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Abstract
Knowledge distillation (KD) is an effective method
for transferring the knowledge of a teacher model
to a student model, that aims to improve the latter’s
performance efficiently. Although generic knowl-
edge distillation methods such as softmax represen-
tation distillation and intermediate feature match-
ing have demonstrated improvements with various
tasks, only marginal improvements are shown in
student networks due to their limited model capac-
ity. In this work, to address the student model’s
limitation, we propose a novel flexible KD frame-
work, Integrating Matched Features using Atten-
tive Logit in Knowledge Distillation (IMF). Our ap-
proach introduces an intermediate feature distiller
(IFD) to improve the overall performance of the
student model by directly distilling the teacher’s
knowledge into branches of student models. The
generated output of IFD, which is trained by the
teacher model, is effectively combined by attentive
logit. We use only a few blocks of the student and
the trained IFD during inference, requiring an equal
or less number of parameters. Through extensive
experiments, we demonstrate that IMF consistently
outperforms other state-of-the-art methods with a
large margin over the various datasets in different
tasks without extra computation.

1 Introduction
Although deep learning methods have been shown to achieve
great performance in various tasks over computer vision
and natural language processing [Dosovitskiy et al., 2020;
Brown et al., 2020; Ramesh et al., 2021], they generally re-
quire large datasets, model parameters, and extensive com-
putations. Therefore, deploying complex models on mobile
devices is one of the major challenges due to the device’s
limited computational capabilities. Thus, many researchers
have proposed approaches to overcome such limitations. In
particular, knowledge distillation (KD) [Hinton et al., 2015]
has been proposed to effectively transfer the knowledge of a
large model (“teacher”) to a smaller model (“student”).
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The existing KD methods can be categorized into one of
two groups: 1) softmax representation distillation [Hinton
et al., 2015; Park et al., 2019; Passalis and Tefas, 2018;
Tian et al., 2019; Yang et al., 2021; Lee et al., 2022] and 2)
latent (intermediate) feature matching [Romero et al., 2014;
Zagoruyko and Komodakis, 2016; Yim et al., 2017; Tung and
Mori, 2019]. The first approaches have explored how to gen-
erate and transfer better final representations of the model by
minimizing the difference of the softmax representation be-
tween the teacher and student model using KL divergence
proposed by Hinton et al [Hinton et al., 2015]. On the other
hand, the second approach has focused on improving latent
feature map matching by mimicking the intermediate repre-
sentation that works as a strong indicator to help learn the
terminal representation [Gou et al., 2021].

Most KD approaches have focused on enhancing the per-
formance of the student model without changing its under-
lying structure. However, such approaches inevitably have
to select the matching student model that satisfies the accu-
racy, inference time, and a number of model parameter re-
quirements. To reduce the inference time, one can choose
the small models for convenience. However, due to the un-
satisfactory performance from severe capacity gap or model
structures [Cho and Hariharan, 2019], it is needed to re-select
and retrain the student, which can be inefficient and cumber-
some. Moreover, not much research has been conducted in
the area of KD to explore the performance vs. computational
cost trade-off, focusing on the flexible and adaptive student
model architecture. To alleviate the issues above, we intro-
duce the flexible and adaptive KD architecture to improve
performance while maintaining efficiency.

In this paper, we propose Integrating Matched Features
using Attentive Logit in Knowledge Distillation (IMF), to
improve the student performance by combining the outputs
from each intermediate feature distiller (IFD) that the teacher
model trains. Moreover, IMF is designed to be an adaptive
architecture so that the student model can be flexibly config-
ured to improve the performance, while lowering the com-
plexity via the different number of distilled IFDs in branch
networks. In particular, each IFD takes the student’s inter-
mediate feature map as input and produces its latent repre-
sentation by exploiting the element-wise normalized atten-
tive (ENA) layer to learn and mimic the teacher’s knowledge
better for the higher performance, achieving higher perfor-
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Figure 1: Overview of our proposed integrating matched feature framework (IMF). For N blocks (N=4), intermediate feature distiller (IFD)
is shown as stacked blocks in the middle, and element-wise normalized attentive (ENA) layer is shown in a red block followed by IFD. In the
inference phase, we use integrated logit from the 3 IFDs as our final prediction instead of forwarding the existing fully connected layer.

mance. Moreover, combined outputs of IFD are also trained
to mimic the teacher to boost the performance further. Hence,
with the smaller final student’s model capacity compared to
the original student model, IMF can achieve higher perfor-
mance. Through extensive experiments, we demonstrate that
our approach outperforms the best performing state-of-the-art
baselines, and shows robustness in distilling knowledge from
various teacher models to the student models.

2 Related Work
2.1 Knowledge Distillation
Hinton et al. [Hinton et al., 2015] first proposed KD to boost
the performance of a student network by transferring the
knowledge from a teacher network, showing that the student
can learn not only the hard-label information but also the soft-
label information from the softmax output of the teacher. On
the other hand, feature map-based approaches [Romero et al.,
2014; Zagoruyko and Komodakis, 2016] are proposed, to re-
duce the distance between the respective feature maps of a
teacher and student. In terms of direct matching features be-
tween teacher and student network, relational knowledge dis-
tillation (RKD) [Park et al., 2019] considered the input exam-
ples as mutual relations and transferred these relations instead
of distilling softmax representation. Furthermore, contrastive
representation distillation (CRD) was proposed by Tian et
al. [Tian et al., 2019], which utilizes contrastive learning for
the student to capture distance-based information (data point)
from the teacher’s representation with an additional layer dur-
ing training; however, in a regression task, CRD cannot be
easily applied because positive and negative pairs are diffi-
cult to define and obtain.

Recently, Yang et al. [Yang et al., 2021] devised a novel
distillation via softmax regression representation learning
(SR) to enable direct feature matching at the penultimate lay-
ers of the teacher and student. First, they decoupled the la-
tent feature and the softmax classifier. Then, for successful
representation learning, they employed a frozen teacher clas-
sifier to train the student’s penultimate layer feature in the
teacher’s classifier, and they achieved state-of-the-art perfor-
mance. Also, weight soft label distillation (WSL) was pro-

posed by Zhou et al. [Zhou et al., 2021] to apply a bias-
variance trade-off to the KD method. They observed that the
bias-variance trade-off varies sample-wisely during training
with soft label information, which affects the negative results
in KD. Especially, they filtered out larger trade-off samples
and achieved higher performance. Our approach greatly dif-
fers from the above methods as we effectively combine in-
termediate features with attentive logits from features of stu-
dent’s blocks and inference only with those blocks.

2.2 Branch Network
Before the advent of skip connections [He et al., 2016], In-
ception [Szegedy et al., 2015] was the state-of-the-art method
to achieve the best performance on ImageNet [Deng et al.,
2009] by using auxiliary classifiers. In particular, an aux-
iliary classifier can encourage discrimination in class labels
in the shallow layers and effectively provide regularization
to intermediate features, directly injecting cross entropy loss
to the intermediate classifiers. Not only are branch networks
used to enhance classification performance, but also Teerapit-
tayanon et al. proposed using branch networks for an early
exit in the inference process [Teerapittayanon et al., 2016].
Based on an early layer of a CNN network which is sufficient
for classifying many data points, they achieved compressed
inference time with comparable performance in several CNN
models.

Self-distillation [Zhang et al., 2019], one of the newly pro-
posed KD concepts as mentioned, enhanced the performance
of DNNs without the supervision of the teacher by trans-
ferring the knowledge of deep layers to shallow layers via
branch networks; however, each branch network, which is
much smaller than teacher models, cannot provide refined
information because of its limited student’s capacity [Ji et
al., 2021]. Therefore, its performance enhancement is much
less compared to the KD methods using teacher networks.
The early exit and aforementioned methods used branch net-
works for performance improvement and inference time re-
duction, where we similarly adapt branch networks as feature
distillers.

However, in our methods, we first propose a novel frame-
work, in which the branch networks densely distill the logit of
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the teacher to the branch networks, and takes the intermedi-
ate multi-scale feature maps of the student network as inputs.
Moreover, the branch networks are used as predictors with-
out extra computation, while discarding the existing classifier
and the last MLP block in the inference phase. By changing
the forwarding path, the IMF flexibly controls the model size
to have the same or even less number of parameters than that
of the original student networks, while achieving higher per-
formance. Exploiting several branch networks, we propose
a novel ENA layer that provides adjustable gradients to each
branch network from ID loss. We compare our approach to
all aforementioned baseline approaches for our experiments
– KD, RKD, CRD, SR, PKT, FN, AT, and WSL.

3 Our Approach
Intermediate Feature Distiller (IFD). We first denote ti
and si as the ith layer’s feature map of the teacher and stu-
dent network, respectively. And, zt and zs represent the
teacher’s and student’s logit, respectively as well. Then, the
softmax function is defined as follows: σ(zi) =

exp(zi/τ)
Σj(exp(zj/τ))

,
i = 1, ...,M , where zi is the ith class logit in M classes, and
τ is the temperature. The IFD is trained with the teacher’s
knowledge (softmax representation), forwarded by each stu-
dent’s intermediate layers as inputs. Next, we designed sev-
eral branch networks to sufficiently classify the input in-
stances and utilized the trained IFD block as an auxiliary net-
work to improve the overall performance, as shown in Fig. 1.

More formally, we define F i
IFD as the ith IFD network to

produce the output from si, and s′i as F i
IFD(si) for simplicity.

Next, we define Si
IF as the softmax output of ith IFD in Eq 1,

as follows:

Si
IF = σ

(
F i
IFD(si)

)
= σ(s′i). (1)

Then, we first design a naı̈ve version of intermediate fea-
ture matching loss LIF to demonstrate our training concept.
Here, each IFD is individually trained, taking into account
the classification object. Specifically, in LIF , we consider
not only distillation loss from the teacher but also cross en-
tropy loss for hard label information. Finally, we formulate
the intermediate feature matching loss as follows:

LIF =

Nblock∑
i=1

τ2 · (1− α) ·DKL(σ(s
′
i) || σ(zt)) (2)

+ α · LCE(s
′
i, y)],

where Nblock is the number of blocks, and α is the weight
variable between DKL and LCE , and we empirically set α =
0.2.

The intuition behind our design of LIF is that the teacher
provides a proper supervision at each stage of a student. Gen-
erally, shallower latent features of the student tend to result in
weaker representational power of the student. These features
are much different from the teacher representation, making
training the student model difficult. On the other hand, our

framework uses a branch network by training IFDs, where
shallow layers and IFDs can easily learn the teacher repre-
sentation without the risk of losing knowledge.

Element-wise Normalized Attentive (ENA) Layer. In ad-
dition, we add the element-wise normalized attentive (ENA)
layer to the last layer of each IFD block. We designed the
network such that each layer in the network can attend to the
representation by itself. Therefore, each IFD can emphasize
its class logits by attaching the attentive layer with element-
wise multiplication.

As an example, Fig. 2 illustrates that the final results can be
changed by ENA layers. Specifically, in Fig. 2, let us assume
that the red bars represent the correct labels (e.g., Panda) and
the blue bars represent incorrect labels (e.g., Gibbon). Sim-
ple aggregation from 3 IFD logits would yield an incorrect
result higher than that of the red bars (as shown at the bot-
tom). However, multiplying class-wise weight parameters
from the ENA layer provides more weight to the confident
class (Panda) in the first IFD block. Therefore, the IFD layer
combined with the ENA layer presents optimal inferences for
individual classes according to the depth of the network.

Furthermore, the ENA requires only negligible addi-
tional parameters and computational cost into an IFD dur-
ing training and inference time. For example, in CIFAR-
100 [Krizhevsky and Hinton, 2009], which has 100 classes,
100 parameters are added to the output logits of each IFD
layer. Therefore, using four blocks, as shown in Fig. 1, we
can achieve performance enhancement with only additional
400 parameters in total. Lastly, to prevent gradient exploding
in the early training phase, we apply z-score normalization
to each ENA layer at every training iteration. By introduc-
ing new attentive layers, we can further refine Eq. 2 to the
following equation:

LIF =

Nblock∑
i=1

[τ2 · (1− α) ·DKL(σ(v
i
ENA ⊙ s′i) || σ(zt)) (3)

+ α · LCE(v
i
ENA ⊙ s′i, y)],

where ⊙ is hadamard product and vENA is a vector for em-
phasizing their softmax representation.

Integrated Distillation (ID) Loss. For integrating each
well-trained IFD block, we introduce integrating distillation
(ID) loss LID. Motivated by the early exit method that il-
lustrates that easy tasks can be effectively classified in early
layers with a relatively small student capacity, the method can
provide fast inference time. Therefore, we focus on exploit-
ing early layers to improve classification performance and in-
ference time rather than exploiting the fixed student model
commonly used in traditional KD methods. Since attaching
the ENA layers boosts the confidence of each IFD block to an
instance, LID is a key component of combining the results
from the separated branch networks. With the ENA layer, ID
loss can distill and distribute the refined information from the
teacher model to the IFD block through the integrated logit
from several small branch networks. Therefore, we define
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Figure 2: Element-wise multiplication is applied for each class logit
in IFD blocks. Since each block learns the representation of input
images differently, each adaptive weight parameters provide weight
to the prediction. A correct label (e.g., Panda) in the red bar from
the first IFD shows the highest confidence among the three blocks
and takes attention from the first ENA layer. Hence, the correct final
result can be achieved. On the other hand, the simple aggregation
would yield the incorrect result (e.g., Gibbon).

LID as follows:

LID = DKL

(
σ

(∑
i∈D

viENA ⊙ s′i

) ∣∣∣∣∣∣∣∣ σ(zt)
)
, (4)

where D is a set of IFD’s index for integrated logit as a final
prediction, as shown in Fig. 1. In D, it is not compulsory to
include all IFDs that are trained with LIF .

Finally, we can construct our overall optimization objective
as follows:

L = LCE + α · LIF + β · LID, (5)

where α and β are the weight variable set as 10 and 30, re-
spectively, and LCE is a cross entropy loss between zs and
class label.

Inference. Traditional KD methods do not alter the struc-
ture of the student network. In contrast, IMF is not restricted
to the architecture of the student network, as the architecture
of the student network can be adjusted to achieve higher per-
formance. In the inference stage, IMF does not use the en-
tire student network but uses only a part of the network. As
illustrated in Fig. 1, a partial network of the student is inte-
grated with D to become an inference model to produce the
final outputs. We can control the number of IFD layers of D
to make the model lighter or to produce the highest perfor-
mance. In our experiment, we can empirically obtain the best
performance when we use Nblock−1 IFD layers in inference.
Therefore, we can adjust the number of IFDs not to exceed
the computational cost of the student.

Theoretical Support. We provide the following theoretical
results for characterizing the interaction and validity of LIF ,
and the further need for LID and the ENA layer to achieve
higher performance from the gradient perspective.

First, we can obtain ∂LID

∂s′i
as follows:

∂LID

∂s′i
=

∂

∂s′i

[
DKL

(
σ

(∑
i∈D

viENA ⊙ s′i

)
||σ(zt)

)]
(6)

=
∂

∂s′i

[
−σ(zt)log

(
σ

(∑
i∈D

viENA ⊙ s′i

))]

= viENA ⊙

(
−σ(zt) + σ

(∑
i∈D

viENA ⊙ s′i

))
.

Hence, the gradient from LID depends on each ENA layer
and all outputs of branch networks used in inference. Since
LID is necessary for LIF , all IFD outputs f i(s′i) would be
matched to the value between the teacher’s logit and hard la-
bel if it is theoretically optimized.

However, due to the limited capacity and different path
lengths of IFD (student) blocks, this solution cannot be
achievable. Therefore, we introduce LID and the ENA layer
(vENA) in IMF, where, in the Eq. 6, the gradient from LID

is affected by ENA layer and all output of the IFD blocks(∑
i∈D viENA ⊙ s′i

)
. It enables the proposed ENA layer, and

LID to be attentive to each value of the branch networks.

4 Experimental Results
Training details. Backbone architecture and training set-
tings for experiments are similar to the recent research [Tian
et al., 2019]. In our method, we conduct a grid search to
choose the α and β values in Eq. 5 from {10, 20, 30, 40}.
The IFD block has the same structure in all experiments and
model architectures. Specifically, we used a block structure
of DepthConv(3 × 3) - PointConv(1 × 1) - BN & ReLU. As
the layers became deeper and the resolution decreased, we in-
crementally reduced the number of blocks by one. Only the
channel size of the conv layer was adjusted, based on the size
of the original student network. Also, for a fair comparison,
we repeated each experiment three times and calculated the
mean of the scores.

Comparison. Since IMF uses the flexible architecture with
the intermediate IFDs, it is not easy to directly compare IMF
with other baselines with the fixed student structures. In-
stead, to provide a fair comparison as much as possible dur-
ing inference, we keep our entire computational cost to be the
same as the total computation cost of the compared student
models in baselines. In other words, the final student model
in IMF would not be equivalent to the original student model
because IMF-trained student model has a structural difference
compared with its original model. However, we can clearly
compare the performance of each approach by fixing the total
computational cost.

4.1 Performance Evaluation
CIFAR-100. We compared top-1 accuracy for 13 teacher-
student pairs. Furthermore, we calculated the number of pa-
rameters of a student model to verify that our method im-
proves performance from a trade-off between the model’s
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Teacher VGG19 VGG19 VGG13 ResNet56 ResNet110 ResNet110 ResNet32x4 WRN-40-2 WRN-40-4
Student VGG8 VGG11 VGG8 ResNet20 ResNet20 ResNet32 ResNet8x4 WRN-16-2 WRN-16-4
Teacher 74.71 74.71 74.64 73.92 74.08 74.08 79.2 76.32 79.67
T.Params Ratio (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)
Student 70.67 71.78 70.67 69.42 69.42 71.24 73.51 73.41 77.48
S.Params Ratio (19.7%) (46.1%) (41.9%) (32.3%) (16.0%) (27.2%) (16.5%) (31.1%) (30.8%)

KD [NeurIPS’14] 72.42 74.15 73.4 70.97 70.72 73.58 73.97 74.88 77.46
AT [ICLR’17] 72.27 73.89 73.32 70.67 70.73 73.41 74.88 74.91 77.60
FN [ICLR’15] 72.33 74.28 73.35 71.02 70.81 73.34 73.89 75.21 77.51
RKD [CVPR’19] 72.73 74.02 73.69 71.08 70.71 73.28 73.71 74.82 77.74
CRD [ICLR’20] 73.04 73.92 74.31 71.80 71.69 74.24 76.05 75.86 75.59
WSL [ICLR’21] 70.49 71.73 71.52 72.01(72.15) 71.14(72.19) 72.91(74.12) 73.81(76.05) 74.75 76.99
SR [ICLR’21] 73.68 74.21 73.31 70.86 70.78 73.1 75.71 75.49 79.05 (79.58)

Ours 76.14 77.14 77.09 73.69 73.92 75.77 78.42 77.37 79.95
O.Params Ratio (19.2%) (45.8%) (40.9%) (32.1%) (15.9%) (27.1%) (15.5%) (30.9%) (30.8%)

Table 1: Avg. top-1 accuracies (%) with CIFAR-100 using the same architecture style between teacher and student. The best results are
highlighted in bold, and the higher performance than the teacher is underlined. Also, we denote the ratio of the parameter numbers of a
student and our ensemble model to the teacher in the parenthesis. We reran and reproduced the results of all methods, and we report the mean
of the three trials. In the case of WSL and SR, we report the scores from their respective papers in the parenthesis if the same teacher and
student pair with ours is experimented in the reference paper because reimplemented accuracies are not as high as the original.

Teacher RN110 RR32x4 WRN-40-6 WRN-40-2
Student SN-V1 SN-V1 SN-V2 N-V2
Teacher 74.08 79.77 80.75 76.32
T.Params Ratio (100%) (100%) (100%) (100%)
Student 71.23 71.23 73.35 73.35
S.Params Ratio (54.66%) (12.77%) (6.73%) (60.11%)
KD [NIPSW’14] 75.94 74.64 74.51 76.29
AT [ICLR’17] 76.49 74.67 74.57 76.74
FN [ICLR’15] 76.25 74.76 74.64 76.56
RKD [CVPR’19] 76.24 74.44 74.65 76.22
CRD [ICLR’20] 76.44 75.53 76.33 77.27
WSL [ICLR’21] 73.91 70.7 (75.46) 72.32 74.43
SR [ICLR’21] 75.15 74.18 (75.66) 72.83 74.87
Ours 77.23 76.55 78.07 78.6
O.Params Ratio (51.2%) (12.3%) (6.1%) (53.1%)

Table 2: Avg. top-1 accuracies (%) with CIFAR-100 using different
architecture styles between the teacher and student. The best results
are highlighted in bold, and the higher performance than the teacher
is underlined. For simplicity, we abbreviate ResNet and ShuffleNet
as RN and SN, respectively.

size and performance. As shown in Table 1, our IMF out-
performs all other methods across all backbone architecture
pairs. Especially, our IMF is the only model that outperforms
the teacher model in VGG, ResNet110, and WRN.

In addition, our method has fewer parameters than the orig-
inal student model since we do not utilize an entire structure
of the student model in the inference stage. For example, in
the ResNet32x4-ResNet8x4 pair, our IMF method has 15.5%
of the teacher’s parameters but achieves 4.91% performance
improvement compared to the original student model. More-
over, as shown in Table 2, IMF also consistently outperforms
other KD methods in different teacher-student model archi-
tectures.

CIFAR-10. To demonstrate that IMF achieves performance
gain in other image classification tasks, we experiment with
CIFAR-10. As shown in Table 3, our IMF obtains the per-

Teacher VGG19 VGG19 VGG13 RN56 RN110 RN32x4
Student VGG8 VGG11 VGG8 RN20 RN20 RN8x4
Teacher 93.86 93.86 94.36 93.94 94.45 95.52
Student 91.86 92.51 91.86 92.63 92.63 92.81
KD [NIPSW’14] 92.78 92.90 93.06 93.13 93.13 93.86
AT [ICLR’17] 92.97 92.95 93.09 93.19 93.28 93.72
FN [ICLR’15] 92.83 93.03 93.16 93.19 92.94 93.87
RKD [CVPR’19] 92.77 92.91 93.07 93.25 93.16 93.92
CRD [ICLR’20] 92.97 93.03 93.02 93.23 93.02 94.01
SR [ICLR’21] 92.42 93.2 92.8 93.13 93.24 94.08
Ours 94.05 94.15 94.05 93.65 93.69 95.08

Table 3: Avg. top-1 accuracies (%) with CIFAR-10 in the same ar-
chitecture between teacher and student models. The best results are
highlighted in bold, and the scores are underlined in the case of out-
performing the teacher’s performance. For simplicity, we abbreviate
ResNet as RN.

formance improvement of up to 1.3% compared to all other
competing methods, even though all results are above 90%.
Moreover, IMF shows better performance than the teacher
networks in VGG19-VGG8 and VGG19-VGG11 pairs, as
same with the CIFAR-100 experimental results. Therefore,
in the more simple dataset, our IMF outperforms other com-
peting works.

ImageNet. To evaluate IMF performance in a large-scale
dataset, we demonstrated experimental results on the Ima-
geNet dataset. In this experiment, we selected the ResNet
family as the same base architecture style. As shown in Ta-
ble 4, IMF outperforms baseline methods with a fewer num-
ber of parameters. In detail, IMF’s top-1 performance in-
creases by 2.63% and 0.94%, compared to the baseline stu-
dent as well as the state-of-the-art, SR, respectively. Similar
to CIFAR-100, the number of parameters in our model during
the inference phase is less than that of the student model, as
shown in Table 7.

Facial Keypoints Detection. We conducted experiments
not only on the popular classification datasets but also on the
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RN34 RN18 KD AT RKD CRD SR Ours
t1 73.71 70.04 70.68 70.59 71.34 71.17 71.73 72.67
t5 91.42 89.48 90.16 89.73 90.62 90.13 90.60 91.10

Teacher Student Ours
# Param.
(Ratio%)

21.80M
(100%)

11.69M
(53.6%)

11.66M
(53.5%)

# FLOPs
(Ratio%)

367M
(100%)

182M
(49.5%)

178M
(48.5%)

Table 4: Top-1 (t1) and top-5 (t5) accuracies (%) on ImageNet in
ResNet34 (RN34) as a teacher and ResNet18 (RN18) as a student.
Moreover, we denote the number of parameters (Param.) and FLOPs
with a ratio of students and our method to the teacher for a fair com-
parison. Also, the best results are highlighted in bold.

regression dataset. Our method is compared with KD, AT,
PKT, FN, and RKD with one same and two different network
architecture styles, as shown in Table 6. We achieve higher
performance than all the other baselines in the different archi-
tecture styles, except for the VGG19-VGG8 pair, where our
method shows the second-highest performance. However, the
overall performance of IMF is much better than others.

4.2 Attributions of IMF
For ablation, we explore the effectiveness of each proposed
loss and ENA layer through an ablation study on CIFAR-100.

Effect of LID. First, we started the experiment using only
IFD, as shown in Config. A in Table 5. By only using
LIF , accuracies significantly increased compared to that of
the original student model. Additionally, we conducted Con-
fig. B experiment by adding LID to Config. A to integrate
the IFD blocks. Interestingly, we observed that LID is help-
ful in increasing the performances in relatively small student
networks (i.e., ResNet20, ResNet32, WRN-16-2, and Shuf-
fleNetV2). Therefore, we found that these models do not have
sufficient capacity to learn the representations to classify the
images. To compensate for this weakness, LID integrates
the small branch networks so that the capacity of the merged
model is much superior to the capacity of individual models.

Effect of ENA Layer. To demonstrate the effectiveness of
weight to the confident classes from several IFD blocks, we
explore the effect of the ENA layer. As mentioned above, we
define Config B. as a combination of Config. A and LID.
This shows impressive results that the accuracies in ResNet
pairs increase, compared with the Config. A. As shown in the
second and third rows in Table 5, all performances are much
higher in Config. C, which attaches the ENA layer to Config.
B, except in the VGG19-VGG8 pair. Therefore, as demon-
strated in Section 3, ENA layer provides a weighted gradi-
ent to each branch network from ID loss, which shows the
best-generalized performance over the teacher-student model
pairs.

Effect of LIF . Lastly, we evaluate the performance in
Config. D of Table 5, which removes LIF from Con-
fig. C. We can observe that this combination still outper-
forms students’ performance. However, compared with Con-
fig. C, it shows performance degradation in all pairs ex-
cept for ResNet110-ResNet32. Interestingly, compared with

Figure 3: Top-1 accuracies (%) on CIFAR-100 in ResNet20 as a stu-
dent and various teachers (i.e. ResNet and VGG family). Only dis-
tilling knowledge with KD [Hinton et al., 2015] shows performance
degradation in more powerful teacher networks (e.g., VGG16 and
19). Meanwhile, IMF shows robust performance in overall teacher
networks. For simplicity, we abbreviate ResNet as R.

ResNet20 and ResNet32 student networks, the accuracies de-
creased greater in VGG networks (more than 3%), which
have much more parameters than ResNet20 and ResNet32,
demonstrating the benefits of LIF .

4.3 Robustness and Generalization to Various
Teacher Models

The previous work [Cho and Hariharan, 2019] shows that
the knowledge distillation may not be effective when the stu-
dent’s capacity is too low to successfully mimic the teacher,
even the teacher shows better performance. Therefore, find-
ing an adequate teacher and student network pair considering
model architecture and capacity is a critical research prob-
lem. In this section, we conduct extensive experiments to ex-
plore whether our proposed method is robust and generaliz-
able to different teacher-student architecture pairs with vary-
ing model capacity. We chose ResNet20 as a student model,
while using three ResNet and five VGG families with various
sizes as teacher models.

As shown in Fig. 3, ResNet20 with KD [Hinton et al.,
2015] shows the best performance with additional supervi-
sion from ResNet56 as a teacher. On the other hand, it has
a slight performance decrease in the ResNet110 as a teacher,
even the latter teacher model is more powerful, as shown by
the work [Cho and Hariharan, 2019]. Moreover, in the VGG
family as teacher networks, there are marginal performance
improvements in the three smallest models, VGG8, VGG11,
and VGG13, but we observe a gradual decrease in the perfor-
mance of the teacher network as the capacity increases.

On the other hand, interestingly, our proposed method
achieves performance improvement not only in ResNet but
also in VGG as a teacher, even though the teachers have
the different architectures and large model capacity. Specifi-
cally, compared to the original KD, which shows the second-
worst performance in ResNet20-VGG16 pair, IMF shows the
highest accuracy, which is higher than the performance of
ResNet20 reported in the Table 1. Moreover, compared to
KD [Hinton et al., 2015], IMF shows lower variance but
higher mean accuracy. Therefore, our proposed IMF is ro-
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Teacher VGG19 VGG19 VGG13 RN56 RN110 RN110 RN32x4 WRN-40-2 WRN-40-4 WRN-40-6
Student VGG8 VGG11 VGG8 RN20 RN20 RN32 RN8x4 WRN-16-2 WRN-16-4 ShuffleNetV2
Student 70.67 71.78 70.67 69.42 69.42 71.24 73.51 73.41 77.48 73.35
A. LIF 75.88 76.84 76.66 72.63 72.83 74.86 78.02 76.28 79.55 77.02
B. LIF + LID 76.21 76.56 76.61 73.35 73.65 75.46 77.78 76.96 79.68 77.78
C. LIF + LID + ENA Layer (Ours) 76.14 77.14 77.09 73.69 73.92 75.77 78.42 77.37 79.95 78.07
D. LID + ENA Layer 72.76 73.17 74.9 73.27 73.88 75.98 77.03 75.22 78.94 75.87

Table 5: Avg. top-1 accuracies (%) as ablation study for our approaches. Starting from the primary student network, we add our proposed
IFD block with ENA layer and ID loss. The best performances are highlighted in bold. For simplicity, we abbreviate ResNet as RN.

Teacher VGG19 ResNet32x4 WRN-40-2
Student VGG8 ShuffleNetV2 ShuffleNetV2
Teacher 3.002 3.169 3.354
Student 4.637 5.272 5.272
KD 4.425 4.840 5.194
AT 4.368 4.503 5.038
PKT 4.559 4.514 4.755
FN 4.319 4.883 5.608
RKD 4.082 3.987 3.925
Ours 4.203 3.632 3.734

Table 6: L1 distance with WFLW dataset in same architecture and
different architecture between the teacher and student.

RN8x4 RN32x4Block1 Block1:2 Block1:3 Block1:4 +MLP
Param
Ratio%

0.9K
0.01%

59K
0.79%

0.29M
3.88%

1.21M
16.24%

1.23M
16.59%

7.43M
100%

FLOPs
Ratio%

0.95M
0.10%

60.06M
5.55%

118.98M
10.96%

177.80M
16.38%

177.84M
16.38%

1085.6M
100%

IMF RN32x4IFD1 IFD1:2 IFD1:3 IFD1:4

Param
Ratio%

0.25M
3.33%

0.68M
9.21%

1.22M
16.53%

2.34M
31.46%

7.43M
100%

FLOPs
Ratio%

15.64M
1.44%

101.68M
9.37%

171.21M
15.77%

232.69M
21.43%

1085.6M
100%

Table 7: Ablation study for the number of parameters and FLOPs.
All the rows of parameters and FLOPs are cumulative results. All
the percentages on the parameters and FLOPs are based on that of
the teacher model. Note that we only use the three IFD blocks in
ResNet32x4-ResNet8x4 (RN32x4 - RN8x4) structure so that our fi-
nal parameters and FLOPs in inference are sums of the three IFD
and residual blocks of the RN8x4, which are highlighted in bold.

bust and generalizable to different model pairs and capacities,
which can reduce the computational time and cost to find the
best teacher and student pair.

4.4 Parameters and FLOPs
Our method is flexible in transforming the fixed model archi-
tecture into smaller student networks. While our final model
can be even smaller than the original student network, our
final model was able to achieve higher performance. In par-
ticular, we adapted our method to the student model to obtain
approximately equal or fewer parameters as well as FLoating
point Operations (FLOPs). In this section, we calculated the
FLOPs and model parameters of IMF in detail.

We use ResNet32x4-ResNet8x4 pair as teacher and student
on CIFAR-100. In this case, we use the three IFD blocks for

Student Mean (%) Variance
KD [NeurIPS’14] ResNet20 69.46 0.72
Ours ResNet20 73.83 0.44

Table 8: Mean and variance values of student accuracies over 8 dif-
ferent teacher networks. Compared with existing knowledge distil-
lation, our method shows higher accuracy but stable.

integrated logit. In Table 7, we reported the parameters and
FLOPs of the student model and our IMF. As shown in Ta-
ble 7, we can observe that Block1:3 has much fewer parame-
ters than that of Block1:4. That is, if we early exit on the third
block, we can add branch networks (i.e., IFD1, IFD2, and
IFD3) to the student model instead of forwarding the fourth
block and MLP layer in the inference phase. Accordingly,
it is notable to observe that the final parameters and FLOPs
of IMF can be approximately similar to or less than that of
student models.

5 Limitation and Future Work
In this work, we focused on image classification and regres-
sion tasks, and presented the theoretical analysis to charac-
terize the validity of our proposed methods. More research
would be needed to determine the number of branch networks
to find the optimal numbers for the depth of the original back-
bone network and IFD blocks as well as the branch networks.
For future work, we plan to incorporate additional KD meth-
ods and validate our findings.

6 Conclusion
We proposed a novel flexible knowledge distillation frame-
work, IMF, integrating matched features using attentive logit.
In IMF, the student is directly trained by teacher information
by utilizing an intermediate feature distiller (IFD) in a branch
network. During the inference time, we use the combined
logits from learned IFDs instead of the entire student model.
We conducted extensive experiments with image classifica-
tion as well as facial keypoint detection tasks over 4 datasets.
In image classification, our method significantly outperforms
7 baselines in 10 same and 4 different backbone architecture
styles with an equal or less number of parameters. Further-
more, we also demonstrate that our method is effective in
keypoint detection, compared with 5 baselines. IMF not only
achieved a significant performance gain regarding classifica-
tion tasks as well as a regression task, without requiring an
extra computational cost.
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