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Abstract
Dynamic scene graph generation aims to identify
visual relationships (subject-predicate-object) in
frames based on spatio-temporal contextual infor-
mation in the video. Previous work implicitly mod-
els the spatio-temporal interaction simultaneously,
which leads to entanglement of spatio-temporal con-
textual information. To this end, we propose a
Grafting-Then-Reassembling framework (GTR),
which explicitly extracts intra-frame spatial infor-
mation and inter-frame temporal information in two
separate stages to decouple spatio-temporal contex-
tual information. Specifically, we first graft a static
scene graph generation model to generate static vi-
sual relationships within frames. Then we propose
the temporal dependency model to extract the tem-
poral dependencies across frames, and explicitly
reassemble static visual relationships into dynamic
scene graphs. Experimental results show that GTR
achieves the state-of-the-art performance on Action
Genome dataset. Further analyses reveal that the
reassembling stage is crucial to the success of our
framework.

1 Introduction
Scene graph is a structured representation of an image that
clearly represents entities (nodes) and relationships between
them (edges) through a series of triples. Such structured repre-
sentations play an important role in many downstream tasks,
such as visual question-answering [Garcia and Nakashima,
2020; Luo et al., 2022], visual reasoning [Shi et al., 2019], im-
age captioning [Zhang et al., 2021] and vision-and-language
navigation (VLN) [Hong et al., 2020]. Scene graph can be
applied to individual images (as static scene graph) or to each
frame of a video (as dynamic scene graph). Most methods for
generating static scene graphs begin by detecting objects in
the image using an object detector, and then obtain the rela-
tionships between the objects. However, these methods cannot
be directly applied to dynamic scene graph generation because
they neglect the natural temporal dependence of relationships
across frames (shown in Figure 1).
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Figure 1: The difference between static scene graph and dynamic
scene graph. Dynamic scene graph (column 3) has an additional
temporal dimension compared to static scene graph (column 2).
For these four frames in a video (column 1), dynamic scene graph
generation can generate consecutive actions based on the temporal
dependencies across frames.

Most previous methods [Cong et al., 2021; Li et al.,
2022] for dynamic scene graph generation utilize the Trans-
former [Vaswani et al., 2017] to encode the visual features
of entity pairs and decode their relationships. Although these
methods achieve remarkable performance, they implicitly
model spatio-temporal interaction simultaneously and require
a large amount of video data for training, which presents two
challenges. First, the one-stage modeling process cannot ex-
tract spatial and temporal contextual information separately,
leading to entanglement between them (shown in Figure 2 (a)).
Second, these methods require large amounts of video data
to learn spatio-temporal interactions, resulting in expensive
annotation and training costs.

To address the aforementioned challenges, we propose
a novel two-stage Grafting-Then-Reassembling framework
(GTR) for dynamic scene graph generation. In the first stage,
we graft a pre-trained static scene graph generation model to
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Figure 2: Dynamic scene graphs generated by sota model [Cong
et al., 2021] and GTR. (a) Relation predicates with similar visual
features (Frame t and Frame t+1) cannot be distinguished due to the
entanglement of spatio-temporal contextual information. (b) GTR
rectifies errors by seeking the correct relational predicate with similar
visual features in other frames.

generate static visual relationships. Since the model already
has the basic static information generation ability, we only
need a small amount of the video data and take each frame
as an image to fine-tune the model for learning consecutive
action relationship types. With the help of grafting, the intra-
frame static visual relationships can be obtained without the
need for expensive training and manual annotation of large
amounts of video data.

In the second stage, to resolve the entanglement of spatio-
temporal contextual information, we propose the temporal
dependency model (TDM), which contains a temporal atten-
tion module and a context attention module. Specifically,
after obtaining the visual and semantic features of each frame,
we extract temporal dependencies across frames based on
these frame features using the temporal attention module.
In addition, the mask strategy is designed to capture fine-
grained temporal dependencies in the temporal attention mod-
ule, which can effectively distinguish the cross-frame temporal
dependencies of different entity pairs. The context attention
module aims to explicitly reassemble static visual relation-
ships into the dynamic scene graph based on temporal de-
pendencies. We consider that there is a positive inductive
bias in videos, that is consecutive visual relationships of-
ten occur in sequence (i.e., ⟨person − holding − cup⟩ and
⟨person − drinking from − cup⟩ have a high probability of
occurring in sequence). For the reason, when static visual rela-
tionships within frames are incorrect due to a lack of temporal
contextual information, the context attention module can rec-
tify the error by replacing it with the correct relation predicate
that has similar visual features in other frames based on the
temporal dependence (shown in Figure 2 (b)). In addition, to
increase the availability of relation predicates, we design a
noise filter (NFT) based on visual feature similarity, which
can effectively filter out redundant relation predicates.

To evaluate the performance of the proposed framework, we
conduct extensive experiments on Action Genome [Ji et al.,
2020]. Our experiments show that GTR achieves state-of-the-

art results using only 60% of the video data for training, (i.e.,
71.2% Recall@10 for predicate classification task), which
is 1.8% higher than the previous best result. Besides, exten-
sive analysis experiments demonstrate that GTR has excellent
performance in capturing the spatio-temporal interaction.

Our contributions are summarized as follows:

• We propose GTR, a novel two-stage framework to ex-
plicitly capture spatio-temporal interactions for accurate
dynamic scene graphs generation.

• Our framework does not require a large amount of video
data for training, saving expensive manual video data
annotation costs.

• Experimental results show that our framework has signif-
icant performance improvements compared to the one-
stage approach. Further analysis indicates that our pro-
posed reassembling stage is the key to success.

2 Related Work
2.1 Static Scene Graph Generation
Scene graph generation task was first proposed by Johnson
et al. [2015], advancing the state of the art in downstream
computer vision tasks, natural language processing tasks and
multimodal tasks. Currently, the methods of static scene graph
generation are mainly based on CNN [Zhang et al., 2017b;
Li et al., 2017a; Woo et al., 2018], RNN [Chen et al., 2019;
Tang et al., 2019] and TransE [Zhang et al., 2017a; Wan et al.,
2018; Gkanatsios et al., 2019; Hung et al., 2019]. CNN-based
methods attempt to extract visual features of entity pairs in
images by convolution and classify relationships based on
these features. Samy Bengio et al. [2018] propose a relational
embedding module to improve scene graph generation by
explicitly modeling inter-dependency among the entire object
instances. RNN-based methods attempt to infer relationships
of entity pairs based on visual contextual information. Tang
et al. [2019] propose to compose dynamic tree structures that
place the objects in an image into a visual context, helping
scene graph generation. TransE-based methods attempt to
infer relationships between subject and object by computing
the distance between them in the semantic vector space. Wan
et al. [2018] provide a fully convolutional module to extract
the visual embeddings of a visual triple and apply hierarchical
projection to combine the structural and visual embeddings
of a visual triple. However, as downstream video tasks are
widely studied, the static scene graph is not sufficient for their
needs. As a result, dynamic scene graph generation has started
to be gradually studied by scholars.

2.2 Dynamic Scene Graph Generation
The difference between dynamic scene graph generation and
static scene graph generation is that dynamic scene graph gen-
eration is for videos, which have an additional time dimension
compared to images, making the task more challenging. Cur-
rently, there is not much research work [Cong et al., 2021;
Li et al., 2022; Gao et al., 2022; Qian et al., 2019; Teng et
al., 2021] on this task. Cong et al. [2021] proposed a Spatial-
Temporal Transformer, which encodes spatial context within
single frames and decodes relationships based on temporal
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dependencies. Li et al. [2022] propose a Transformer-based
anticipatory pre-training paradigm that uses unlabeled frames
for pre-training to improve dynamic scene graph generation.
However, these methods implicitly model the spatio-temporal
interaction simultaneously and require a large amount of video
data for training. Thus, we propose a novel two-stage frame-
work to improve the problem of spatio-temporal contextual
information entanglement by explicitly reassembling static
visual relationships into dynamic scene graph based on tem-
poral dependencies. We also grafted a pre-trained static scene
graph generation model into our framework, leading to out-
standing performance without the need for extensive video
data training.

2.3 Transformer for Time Series Modeling
Currently, most dynamic scene graph generation models are
based on the Transformer [Vaswani et al., 2017] and demon-
strate a powerful understanding of the dependencies between
long sequences of data [Zhou et al., 2022; Tuli et al., 2022;
Zerveas et al., 2021]. Recently, Transformer has also started
to be widely applied to computer vision tasks. Girdhar et
al. [2019] propose an Action Transformer model for recog-
nizing and localizing human actions in video clips. Arnab et
al. [2021] propose a pure Transformer-based model to classify
videos by encode spatio-temporal tokens from the video. Due
to the powerful time-series modeling capabilities of Trans-
former, our framework models temporal dependencies in the
video based on the Transformer architecture.

3 Method
In this section, we first present the definition of dynamic scene
graph generation task (Section 3.1). Then, we describe our
Grafting-Then-Reassembling framework (GTR) in detail. As
shown in Figure 3, our framework consists of two stages:
the grafting stage (Section 3.2) and the reassembling stage
(Section 3.3). In the first stage, we graft a static scene graph
generation model to generate static visual relationships within
frames. In the second stage, we extract the temporal depen-
dencies between frames by proposed Temporal Dependency
Model (TDM) and reassemble static information into dynamic
scene graphs. Meanwhile, we introduce a Noise Filter (NFT)
to remove redundant candidate static relation predicates.

3.1 Task Definition
Given a video V = {F1, F2, ..., Ft}, the goal of the dynamic
scene graph generation task is to parse the video content as
a set of scene graphs Gvid =

{
Gvid

1 , Gvid
2 , .., Gvid

t

}
. The

Gvid
t is the scene graph based on the t-th frame Ft, defined as

Gvid
t = {Bt, Et, Rt}, where Bt = {b1, b2, ..., bi} denotes the

bounding box set, Et = {e1, e2, ..., ej} denotes the entity set
and Rt = {r1, r2, ..., rk} denotes the relation predicate set.

3.2 Grafting Stage
In this stage, we adopt a static scene graph generation model
as initialization and fine-tune it with video data to generate
static visual relationships within frames in the video. We
convert each frame in the video to an image as data for
fine-tuning, i.e., {F1, F2, ..., Ft} → {I1, I2, ..., It}, which

allows the model to learn consecutive action relationship types
that are unique to the video. In this way, we extend the
image pre-training model from image task to video task to
leverage its extensive pre-training knowledge. Specifically,
for a given video V, we obtain a set of static scene graphs
Gimg =

{
Gimg

1 , Gimg
2 , ..., Gimg

t

}
by static scene graph

generation model and extract the static visual relationships
V Rimg = {{S1, R1, O1} , {S2, R2, O2} , ..., {St, Rt, Ot}}
from them, where St, Ot, Rt denotes the categories of the
entity pairs (subject and object) and static relation predicates
between them in t-th frame. Moreover, to increase the amount
of relation predicates available for the next stage, we generate
the top-k possible predicates between entity pairs based on the
likelihood score during the inference process.

3.3 Reassembling Stage
This stage aims to model the inter-frame dependencies and
reassemble the static visual relationships into dynamic scene
graphs. To this end, we propose the Temporal Dependency
Model (TDM) and the Noise Filter (NFT). The TDM con-
sists of two parts: a temporal attention module and a context
attention module.

Feature Extractor For the given video, we use a pre-trained
Faster R-CNN to extract frame-level feature following [Cong
et al., 2021]. To comprehensively describe the entity pairs,
we consider both visual and semantic features. Specifically,
as depicted in the bottom middle part of Figure 3, the visual
feature of the entity pair p in t-th frame contains subject’s
feature vti , object’s feature vtj and their union bounding box
feature vti,j . The semantic feature of entity pair p in t-th
frame contains semantic embeddings of the subject and object
categories, i.e., cti, c

t
j ∈ Rds . Then, the feature f t

p ∈ Rdf for
entity pair p is:

f t
p = [MLPv([v

t
i ; v

t
j ; v

t
i,j ]);MLPs([c

t
i; c

t
j ])] (1)

where MLPv and MLPs are two trainable MLPs, [;] denotes
the concatenation.

Temporal Dependency Model (TDM) It is a natural feature
of video that the relationships between entity pairs in different
frames are correlated. The temporal attention module aims to
extract potential temporal dependencies across frames in the
video. Specifically, the video feature Fp ∈ Rn×df is presented
as:

Fp =
{
f1
p,1, f

1
p,2, ..., f

t
p,N(t)

}
(2)

where N(t) denotes the number of entity pairs in the t-th frame.
The correlation score between frames can be calculated as:

Qfrm = Kfrm = Fp + Ep, V
frm = Fp (3)

Sfrm
p = softmax(

Qfrm(Kfrm)T√
dk

) (4)

where Ep is constructed with learned embedding param-
eters that is used to inject time positions in entity pair
features. Intuitively, temporal dependencies only oc-
cur between same entity pairs in different frames. For
example, in t-th frame, there is a visual relationship
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Figure 3: The architecture of GTR, which consists of a grafting stage and a reassembling stage. In the grafting stage, the static scene graph
generation (SGG) model is grafted into GTR and fine-tuned with the video data to generate static visual relationships. In the reassembling
stage, the extracted video frame features are fed to the temporal attention module to extract the temporal dependencies in the video, and the
context attention module generate the dynamic scene graph by reassembling the static visual relationship based on the temporal dependencies.

⟨person − drinking from − cup⟩, which is only temporal de-
pendent from visual relationship ⟨person − holding − cup⟩
in (t-1)-th frame, and temporal independent from visual rela-
tionship ⟨person − watching − television⟩ in (t-1)-th frame.
Thus, to obtain fine-grained temporal dependence, we mask
the correlation scores between different entity pairs, i.e.,
Sfrm
p → Maskp

[
Sfrm
p

]
. Then, we utilize the masked corre-

lation scores to weight temporal dependencies across frames:

Hfrm
p = Maskp

[
Sfrm
p

]
V frm (5)

After obtaining the temporal contextual information in
the video, we reassemble the static visual relationships into
dynamic scene graphs by context attention module. We
consider that there is a positive inductive bias in videos,
that is, consecutive visual relationships often occur in se-
quence (e.g., high probability of ⟨person − holding − cup⟩
and ⟨person − drinking from − cup⟩ sequence occurring
in one video). Therefore, we treat static relation pred-
icates in all frames and entity pairs in current frame
as candidates and targets respectively to explicitly model
the correlation between them based on temporal de-
pendencies (e.g., target: ⟨person− ? − cup⟩, candidates:
⟨holding, drinking from, touching, ...⟩). For the entity
pair pn, its candidate static relation predicates Rn are pre-
sented as:

Rn =
{
r1pn,1, r

1
pn,2, . . . , r

t
pn,c

}
(6)

where c denotes the number of candidate static relation predi-
cates in t-th frame. The matching scores between pn and Rn

is obtained by:

Qfrm = Hfrm
p ,Kstc = V stc = WRRn (7)

Sstc
p = softmax(

Qfrm(Kstc)T√
dk

) (8)

where WR is a trainable weight. We decompose the represen-
tation Sstc

p into three parts based on the three different types
of relation predicates (attention, spatial, contacting) by mask
operation. The weighed representation after matching is:

Hfrm
att = Maskatt

[
Sstc
p

]
V stc (9)

Hfrm
spa = Maskspa

[
Sstc
p

]
V stc (10)

Hfrm
con = Maskcon

[
Sstc
p

]
V stc (11)

Noise Filter (NFT) Static relation predicates are generated
from a static scene graph generation model and fed to the tem-
poral dependency model. To improve the availability of static
relation predicates, we design NFT to remove redundant ones.
Specifically, for an entity pair p in frame Fi, We calculate
the cosine similarity score between the visual content in the
bounding box of entity pair p in frame Fi and in frame Fj :

Sim(Fi, Fj) =
pibbox · p

j
bbox

∥pibbox∥ · ∥p
j
bbox∥

(12)

The relation predicates in Fj are regarded positive if the cor-
responding similarity confidence is greater than the threshold
and can be used as candidate relation predicates for the entity
pair p.

3.4 Training
We consider the training loss for both object distribution and
relation predicate classification. For frame Ft, which contains
no entities and np entity pairs, there are nr predicates be-
tween an entity pair, (e.g., ⟨person − touching − food⟩ and
⟨person − holding − food⟩ occur simultaneously). Specifi-
cally, we optimize the model parameters θ by minimising cost
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as follows:

θ̂ = argmin
θ

np∑
pn=1

nr∑
m=1

Lmatch

(
r∗pn,m, rθ(pn,m)

)
+

no∑
l=1

Lmatch

(
o∗l , oθ(l)

) (13)

where r∗pn,m and o∗l denote ground-truth relation predicates
and entity categories respectively. Lmatch

(
r∗pn,m, rθ(pn,m)

)
and Lmatch

(
o∗l , oθ(l)

)
are entropy-based log-likelihood match-

ing cost functions, which are defined as:

Lmatch

(
rpn,m, r∗θ(pn,m)

)
=

− 1{c∗pn,m ̸=∅}logP
(
crθ(pn,m) = cr∗pn,m

) (14)

Lmatch

(
o∗l , oθ(l)

)
= −1{c∗l ̸=∅}logP

(
coθ(l) = co∗l

)
(15)

where 1{·} is an indicator function, crθ(pn,m) and coθ(l) denote
logits of relation predicates and entities distribution.

4 Experiments
4.1 Dataset
We train and evaluate our model on the Action Genome (AG)
dataset [Ji et al., 2020], which describes relationships over
time. It regularly selects some frames in the video and anno-
tates the position information of entities and the relationships
between entity pairs. AG contains 17M human-object relation-
ship instances with 35 object categories and 25 relation predi-
cates categories. These 25 relation predicates are subdivided
into three different types, which are attention relationships,
spatial relationships and contact relationships.

4.2 Evaluation Metrics
Following the scene graph generation task, we evaluate our
framework in three different modes: Predicate classification
(PREDcls): given the ground-truth bounding box and entity
categories, predict relation predicates between entities. Scene
Graph classification (SGcls): given the ground-truth bounding
box, predict entity categories and relation predicates between
entities. Scene graph detection (SGdet): given an image,
predict bounding boxes and categories of entities, and relation
predicates between entities. For SGcls and SGdet, we can not
obtain the full ground-truth entities information directly, so we
utlize a detector to detect objects. The detection strategy is that
the predicted box is considered correctly when it has at least
0.5 IoU (Intersection over Union) overlap with the ground-
truth box. We adopt the widely used Recall@K metrics (K =
[10, 20, 50]) to evaluate our model, which calculates the recall
in the most important (top-1) relation predicates.

4.3 Implementation Details
In this section, we introduce the details of the experimental
setting and dataset.

Detector. Following previous work, we adopt Faster R-
CNN with ResNet-101 as the backbone network to detect
objects.

Parameter Settings. For the feature detector, we map the
visual features to a vector of dimension 512 and the semantic
features of the object categories to a vector of dimension 300.
The MLPs in the paper are three-layer fully connected network
and the hidden layer dimension is set to 512.

Training Details. In the grafting stage, we adopt the origi-
nal RelTR model [Cong et al., 2022], changing only the output
number of the classifier. The Action Genome dataset [Ji et
al., 2020] is converted to COCO-format for fine-tuning. The
RelTR model is fine-tuned for total 20 epochs with mini-batch
size 8 in this stage. The initial learning rates of the classifier
are unchanged and the learning rates of the other layers are
multiplied by 0.9 of the initial learning rate. In the reassem-
bling stage, we train the temporal dependency model (TDM)
by SGD optimizer for total 15 epochs with mini-batch size 1.
The initial learning rate is set to 1e-5 and adjusted to 5e-6 after
the 5 epochs of training and to 1e-6 after 10 epochs of training.
In the noise filter (NFT), we set the similarity threshold to 0.9.

4.4 Comparisons with State-of-the-Arts
To verify the superiority of GTR, we compared it with 8
state-of-the-art scene graph generation methods on the Ac-
tion Genome dataset [Ji et al., 2020].

VRD [Lu et al., 2016] propose a relationship detection
method, training two separate vision models, one to recognise
objects and the other to recognise relationships.

Motif Freq [Zellers et al., 2018] investigate the problem
of producing structured graph representations of visual scenes
and propose a new stacked motif networks for capturing higher
order motifs.

MSDN [Li et al., 2017b] propose a new end-to-end neural
network model to exploit the interconnections across different
semantic levels.

VCTREE [Tang et al., 2019] propose to compose dynamic
tree structures that place the objects in an image into a visual
context, helping scene graph generation.

RelDN [Zhang et al., 2019] improve the relationship de-
tection network and propose a corresponding contrastive loss
construction method that accurately identifies the specific rela-
tionship between two entities.

GPS-Net [Lin et al., 2020] propose a graph property sens-
ing network that fully explores the edge direction information,
the difference in priority between nodes and the long-tailed
distribution of relationships.

STTran [Cong et al., 2021] propose a spatial-temporal
transformer model to identify the relationships between enti-
ties.

AP-Net [Li et al., 2022] propose anticipatory pre-training
paradigm based on transformer to model the temporal corre-
lation of visual relationships, consider both global and local
information.

As shown in Table 1, our framework outperforms the previ-
ous state-of-the-art method in all evaluation metric, improves
it 1.8% on PREDcls-R@10, 1.5% on SGcls-R@10 and 1.6%
on SGdet-R@10. From the experimental results, we can ob-
serve that our framework shows greater improvement with
R@10 than with R@20 and R@50, which can indicate that
our framework has high prediction efficiency in both PREDcls,
SGcls and SGdet, i.e., more correct relation predicates can be
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Methods Predicate Classification Scene Graph Classification Scene Graph Detection Mean
R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

VRD 51.7 54.7 54.7 32.4 33.3 33.3 19.2 24.5 26.0 36.6
Motif Freq 62.4 65.1 65.1 40.8 41.9 41.9 23.7 31.4 33.3 45.1

MSDN 65.5 68.5 68.5 43.9 45.1 45.1 24.1 32.4 34.5 47.5
VCTREE 66.0 69.3 69.3 44.1 45.3 45.3 24.4 32.6 34.7 46.9

ReIDN 66.3 69.5 69.5 44.3 45.4 45.4 24.5 32.8 34.9 48.1
GPS-Net 66.8 69.9 69.9 45.3 46.5 46.5 24.7 33.1 35.1 48.6
STTran 68.6 71.8 71.8 46.4 47.5 47.5 25.2 34.1 37.0 50.0
AP-Net 69.4 73.8 73.8 47.2 48.9 48.9 26.3 36.1 38.3 51.4

GTR (w/o RS) 68.3 71.9 71.9 46.1 46.8 46.8 25.0 34.1 37.2 49.8
GTR 71.2 74.5 74.5 48.7 49.7 49.7 27.9 37.0 39.9 52.6

Table 1: Experimental results on Action Genome [Ji et al., 2020]. "RS" denotes Reassembling Stage. The best result is in bold.

NFT Mask Strategy TDM SGdet
R@20 R@50

✔ ✔ ✔ 37.0 39.9
✘ ✔ ✔ 36.1 39.0
✘ ✘ ✔ 35.5 38.5
✘ ✘ ✘ 34.1 37.2

Table 2: Results of ablation study.

Context Attention Temporal Attention SGdet
R@20 R@50

✔ ✔ 37.0 39.9
✘ ✔ 35.1 37.9
✔ ✘ 34.7 37.5

Table 3: Results of the ablation of context/temporal attention.

generated with a small number of recalls. It is worth noting
that the complete GTR has a significant performance improve-
ment compared to the GTR without the reassembling stage
phase, which indicates that the modeling temporal contextual
information is the key to our framework.

4.5 Ablation Study
In this section, we conduct experiments to verify the effective-
ness of the components in the reassembling stage.

Impact of Noise Filter (NFT). NFT is proposed to filter
the redundant static relation predicates generated by the graft-
ing stage. We investigate the impact of NFT by removing
it. The results in the second row of Table 2 demonstrate the
effectiveness of using NFT to remove redundant static relation
predicates, leading to a significant increase in their availability.

Impact of Mask Strategy. To capture the fine-grained
temporal dependencies in the video, we propose the mask
strategy in the temporal attention module. As shown in the
third row of Table 2 result, the performance of the framework
degrades to a certain extent when removing mask strategy,
demonstrate that mask strategy can improve the extraction
process of temporal dependencies, leading to enhancement of
temporal attention module performance.

Method Precision

holding −→ drinking from holding −→ eating

STTran 21/30 19/30
GTR 25/30 25/30

Table 4: The precision of distinguish similar consecutive actions.
We select two samples (i.e., holding and drinking from, holding and
eating), each containing 30 sets. Compared to STTran [Cong et
al., 2021], GTR can predict the consecutive actions more accurately
based on the accurate spatio-temporal interaction.

Impact of Temporal Dependency Model (TDM). We in-
vestigate the impact of TDM by removing it. Dropped results
in the fourth row of Table 2 demonstrate that TDM can com-
prehensively understand the temporal contextual information
in the video. Moreover, we further investigate the impact of the
two modules in the TDM (shown in Table 3), demonstrating
that both temporal attention and context attention are critical.

4.6 Analysis
In this section, we conduct further analytical experiments to
evaluate our framework.

Performance of Spatio-temporal Interaction. We evalu-
ate the performance of spatio-temporal interaction by having
the GTR distinguish consecutive actions with similar visual
content. We selected two most common samples for evaluation
in Action Genome [Ji et al., 2020], where each sample con-
tains two consecutive actions with highly similar visual feature,
i.e., holding −→ drinking from and holding −→ eating.
The results are shown in Table 4. Compared to STTran [Cong
et al., 2021], our GTR achieves superior performance in dis-
tinguishing consecutive actions with temporal dependencies
demonstrate that our framework can better capture spatio-
temporal interactions.

Number of Video Data. we investigate the effect of the
training video data magnitude on the performance of GTR.
we initially started the experiment using 40% of the data1,

1Video data magnitude below 40% can result in entity and relation
predicate categories not being fully covered.
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Figure 4: Qualitative results of our framework. We generate the scene graphs with top-1 confidence relation predicate. Incorrect relation
predicates are colored with gray.

AP-Net with 100% training data

AP-Net with 100% training data

AP-Net with 100% training data

Figure 5: Results of our proposed framework training with different
numbers of video data. The green dashed line indicates the results
obtained by the previous sota method with full video data training.

increasing it by 10% each time. As shown in Figure 5, GTR
outperform the previous state-of-the-art method in SGdet with
50% data training. When the training data reaches 60%, GTR
can outperform the previous state-of-the-art method in all
modes. These observations validate our motivation that GTR
can achieve excellent performance without the need for exten-
sive video data training.

Number of Candidate Static Relation Predicates. We
investigate the effect of the number of candidate relation pred-
icates on our framework by adjusting the number of predi-
cate recalled in the grafting stage. The results are shown in
Figure 6. As the number of candidates K increases (the re-
lation predicates may be recurring), the performance of our
framework (green fold line) gradually improves and the best
performance is achieved at K=30. However, when the number
of recalled candidates K=40, the accuracy of the static relation
predicates (red fold line) still improves but the performance
of our framework decreases, indicating that the framework
captures redundant relation predicates, which will weaken the
performance of our framework.

4.7 Qualitative Results
The qualitative results are shown in Figure 4. We select two
consecutive frames from the video, where the blue boxes are

Figure 6: Results of our proposed framework with different numbers
of static relation predicates. The red fold line represents the correct
percentage of the K candidate static relation predicates recalled. The
green fold line represents the result of the framework on SGdet-
R@50.

the correct detection results and the pink boxes are the correct
relation predicates and the gray boxes are the incorrect relation
predicates. The scene graphs are generated with the top-1
confidence relation predictions. The case shows that our model
can detect most of the relationships. Some relation predictions
could not be predicted due to unclear visual features (e.g., look
at). Compared to previous model [Cong et al., 2021], our
framework is able to accurately predict actions based on time
dependence even the action is not obvious (e.g., touch).

5 Conclusion

In this paper, we propose a Grafting-Then-Reassembling
(GTR) framework for dynamic scene graph generation to de-
couple spatio-temporal contextual information in video. We
firstly graft a static scene graph generation model to generate
static visual relationships within frames. Then, we introduce
the temporal dependency model to extract temporal dependen-
cies across frames. Finally, we explicitly reassemble the static
visual relationships into dynamic scene graphs. Experimental
results on the benchmark dataset demonstrate the effectiveness
of our proposed framework.
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