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Abstract
Referring image segmentation aims to segment an
object out of an image via a specific language ex-
pression. The main concept is establishing global
visual-linguistic relationships to locate the object
and identify boundaries using details of the im-
age. Recently, various Transformer-based tech-
niques have been proposed to efficiently leverage
long-range cross-modal dependencies, enhancing
performance for referring segmentation. However,
existing methods consider visual feature extraction
and cross-modal fusion separately, resulting in in-
sufficient visual-linguistic alignment in semantic
space. In addition, they employ sequential struc-
tures and hence lack multi-scale information inter-
action. To address these limitations, we propose a
Scale-Wise Language-Guided Vision Transformer
(SLViT) with two appealing designs: (1) Language-
Guided Multi-Scale Fusion Attention, a novel at-
tention mechanism module for extracting rich lo-
cal visual information and modeling global visual-
linguistic relationships in an integrated manner. (2)
An Uncertain Region Cross-Scale Enhancement
module that can identify regions of high uncer-
tainty using linguistic features and refine them via
aggregated multi-scale features. We have evalu-
ated our method on three benchmark datasets. The
experimental results demonstrate that SLViT sur-
passes state-of-the-art methods with lower compu-
tational cost. The code is publicly available at:
https://github.com/NaturalKnight/SLViT.

1 Introduction
Referring segmentation refers to the task of segmenting an
object based on a given text description that may contain in-
formation about the target’s action, category, color, position
in the image, etc [Cheng et al., 2014; Hu et al., 2016]. It
has a promising application prospects in many fields, such
as language-based man-machine interaction. Unlike the con-
ventional semantic and instance segmentation tasks, referring
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Figure 1: Comparison of existing Transformer-based architectures
((a) and (b)) for referring segmentation with our SLViT (c).

segmentation task requires precise perception of the loca-
tions of different objects in an image, making global visual-
linguistic relationships modeling indispensable. Moreover,
effective edge detection of the target objects requires details
of the image, necessitating high-quality local visual features.

In contrast to linear fusion methods [Hu et al., 2016;
Liu et al., 2017] adopting Fully Convolutional Networks
(FCN) for feature learning and prediction, various attention
mechanisms [Shi et al., 2018; Ye et al., 2019] have been pro-
posed to learn rich visual-linguistic information. Transform-
ers can naturally model long-distance dependencies via atten-
tion mechanisms, which are well suited to cross-modal fusion
and hence an appropriate choice for referring segmentation
task. Therefore, several Vision Transformer (ViT) [Dosovit-
skiy et al., 2020] methods have been put forth which signif-
icantly improve performance for this task. Figure 1(a) il-
lustrates a Transformer-based architecture for referring im-
age segmentation, i.e., VLT [Ding et al., 2021], which fuses
vision and language features after vision feature extraction
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Figure 2: Qualitative results of different approaches. The prediction masks for the image with the referring text “the first half of the sandwich
to the left” and “top left bowl” are shown in (a)-(d) and (e)-(h), respectively.

through encoders. The architecture shown in Fig.1(b) is em-
ployed in EFN [Feng et al., 2021] and LAVT [Yang et al.,
2022]. This architecture includes a fusion module at the end
of each stage to fuse extracted visual features with linguistic
modality information. The existing Transformer-based de-
signs take advantage of long-range dependencies and hier-
archical structure to enhance performance, although Trans-
former designs can be further improved. Specifically, visual
feature extraction and cross-modal fusion are considered into
two independent steps in the existing works, which leaves
room for improvement in visual-linguistic alignment in se-
mantic space. Additionally, current approaches adopt se-
quential structures that result in single-scale representations
at each level, despite the fact that multi-scale feature interac-
tion has been shown to be more beneficial for capturing the
core semantic information.

By revisiting previous successful works and analyzing re-
quirements of the referring segmentation task, we argue a ef-
fective method for such task should have the following char-
acteristics: (i) A robust fusion encoder network to capture
local visual and global visual-linguistic information. To ac-
curately pinpoint the target instance with varying character-
istics, both rich local visual features and positional global
cross-modal relationships are crucial. (ii) Multi-scale infor-
mation interaction to capture cross-scale dependencies and
address complex scale differences. For dense prediction
tasks like referring segmentation, the incorporation of com-
plementing information from multiple scales is helpful.

Therefore, taking the aforementioned analysis into ac-
count, we propose a novel referring image segmentation ar-
chitecture (in Figure 1(c)), namely Scale-Wise Language-
Guided Vision Transformer (SLViT). In SLViT, we propose
an integrated vision-language encoder network design, with
a novel attention mechanism called Language-Guided Multi-
Scale Fusion Attention (LMFA) to comprehensively extract
multi-scale local visual features and model global cross-
modal relationships. It improves visual-linguistic alignment
in semantic space in a lightweight manner. As shown in
Figure 2(a)-(c), LMFA significantly improves performance
in locating objects. Considering the spatial correlation be-
tween patches at different scales through downsampling, it
is beneficial to perform interactions at different scales of the

same region for feature refinement. Furthermore, there are
regions where the semantic information is temporarily uncer-
tain, making targeted cross-scale enhancement needed. We
design a cross-scale feature fusing module named Uncertain
Region Cross-Scale Enhancement (URCE) to identify regions
of high uncertainty, represented by variance of cross-modal
attention scores between scales, and then refine features of
the regions using complementary information from multiple
scales. The accuracy of boundary identification is improved
by URCE, which is qualitatively shown in Figure 2(e)-(h).

In summary, our contributions are three-folded:
1. We propose Language-Guided Multi-Scale Fusion At-

tention (LMFA) module in our integrated vision-
language encoder with the ability of integrated local vi-
sual feature extraction and global cross-modal relation-
ships modeling in referring segmentation. LMFA im-
proves visual-linguistic alignment in semantic space.

2. We design a multi-scale feature fusion module named
Uncertain Region Cross-Scale Enhancement (URCE).
URCE uses the variance of cross-modal correlations be-
tween adjacent stages to identify regions of high uncer-
tainty and refines features of these regions with comple-
menting information from multiple stages, which helps
in identifying satisfactory boundaries.

3. Based on the aforementioned moudules, we design a
novel framework named SLViT for referring segmenta-
tion task. We conducted thorough experiments on SLViT
with three benchmark datasets, and the experimental re-
sults show that SLViT outperforms current state-of-the-
art methods with lower computational cost.

2 Related Works
Referring segmentation. For referring segmentation, the
early methods [Hu et al., 2016; Liu et al., 2017; Li et
al., 2018] directly concatenate visual and linguistic features,
adopting FCN for cross-modal feature learning and predic-
tion, lacking attention to the relationship between modalities.
Differently, numerous attention-based fusion methods have
been proposed for this task. Vision-guided linguistic attention
[Shi et al., 2018] and Cross-Modal Self-Attention module [Ye
et al., 2019] are proposed to learn visual content correspond-
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Figure 3: An illustration of SLViT. First, the input image and referring expression pass the embedding block and language encoder BERT
respectively to get visual feature V1 and linguistic feature L, which are sent to Integrated Vision-Language Encoder. Encoders learn useful
cross-modal features Fi, i ∈ {1, 2, 3, 4} and records the correlation maps Si, i ∈ {1, 2, 3, 4} between the two modalities, in which Language-
Guided Multi-Scale Fusion Attention (LMFA) captures local visual details and global visual-linguistic cues. The Uncertain Region Cross-
Scale Enhancement (URCE) then identifies uncertain regions in the image and enhances patches in Fi, i ∈ {1, 2, 3, 4} corresponding to them,
which interacts among different scales. Finally, the reinforced features F̃i, i ∈ {1, 2, 3, 4} are sent to the decoder block for final segmentation.

ing to verbal expression. [Hu et al., 2020] capture the mu-
tual guidance between two modalities by a bi-directional re-
lationship inferring network. [Yu et al., 2018] and [Huang et
al., 2020] use knowledge about sentence structure to capture
attributes in cross-modal features, while [Hui et al., 2020]
exploits syntactic structures between words to guide cross-
modal context aggregation. Recently, Transformer-based
methods have improved the ability to model long-distance
cross-modal dependencies and made significant progress in
referring segmentation. A VLT framework with encoder-
decoder is proposed in [Ding et al., 2021] using attention
mechanism to enhance global context information. In EFN
[Feng et al., 2021], a collaborative attention mechanism is
presented to gradually refine multi-modal features using lan-
guage and promote cross-modal expression. LAVT [Yang et
al., 2022] achieves the early fusion of linguistic and visual
features between encoders of ViT.

Vision transformer and multi-scale architecture. Trans-
former models have been widely used for several computer
vision tasks. The ViT model applies self-attention in shal-
low layers enhancing performance for vision tasks. Since
the computational complexity of self-attention is a quadratic
polynomial in the number of tokens, it is difficult to di-
rectly apply it to a large number of tokens. Therefore,
in order to improve the performance of fine-grained tasks
such as segmentation, various attention mechanisms have
been developed in some recent works [Liu et al., 2021b;
Ren et al., 2022; Wang et al., 2021; Guo et al., 2022]
to reduce computational cost while retaining valuable vi-

sual information. Various studies [Zheng et al., 2021;
Gu et al., 2022] using Transformer with multi-scale designs
for segmentation tasks have been presented using knowl-
edge between different scales. For referring segmentation
task, many Transformer-based methods [Ding et al., 2021;
Feng et al., 2021; Yang et al., 2022] exploiting sequential
structures have been proposed. These methods leverage se-
quential structures and lack sufficient multi-scale interaction.

3 Scale-Wise Language-Guided Vision
Transformer

3.1 Overview
The proposed SLViT learns local visual and global visual-
linguistic cues within scales in an integrated way as well as
modeling inter-scale dependencies of uncertain regions. The
structure of SLViT is shown in Figure 3.

In a hierarchical manner, we propose the [integrated
vision-language encoder] - [cross-scale enhancement] - de-
coder framework. The encoder (Sec.3.2) includes a novel
lightweight attention module (Sec.3.3) that uses simultaneous
multi-scale convolutional operations and gated cross-modal
attention to capture local visual features and global visual-
linguistic correlations. We also propose to use variance be-
tween adjacent stages of cross-modal correlation to assess the
uncertainty of regions in the image. For regions of high un-
certainty, we design a novel cross-scale feature fusion module
(Sec.3.4) to automatically refine mutual regions at different
scales via the complementary information among them. Fi-
nally, the enhanced representations are sent to the decoder
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block (Sec.3.5) for the final prediction. In the following sub-
sections, we describe each components of SLViT in detail.

3.2 Integrated Vision-Language Encoder
In order to improve the alignment of visual-linguistic features
in semantic space, we propose an integrated vision-language
encoder to capture visual and cross-modal features in an in-
tegrated way. The block structure of our encoder follows
the design of ViT [Dosovitskiy et al., 2020] but we design
a novel attention mechanism (Sec.3.3) replacing the conven-
tional self-attention mechanism.

As shown in Figure 3(a), our encoder has a pyramid struc-
ture, which contains 4 stages with decreasing spatial reso-
lutions. There are Ni blocks in our encoder for i-th stage.
Given input of a pair of an image and a referring expression,
our model outputs a segmentation mask for the specified in-
stance. We extract language features via a language encoder
BERT [Devlin et al., 2018]. The language feature provided
into encoders are denoted as L ∈ RCl×T , where Cl is the
number of channel, T is the number of words. The given
image passes through an embedding block to obtain initial
vision input V1 ∈ RCv1×H1×W1 of the encoder, where Cv1 is
the number of channels, H1 and W1 are height and width of
the feature maps in first stage. Each stage contains a down-
sampling block and a stack of integrated vision-language en-
coders. The down-sampling block consists of a convolution
with stride of 2 and kernel size of 3× 3, followed by a batch
normalization layer. For each stage, the stack of integrated
cross-modal feature maps Fi can be represented as:

Fi =

{
Ilve(V1, L), i = 1

Ilve(Down(Fi−1), L), i = 2, 3, 4
(1)

where function Down(·) indicates the down-sampling block,
function Ilve(·) indicates blocks in our encoder to catch in-
tegrated cross-modal features, i indexes the stage. We obtain
the visual inputs of stages 2, 3, 4 through Vi = Down(Fi−1).

3.3 Language-Guided Multi-Scale Fusion
Attention

As depicted in Figure 3(b), our proposed attention mecha-
nism, namely Language-Guided Multi-Scale Fusion Atten-
tion (LMFA), contains four parts: a convolution operation
to capture preliminary local feature, a multi-scale convolu-
tional activation to aggregate multi-scale local visual features,
a gated cross-modal activation to aggregate global visual-
linguistic relationships, and a 1 × 1 convolution operation to
model relationships between branches. In i-th stage, given
the visual input Vi ∈ RCvi×Hi×Wi and the linguistic input
L ∈ RCl×T , we obtain the preliminary local visual feature
map V Local

i employing a 5× 5 convolution operation.

Multi-scale convolutional activation. There are three con-
current convolutional branches with different kernel sizes
to capture local features of different receptive fields, which
has spatial inductive-bias in modelling rich local visual in-
formation. Multi-scale convolutional activation Attconvi ∈
RCvi×Hi×Wi can be obtained using the following equation:

Attconvi =
3∑

t=1

ConvtR(ConvtC(V
Local
i )), (2)

where t indexes the convolutional branch, ConvtR indicates
a 1 × kt convolution function for horizontal linear features,
ConvtC indicates a kt × 1 convolution function for vertical
linear features. The strip-like convolution kernels aims in ob-
taining detailed local visual information with low cost.
Gated cross-modal activation. We utilize a gated cross-
modal attention to model global visual-linguistic relation-
ships. The steps to get gated cross-modal activation
Attcrossi ∈ RCvi×Hi×Wi are described as follows:

Viq = flatten(ωiq(Vi)), (3)
Lik, Liv = ωik(L), ωiv(L), (4)

Si = V T
iqLik, (5)

Attcrossi = Gate(unflatten(softmax(
Si√
Cl

)LT
iv)), (6)

where ωiq , ωik, ωiv are projection functions, Gate(·) indi-
cates a 1×1 convolution and a GELU function, flatten(·)
means unrolling the two spatial dimensions into one dimen-
sion in row-major, and unflatten(·) indicates the opposite
operation. Here, Si ∈ RHiWi×T is the attention scores be-
tween the Viq and Lik, which represents the degree of corre-
lation between two modalities. In the last block of each stage,
Si is provided to URCE. ωiq is implemented as a 1×1 convo-
lution followed by instance normalization with Cvi number
of output channels. Each of ωik and ωiv is implemented as a
1× 1 convolution with Cvi number of output channels.
Integrated attention. We apply a convolution to coordi-
nate convolutional branches and the cross-modal branch ob-
taining integrated attention weights and reweight the input Vi

of LMFA. We obtain the integrated cross-modal feature map
Fi ∈ RCvi×Hi×Wi using the following equation:

Fi = Conv1×1(Attconvi +Attcrossi + V Local
i )⊙ Vi, (7)

where ⊙ is element-wise matrix multiplication operation, and
Conv1×1 indicates a 1×1 convolution function to model rela-
tionships between branches.

3.4 Uncertain Region Cross-Scale Enhancement
Multi-scale information is crucial for capturing boundary de-
tails. To optimize spatial correspondence and minimize re-
dundancy, we propose an Uncertain Region Cross-Scale En-
hancement (URCE) module. URCE targets high-uncertainty
regions and facilitates interaction across scales within our hi-
erarchical model. Refer to Figure 3(c) for the URCE pipeline.
Uncertain region extraction. Considering computational
cost and efficiency, we perform cross-scale enhancement only
for the regions with the highest uncertainty.

Visual-linguistic correlation of each patch in i-th stage is
indicated by Ri ∈ HviWvi, which is obtained by Ri =∑Cl

1 Si. Here, Si is the cross-modal attention score map
from LMFA in i-th stage. The variation of visual-linguistic
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Figure 4: An illustration of the Uncertain Region Cross-Scale En-
hancement.

correlation Ri at each coordinate between adjacent stages is
used to represent the uncertainty of the corresponding region
in the image. We select K most uncertain regions to utilize
cross-scale enhancement. The steps are described as follows:

mapU =
4∑

i=2

|Down(Ri)−Down(Ri−1)|, (8)

Index = TopK(mapU ), (9)

where mapU ∈ Hv4Wv4 means uncertainty map of each co-
ordinate, which is obtained by the correlation difference be-
tween adjacent stages. Here, Down(·) indicates function to
downsample Ri into size of feature maps of 4-th stage, and
TopK(·) indicates the function to find the array index of un-
certain regions with largest K values in the array mapU .

The K uncertain regions marked by Index, which corre-
spond to patches in different scales, are first rearranged into
2D tensor. Let pji denotes the patch of j-th uncertain region
in i-th stage. As an example of K = 2, Figure 4(b) illustrates
the process of finding the target patches in three successive
feature maps Fi, Fi+1, Fi+2 from i-th to (i+2)-th stage with
sample inputs (in Figure 4(a)).

Cross-scale fusing attention. We model cross-scale clues
for uncertain patches correlated spatially, as shown in Figure
4(c). For j-th uncertain region, patches from multiple stages
are passed through Channel Unify to have the same channel
dimension Cf . Then we concatenate them to obtain cross-

scale feature P j
cross corresponding to j-th uncertain region,

which can be described as follows:

Concat[ωp(p
j
1), ωp(p

j
2), ωp(p

j
3), ωp(p

j
4)] −→ P j

cross, (10)

where pji ∈ 2iCv × h
2i

w
2i is the feature map of j-th uncertain

patch in i-th stage, h and w are size of patches in first stage,
and ωp indicates functions to unify the channel to Cf and to
rearrange the feature map into 2D tensor. Then we model
cross-scale dependencies as follows:

˜
P j
cross = MSA(LN(P j

cross)) + P j
cross, (11)

where LN(·) indicates the layer normalization operator, and
MSA(·) indicates multi-head self-attention. Then we reverse
the enhanced sequence back to patches according to the order
of concatenation:

ωreverse
p (Split(

˜
P j
cross)) −→ ˜

pj1,
˜
pj2,

˜
pj3,

˜
pj4, (12)

where ωreverse
p indicates Channel Reverse. Here, ωreverse

p

and Split(·) are inverse operations of previous operations ωp

and Concat[·], respectively. Then we employ Uncertain Re-

gion Restore that replaces pji with ˜
pji to obtain final cross-

modal feature maps F̃i for each stage.

3.5 Decoder and Segmentation
After cross-scale enhancement, a decoder network is em-
ployed to capture high-level semantics. We aggregate fea-
tures F̃1, F̃2, F̃3, F̃4 from URCE and use a lightweight Ham-
burger [Geng et al., 2021] to further model the global context.
We obtain the final prediction results by the following equa-
tion:

Out = Seg(Ham(Concat[F̃1, F̃2, F̃3, F̃4])), (13)

where Fi is the cross-modal feature maps from stages,
Ham(·) indicates a Hamburger function, and Seg(·) indi-
cates a 1×1 convolution and an upsampling function for final
prediction.

4 Experiments
4.1 Dataset and Evaluation
We perform experiments on three widely used benchmark
datasets for referring image segmentation, including Ref-
COCO [Yu et al., 2016], RefCOCO+ [Yu et al., 2016], and
G-Ref [Mao et al., 2016; Nagaraja et al., 2016]. They have
19,994, 19,992, and 26,711 images respectively, containing
50,000, 49,856, and 54,822 references and 142,209, 141,564,
and 104,560 reference expressions.

Following previous works [Wang et al., 2022; Yang et
al., 2022], we evaluate our proposed method with overall
intersection-over-union (oIoU), mean intersection-over-union
(mIoU), and precision at various thresholds. The oIoU is the
ratio between the total intersection area and the total union
areas. Precision refers to the proportion of test samples with
IoU values higher than the threshold.
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Method
Language RefCOCO RefCOCO+ G-Ref
Model val test A test B val test A test B val(U) test(U) val(G)

MAttNet [Yu et al., 2018] Bi-LSTM 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 -
CMSA [Ye et al., 2019] None 58.32 60.61 55.09 43.76 47.60 37.89 - - 39.98
CAC [Chen et al., 2019b] Bi-LSTM 58.90 61.77 53.81 - - - 46.37 46.95 44.32
STEP [Chen et al., 2019a] Bi-LSTM 60.04 63.46 57.97 48.19 52.33 40.41 - - 46.40
BRINet [Hu et al., 2020] LSTM 60.98 62.99 59.21 48.17 52.32 42.11 - - 48.04
LSCM [Hui et al., 2020] LSTM 61.47 64.99 59.55 49.34 42.12 43.50 - - 48.05
CMPC+ [Liu et al., 2021a] LSTM 62.47 65.08 60.82 50.25 54.04 43.47 - - 49.89
MCN [Luo et al., 2020b] Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
EFN [Feng et al., 2021] Bi-GRU 62.76 65.69 59.67 51.50 55.24 43.01 - - 51.93
BUSNet [Yang et al., 2021] Self-Att 63.27 66.41 61.39 51.76 56.87 44.13 - - 50.56
CGAN [Luo et al., 2020a] Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
ISFP [Liu et al., 2022] Bi-GRU 65.19 68.45 62.73 52.70 56.77 46.39 52.67 53.00 50.08
LTS [Jing et al., 2021] Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
VLT [Ding et al., 2021] Bi-GRU 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
ReSTR [Kim et al., 2022] Transformer 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - -
CRIS [Wang et al., 2022] Transformer 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 -
LAVT [Yang et al., 2022] BERT 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50
Ours (w/o URCE) BERT 73.34 75.98 70.21 63.72 68.81 55.72 62.74 63.23 60.55
Ours BERT 74.02 76.91 70.62 64.07 69.28 56.14 62.75 63.57 60.94

Table 1: Comparison with state-of-the-art methods in terms of overall IoU on three benchmark datasets. U: The UMD partition. G: The
Google partition. Language model shows the the main learnable function that transforms word embeddings before multi-modal feature
fusion.

4.2 Implementation Details
We conduct experiments using PyTorch library and use
BERT implementation from HuggingFace’s Transformer li-
brary [Wolf et al., 2020]. Convolutions in LMFA’s convolu-
tional branches and our decoder are initialized with weights
pre-trained on ImageNet-22K from the SegNeXt [Guo et al.,
2022]. Language encoder of our model is initialized using
official pre-trained weights of BERT with 12 layers and hid-
den size 768. In convolutional branches of LMFA, we use
k1 = 7, k2 = 11, k3 = 21 kernel sizes for our convolutions.
The rest of weights in our model are randomly initialized.

Following, we use AdamW optimizer with weight decay
0.01. The learning rate is initialed as 3e-5 and scheduled by
polynomial learning rate decay with a power of 0.9. All the
models are trained for 60 epochs with a batch size of 16. Each
reference has 2-3 sentences on average, and we randomly
sample one referring expression per object in a epoch. Im-
age size is adjusted to 480× 480 without data augmentation.

4.3 Comparison with the State-of-the-Arts
We compare the performance of our proposed method with
state-of-the-art methods on three widely-used datasets using
the oIoU metric. Experimental results are reported in Table 1
and the best results are highlighted in bold. As shown, our
SLViT without Uncertain Region Cross-Scale Enhancement
(w/o URCE) outperforms all other methods. This has an im-
provement of 1.58 oIoU over the Val Split set of the Ref-
COCO+ dataset, while on average an improvement of 0.83
oIoU across all 9 validation sets of the three datasets. It
indicates the efficacy of integrated vision-language encoder
with LMFA to improve visual-linguistic alignment in seman-
tic space. It is helpful in capturing detailed local visual fea-

(a) Params.(M)

GFLOPs oIoU

Ours

LAVT

VLT

EFN

225.68

181.33

203.7

191.71

153.1

273.36

↓

↓ ↑

74.02

133.59

52.22

72.73

62.72

65.65

132.03

50.04

Ours

73.34

(b) 

(w/o URCE)

Figure 5: (a) Ablation study using different numbers of uncer-
tain regions. (b) Comparison of our SLViT (w/o URCE), SLViT
with Transformer-based methods EFN, VLT and LAVT on Params,
GFLOPs and oIoU.

tures and modeling global visual-linguistic relationships in
an integrated manner. Additionally, an increment of oIoU
(+0.93 at most) is achieved when utilizing URCE, which
achieves the new SOTA on these datasets. Furthermore, our
proposed SLViT uses significantly less GFLOPs and parame-
ters than previously proposed Transformer-based approaches
while achieving a higher oIoU score, as shown in Figure 5(b).

4.4 Ablation Study
Ablation on LMFA design. We have conducted an abla-
tion study on LMFA design on the RefCOCO validation set.
Results are shown in Table 2(a)(b). ktB indicates the convo-
lutional branch containing a 1× kt convolution and a kt × 1
convolution. Gate represents a 1×1 convolution and a GELU
function in the cross-modal branch, enhancing the network’s
adaptive ability. We employed a single convolution branch in
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P@0.5 P@0.7 P@0.9 Mean IoU Overall IoU
(a) Comparison of kernel sizes with a single convolutional branch

5 B 81.03 70.36 25.88 71.09 69.91
small

7 B 81.80 71.28 26.33 71.83 70.08
11 B 82.17 71.79 27.96 72.63 71.55

medium
15 B 82.23 71.75 27.92 72.60 71.56
21 B 82.68 72.96 29.47 73.02 71.79

large
23 B 82.59 72.78 29.36 72.99 71.77

(b) Ablation on design choices
7B 11B 21B Gate
✓ ✓ 83.26 73.47 29.97 73.44 72.26

✓ ✓ 84.31 73.51 30.11 73.89 72.53
✓ ✓ 84.55 73.64 30.37 74.08 72.68
✓ ✓ ✓ 85.16 74.12 31.00 75.07 73.31
✓ ✓ ✓ ✓ 86.74 75.84 35.10 75.96 74.02
(c) Effectiveness of URCE
SLViT(w/o URCE) 85.23 74.57 31.36 75.29 73.34
SLViT(w/ URCE) 86.74 75.84 35.10 75.96 74.02
(d) URCE on various stages
S1 S2 S3 S4

✓ ✓ 85.66 74.59 30.73 74.49 72.97
✓ ✓ ✓ 86.42 75.51 35.17 75.50 73.76

✓ ✓ ✓ 86.48 75.65 33.79 75.45 73.66
✓ ✓ ✓ ✓ 86.74 75.84 35.10 75.96 74.02
(e) Features used for final prediction
F2, F3, F4 84.87 74.13 30.39 75.09 73.27
F1, F2, F3, F4 85.23 74.57 31.36 75.29 73.34
F̃2, F̃4, F̃4 86.12 75.23 34.79 75.57 73.86
F1, F̃2, F̃4, F̃4 85.52 74.43 33.11 75.45 73.64
F̃1, F̃2, F̃3, F̃4 86.74 75.84 35.10 75.96 74.02

Table 2: Ablation studies on the RefCOCO validation set.

LMFA to evaluate the impact of various convolution kernel
sizes kt. In Table 2(a), sizes 7 and 21 show superior per-
formance among those with comparable computational costs.
Observing Table 2(b), it follows that each part contributes to
the final performance.

Number of uncertain regions to enhance. We explore the
number of uncertain regions K to utilize cross-scale enhance-
ment. In Figure 5(a), when increasing the number of selected
uncertain regions, the oIoU metrics increase sharply at the be-
ginning and then tends to stabilize. The increase in the value
of K is linearly correlated with the increasement of comput-
ing cost. We choose K = 32 as the default setting.

Effectiveness of URCE. To verify the performance of
URCE, we have compared SLViT to SLViT (w/o URCE) in
Table 2(c). It shows this ablation leads to a drop of 0.68 and
0.67 absolute point in overall IoU and mean IoU respectively,
and a drop of an average of 2.18 points in precision across the
three thresholds. In addition, Ours and Ours (w/o URCE) in
Figure 5(b) also show that URCE improves performance with
a slight increase in parameters and GFLOPs.

Ablation of URCE on various stages. Given integrated
cross-modal features from different stages, URCE forms cor-
responding regions of them into a sequence for joint refine-
ment in single forward pass. Si means the integrated cross-
modal feature Fi from i-th stage used as input for URCE.
Multiple input sequences are compared in the Table 2(d). The

“ guy in back”

𝐹1

෩𝐹1 ෪𝐹2 ෪𝐹3 ෪𝐹4

𝐹2 𝐹3 𝐹4

Ground Truth SLViT

SLViT (w/o URCE)

𝑌1 𝑌2 𝑌3 𝑌4LAVT

Figure 6: Visualization of the feature maps from different stages in
LAVT, SLViT (w/o URCE) and SLViT, respectively.

performance boost shows the benefit of multi-scale feature in-
teraction and detailed context in global reasoning.

Ablation of features used for final prediction. We con-
duct several experiments to assess the influence of the de-
coder with various sequences as input. As shown in Ta-
ble 2(e), features F̃1, F̃2, F̃3, F̃4 , which are enhanced by
URCE, are the best choices to be sent to the decoder network.

4.5 Interpretation of SLViT
In Figure 6, we visualize the feature maps from LAVT [Yang
et al., 2022], our SLViT (w/o URCE) and SLViT. Comparing
F1, F2, F3, F4 from our SLViT (w/o URCE) to Y1, Y2, Y3, Y4

from LAVT’s various stages, the feature maps F1 to F4 grad-
ually focus on the target instance and show more visual-
linguistic alignment in semantic space as stages go deeper.
It indicates that in LMFA, multi-scale convolutional activa-
tion learns valuable local visual information, and gated cross-
modal activation is useful in identifying the relative position
of the target object. We interpret the role of URCE by com-
paring the segmentation results and the feature maps Fi, F̃i.
Impressively in F2 and F̃2, the fence as the background in F̃2

has been eliminated, which indicates that URCE is able to fil-
ter out irrelevant objects. As F3 and F̃3 are being observed,
the edge of the target object in F̃3 is more concerned. There-
fore, URCE can eliminate interference items and improve the
accuracy of boundary prediction by cross-scale enhancement
of uncertain regions.

5 Conclusion
In this paper, we propose a novel Transformer-based frame-
work named SLViT for referring image segmentation. SLViT
captures rich local visual features and models global visual-
linguistic relationships in an integrated manner at each stage.
The proposed network design interacts cross-modal features
of uncertain regions between different scales with spatial cor-
respondence. Experiments show that SLViT outperforms ex-
isting methods on three benchmark datasets with lower com-
putational cost.
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