet, and RAFT, we don’t see this amplifying effect in
the prediction, and they show better detection power in the
earlier layers of the network. This observation aligns with
Cintas et al. [2020], which shows that adversarial attacks can
be better detected in the earlier layers of the network before

Figure 4: Detection performance (AUC) of 153 × 153 patch at-
tacks across five inner layers as we go deeper into FlowNetC (blue),
FlowNet2 (orange), PWCNet (green), and RAFT (red) on KITTI
2015. See appendix for the results of other patch sizes and dataset.

their effects get saturated in the deeper layers.

Performance without the Proposed Components We
show the performance changes in detection (Table 4) and lo-
calization (Fig. 5), without our proposed components, i.e.,
proximity constraint (PC) and spatial-channel optimization
(SCO). Without PC, the detected subset of anomalous loca-
tions could be spatially far apart, which would make it hard
to localize the patch attacks in the inputs. Without SCO,
the anomalous score Fmax are computed using the activa-
tion across the entire channel in the detected locations, in-
cluding the channels that are not anomalous. Overall, the use
of the proposed components (SCO+PC) is shown to achieve
the highest detection performance across different networks
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FlowNetC FlowNet2 PWCNet RAFT
p = 153 p = 51 p = 153 p = 51 p = 153 p = 51 p = 153 p = 51

AP AR AP AR AP AR AP AR AP AR AP AR AP AR AP AR

KITTI 2015 0.95 0.35 0.63 0.73 0.38 0.27 0.01 0.05 0.33 0.19 0.02 0.07 0.95 0.66 0.01 0.04

MPI Sintel 0.02 0.00 0.50 0.73 0.92 0.66 0.04 0.09 0.66 0.29 0.19 0.38 0.95 0.70 0.18 0.34

Table 3: Performance of patch attack localization (AP/AR) of our proposed method across the four optical flow networks we consider.

and patch sizes. Figure 5 further demonstrates the capability
of the proposed PC component to successfully find the most
anomalous local region where the attack occurs.

SCO+PC FlowNetC RAFT

✓

✗

✓

✗

Figure 5: Example of the detected subset of anomalous locations
(white) for the FlowNetC and RAFT on KITTI 2015 (top) and MPI-
Sintel (bottom). In each panel, top row shows the attacked images
and the bottom row shows the detected locations from SADL with
and without the proposed components, proximity constraint (PC)
and spatial-channel optimization (SCO).

Impact of Local Region Size for Proximity Constraint
Figure 6 shows the effect of k used in our proximity con-
straint on the AUC of attack detection on FlowNetC. Specif-
ically, the x-axis of the plots show the ratio of the height of
the feature we are considering and k, i.e. h/k, and the y-
axis shows AUC for attack detection for KITTI 2015 (left)
and MPI-Sintel (right). Generally, we see increasing detec-
tion performance as we decrease k. We selected k = h/3
for results in Section 5 to be similar to the largest patch at-
tack size (p = 153). However, we can achieve even higher
attack detection performances with other k values, especially
for MPI-Sintel with p = 153 patch attacks (cyan in the right
plot). However, using smaller k will sacrifice recall perfor-
mances in attack localization as the detected k × k region
will be smaller than the patch attack.

Dataset SCO+PC FlowNetC RAFT
p = 153 p = 51 p = 153 p = 51

KITTI 2015 ✓ 0.98 0.78 1.00 0.61
✗ 0.89 0.60 0.90 0.51

MPI-Sintel ✓ 0.58 0.77 1.00 0.61
✗ 0.52 0.67 0.96 0.65

Table 4: Changes in AUC for patch-attack detection without the
proposed components, i.e., proximity constraint (PC) and spatial-
channel optimization (SCO), on KITTI 2015 and MPI-Sintel. Our
method with all the components performs the best overall (bolded).

Figure 6: Effect of k in PC module on the AUC of attack detection
for FlowNetC on KITTI 2015 (top) and MPI-Sintel (bottom).

7 Conclusion
We propose SADL, the first method to detect and localize
patch-based adversarial attacks in optical flow estimators. We
use a spatially constrained subset scanning on the inner layer
in an unsupervised manner without any training nor prior
knowledge of the attacks. We further give insights on which
layers are most affected by these attacks for various flow
networks. We validated SADL with multiple flow networks
and datasets, and compared it with a baseline method, across
which SADL consistently performed well. Immediate next
step could utilize detected and localized attacks to devise mit-
igation techniques for flow estimators. Future work also aims
to explore various hyper-parameters and further analyze why
the performances differ across various networks and datasets.
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