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Abstract
In this paper, we propose a novel image forgery
detection paradigm for boosting the model learn-
ing capacity on both forgery-sensitive and genuine
compact visual patterns. Compared to the existing
methods that only focus on the discrepant-specific
patterns (e.g., noises, textures, and frequencies),
our method has a greater generalization. Specifi-
cally, we first propose a Discrepancy-Guided En-
coder (DisGE) to extract forgery-sensitive visual
patterns. DisGE consists of two branches, where
the mainstream backbone branch is used to extract
general semantic features, and the accessorial dis-
crepant external attention branch is used to extract
explicit forgery cues. Besides, a Double-Head Re-
construction (DouHR) module is proposed to en-
hance genuine compact visual patterns in different
granular spaces. Under DouHR, we further intro-
duce a Discrepancy-Aggregation Detector (DisAD)
to aggregate these genuine compact visual patterns,
such that the forgery detection capability on un-
known patterns can be improved. Extensive experi-
mental results on four challenging datasets validate
the effectiveness of our proposed method against
state-of-the-art competitors.

1 Introduction
Advanced image co-editing and synthesis methods make it
cushy for people to tamper with images [Zhu et al., 2020;
Rombach et al., 2022]. For example, objects and external
properties of these objects in a given image can be completely
interpolated via a few texts [Kawar et al., 2022]. Although
these progressive methods can increase the diversity and in-
terest of images, on the other hand, they cause a new problem
that people’s confidence in the information expressed in im-
ages is reduced [Cao et al., 2022; Fei et al., 2022]. Besides,
tampered images may also be used in some malicious occa-
sions (e.g., fake news and deliberate slanders), thus bringing
potential social harms [Hu et al., 2021; Zhang et al., 2022a;
Sun et al., 2022b; Li et al., 2020a]. Therefore, exploring ef-
fective image forgery detection methods is urgent.

∗Corresponding author: Dong Zhang.

In recent years, thanks to the immense progress of image
processing technologies based on the deep learning mecha-
nism [He et al., 2016; Zhang et al., 2020], ample seman-
tic features greatly improve the recognition accuracy of im-
age forgery detection [Wang and Deng, 2021; Zhuang et al.,
2022] on both the image-level and the pixel-level [Jiang et
al., 2020; Sun et al., 2021; Zhao et al., 2021]. However, off-
the-shelf deep learning methods cannot achieve satisfactory
results in the face of some challenging forgery cases (e.g.,
unusual tampering areas and marginal tampering clues). To
address this problem and improve the accuracy, some recent
approaches use specific operators (e.g., BayerConv [Chen et
al., 2021b], Sobel operator [Chen et al., 2021b], and fre-
quency filter [Fei et al., 2022]) to extract discrepant-specific
patterns (e.g., noises, textures, and frequencies) as a supple-
mentary for the recognition model. What these methods have
commonly is that they use a mainstream backbone network
and an additional auxiliary network to extract implicit and ex-
plicit semantic features, respectively [Sun et al., 2022b; Wang
and Deng, 2021; Zhuang et al., 2022; Chen et al., 2021b;
Zhao et al., 2021]. However, these methods usually need
to generate temporary supervisions via intermediate feature
maps, which are inherently not accurate enough, thus hurting
the recognition effectiveness.

What’s more, the generalization capacity of existing meth-
ods is somewhat limited – due to their overemphasis on the
consequence of the explicit discrepant (i.e., the tampered re-
gion) features, which limits their latent usage scope. To be
specific, only learning some specific types of tampering pat-
terns is far from pragmatism, because we cannot suppose
tampering manners [Cao et al., 2022; Yoshihashi et al., 2019;
Chen et al., 2021a]. To improve the generalization capacity,
it is helpful to learn a set of compact visual patterns, which
inherently contain some general image properties, e.g., the
concurrent local textures, the consistent regional resolutions,
and the continuous bright changes [Robert et al., 2018; Cao et
al., 2022; Yoshihashi et al., 2019]. For image forgery detec-
tion, to achieve this goal, some work demonstrated that image
reconstruction is an effective approach [Wang et al., 2022b;
Li et al., 2022b]. The reconstructed output has rich compact
patterns and suppresses local forgery regions. However, the
existing methods are usually equipped with a single recon-
struction head, which suffers from problems of tedious fea-
ture representations and inadequate reasoning ability.
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Figure 1: Overall architecture of our DisGRL, which mainly consists of: a Discrepancy-Guided Encoder (DisGE), a decoder, a Double-Head
Reconstruction (DouHR) module, and a Discrepancy-Aggregation Detector (DisAD) head network for image forgery classification.

In this paper, we propose a novel image forgery detec-
tion paradigm, named Discrepancy-Guided Reconstruction
Learning (DisGRL), to improve the model learning capacity
on both the forgery-sensitive and the genuine compact visual
patterns. As illustrated in Figure 1, DisGRL consists of four
components: a Discrepancy-Guided Encoder (DisGE), a de-
coder, a Double-Head Reconstruction (DouHR) module, and
a Discrepancy-Aggregation Detector (DisAD) head network.

Specifically, the proposed DisGE (ref. Sec. 3.1) is used
to extract forgery-sensitive visual patterns, which consists of
two branches: a mainstream backbone branch is used to ex-
tract the general semantic features, and an accessorial dis-
crepant external attention branch is used to extract the explicit
forgery visual cues. Thereby, DisGE is more suitable for the
image forgery detection task than the common backbone net-
works (e.g., convolutional neural networks and vision trans-
former). In the decoder, three progressive attention feature se-
lection modules are employed in Fi to connect feature maps
from the corresponding encoder network layer, which finally
has the same scale as F2. We also propose a DouHR mod-
ule (ref. Sec. 3.2) based on the decoder, which can enhance
the genuine compact visual patterns in two separate granular
spaces via an image reconstruction manner. To be specific,
in the DouHR module, an Attention-guidance Feature Selec-
tion (AFS) procedure and a Similarity Aggregation Module
(SAM) are used to extract the vision-based and the reasoning-
based genuine compact visual patterns, respectively. Based
on the DouHR, we further introduce a DisAD head network
(ref. Sec. 3.3) for image forgery classification, which can ag-
gregate the obtained genuine compact visual patterns via a
Reconstruction-guidance Feature Aggregation (RFA) mod-
ule, resulting in an improved forgery detection capability on
unknown patterns. Therefore, compared to the existing meth-
ods that only focus on these discrepant-specific patterns, our
proposed DisGRL has a stronger generalization capability.
To demonstrate the superiority of DisGRL, extensive experi-

ments are carried out on four commonly used yet challenging
face forgery detection datasets. Results validate that our Dis-
GRL can achieve state-of-the-art performance on both seen
and unseen forgeries.

Our contributions are as follows: 1) We propose a novel
DisGRL for image forgery detection, which contains three
proposed components for learning both forgery-sensitive and
genuine compact visual patterns. 2) Extensive experimental
results on four challenging datasets validate that DisGRL can
achieve state-of-the-art performance against competitors.

2 Related Work
Image forgery can be viewed as a game of AI v.s. AI since
the majority of detection technologies are based on deep
learning. In the past, many efforts have been made to im-
prove the performance of natural/face image forgery detec-
tion [Fei et al., 2022; Haliassos et al., 2021; Gu et al., 2022;
Zhang et al., 2021]. Extensive work uses a two-branch ar-
chitecture to mine specific forgery patterns, such as noises
or frequency domain features in combination with RGB spa-
tial data, in light of the fact that altered images are getting
more visually realistic [Li et al., 2022a; Chen et al., 2021a;
Masi et al., 2020; Qian et al., 2020; Li et al., 2021; Wang et
al., 2022a]. SOLA [Jia et al., 2022] fuses multimodal features
from RGB and high-frequency features extracted by a DCT
transformation in an extra branch for more general represen-
tations. As a complementary of RGB, the model in [Fei et
al., 2022] introduces subtle noise features via learnable high
pass filters with anomalies in local regions also performed
well in unseen forgeries [Zhang et al., 2020; Yan et al., 2023;
Zhang et al., 2022a]. Despite their remarkable performance,
their models for obtaining specific forgery patterns only re-
flect certain aspects of the forgery, which might lead to model
bias or sub-optimization.

Recently, some advanced methods are proposed to improve
the model generalization capacity such as exploiting con-
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trastive learning to guide the recognition model focus on local
content inconsistencies [Sun et al., 2022b; Shi et al., 2023;
Zhang et al., 2022b], introducing domain adaptation to al-
leviate overfitting on a single domain [Rao et al., 2022;
Sun et al., 2021; Rao and Ni, 2021], and/or enhance feature
representation with an information-theoretic self-information
metric for forgery detection [Sun et al., 2022a]. These meth-
ods achieve both great performances under intra-dataset (i.e.,
seen) and cross-domain (i.e., unseen) evaluations. Unlike
these methods that explore the local level inconsistencies, our
method focuses more on forgery-sensitive and genuine com-
pact visual patterns, which can improve both model’s accu-
racy and generalization.

3 Our Approach
DisGRL is proposed to improve the model learning capacity
on both the forgery-sensitive and the genuine compact visual
patterns. Our contributions lie in presenting: a Discrepancy-
Guided Encoder (DisGE), a Double-Head Reconstruction
(DouHR) module, and a Discrepancy-Aggregation Detector
(DisAD) head network for image forgery classification. An
overview architecture of DisGRL is illustrated in Figure 1.
The input is an RGB image X, and the output is a binary
predicted label ŷ, which indicates whether the input image is
forged or not. In the following, we detail the implementations
of each proposed component.

3.1 Discrepancy-Guided Encoder (DisGE)
To capture forgery-sensitive visual patterns, we propose a
DisGE, which consists of two parallel branches, where the
mainstream backbone based on Xception network [Chollet,
2017] is used to extract multi-level semantic features, i.e.,
Fi (i = 1, 2, . . . , 5), and the Discrepancy External At-
tention (DEA) branch is applied to different level feature to
extract explicit discrepant-specific pattern, which are usually
subtle and occur in local regions. As shown in Figure 1, fea-
tures from different Xception layers are combined in a cas-
caded manner by DEA block. The specific operation of each
DEA block’s output Di is expressed as:

Di =

{
Dea(Fi), i = 1
Dea(Cat(Di−1,Fi)), i ∈ [2, 3, 4]

(1)

where Dea(·) and Cat(·) denote each DEA block and feature
concatenation along the channel dimension, respectively.

For each DEA block, as shown in Figure 2, we first ap-
ply a 3 × 3 convolutional layer on the input feature maps
F ∈ RC×H×W with the same channel size C. Then, an
adaptive average pooling is used to obtain the pooled fea-
tures Fd. After that, the differentiated maps can be obtained
through D′ = F − Fd to extract the discrepant information.
Inspired by [Guo et al., 2023], two 1D convolutions that share
the same parameters are further introduced to characterize the
global features of the entire map. Concretely, given a differ-
entiated input D′ ∈ RC×H×W, after reshaping and 1D con-
volution, feature maps are up-sampled four times in channel
size. And 1D convolution and a reshape function are applied
again to restore the original feature map size. Finally, the
output feature map D can be obtained through a 1 × 1 con-
volution and a residual connection.
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Figure 2: Illustration of the proposed Discrepancy External Atten-
tion (DEA) block, which is proposed to extract the forgery-sensitive
visual patterns in the Discrepancy-Guided Encoder network.

3.2 Double-Head Reconstruction (DouHR)
Reconstruction learning has been proven to be beneficial to
several image forgery detection works by exploring rich com-
pact visual patterns [Cao et al., 2022; Wang et al., 2022b;
Li et al., 2022b]. In this work, we propose DouHR module
based on the decoder to enhance the genuine compact visual
patterns in two separate granular spaces (i.e., AFS and SAM)
via an image reconstruction manner, such that the model can
not only learn a rich genuine compact visual pattern but also
further suppress the visual representation of the local forgery
regions. As shown in Figure 1, besides X̂1 that is generated
by an Attention-guidance Feature Selection (AFS) proce-
dure in extracting the vision-based genuine compact visual
patterns via convolutions, we introduce an extra Similarity
Aggregation Module (SAM) for extracting the reasoning-
based genuine compact visual patterns via secondary recon-
struction X̂2. The DouHR module can be formulated as:

X̂1 = AFS(FAFS3
,F1), X̂2 = SAM(FAFS3

,F1), (2)

where FAFS3 indicates the output feature maps of the third
AFS procedure in the decoder. In DouHR, we adjust the num-
ber of channels from the output of the SAM and AFS modules
to 3 by applying a 1 × 1 convolution. After that, we use bilin-
ear interpolation to adjust the feature map size to match the
input image size.

AFS. In the decoder, three AFS modules receive the out-
put of the previous AFS module and feature maps of the cor-
responding level in the mainstream backbone as input. For
example, the inputs to the third AFS are FAFS2 and F2. In
DouHR, AFS receives the FAFS3 and as F1 input. The con-
catenating operation Cat(·) is first carried out on FAFS3

and
F1 in the channel dimension, i.e., F̃ = Cat(FAFS3 ,F1),
followed by a depthwise separable convolution fd3 to obtain
attention map Aatt with the same shape as input features and
suppress the unimportant region of feature information trans-
mitted by decoder output, so that model pays more attention
to the genuine compact visual patterns. Finally, a residual
connection operation is applied to obtain the output. The
above process can be expressed as follows:

Aatt = σ(fd3(F̃)),

A = fd3(fd3(F̃)⊙Aatt) + fc3(F̃),
(3)

where fc3 and σ(·) are the 3 × 3 convolution layer and sig-
moid activaion function, respectively. Other AFS procedures
are calculated in a similar way.
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Figure 3: Illustration of Similarity Aggregation Module (SAM), which can extract the reasoning-based genuine compact visual patterns.

SAM. To inject detailed global features into high-level se-
mantic features using a global reasoning reconstruction, in-
spired by [Dong et al., 2021], we introduce non-local op-
eration under graph convolution operation [Lu et al., 2019;
Zhang et al., 2022b] to implement SAM. As shown in Fig-
ure 3, for the given feature map FAFS3 , we first apply three
1 × 1 convolutions (i.e., Wρ,Wθ, and Wφ) to reduce the
channel dimension into 16, and obtain feature maps Fθ, Fφ,
which can be expressed as:

Fθ = Wθ(Wρ(FAFS3)), Fφ = Wφ(Wρ(FAFS3)). (4)

For F1, we down-sample it to the same size as Wρ(FAFS3
).

Then we apply a Softmax function along the channel dimen-
sion and calculate the element-wise multiplication with Fφ

for assigning different weights to different pixels and increas-
ing the weight of edge pixels. And an adaptive pooling opera-
tion Avp(·) is utilized to reduce the displacement of features.
In summary, the processing can be formulated as:

Fw = Avp(Fφ ⊙ softmax(D(F1))), (5)

where D(·) and softmax(·) denote the down-sampling and
Softmax functions, respectively. After that, the matrix multi-
plication and Softmax function are used to establish the cor-
relation between Fφ and Fw, which can be expressed as:

Fcor = softmax(Fw ⊗ (Fφ)
T ). (6)

The correlation attention map Fcor is multiplied with the fea-
ture map Fθ, and the resulting map is fed to the graph con-
volutional newtwork (GCN). Same to [Dong et al., 2021], re-
constructing the graph domain features into the original struc-
tural features as follows:

G′ = Fcor
T ⊗GCN(Fcor ⊗ Fθ). (7)

Finally, the reconstructed features G′ are combined with the
features Wρ(FAFS3) to obtain the output G:

G = Wρ(FAFS3
) +Wz(G

′), (8)

where Wz denotes 1 × 1 convolution.

3.3 Discrepancy-Aggregation Detector (DisAD)
The double-head reconstructed forged images essentially dif-
fer from the input forged images in visual appearance [Cao
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Figure 4: Illustration of Reconstruction-guidance Feature Aggrega-
tion (RFA) module, which can aggregate the obtained genuine com-
pact visual patterns, such that the forgery detection capability on
unknown patterns can be improved.

et al., 2022]. To further explore the probable forgery re-
gions within reconstructed images, based on the DouHR
module, we further introduce a DisAD head network via
two Reconstruction-guidance Feature Aggregation (RFA)
modules to aggregate the obtained genuine compact visual
patterns (i.e., X̂1 of AFS and X̂2 of SAM), resulting in an
improved forgery detection capability on unknown patterns
(i.e., the greater generalization capability).

As shown in Figure 1, we first calculate the differences
between two reconstructed images (i.e., X̂1 and X̂2) and the
original input image X in discrepancy-aggregation detector.
The pixel-level difference masks are expressed as:

R̂1 =
∣∣∣X− X̂1

∣∣∣ , R̂1 =
∣∣∣X− X̂2

∣∣∣ , (9)

where |·| refers to the absolute value function. Then for RFA
in Figure 4, given difference masks R̂1 or R̂2 and the summa-
tion of textural discrepancy information and encoding feature
Fe = D4 ⊕ F5, we perform an element-wise multiplication
between them with a residual connection and a 3 × 3 convo-
lution to obtain the fused features Fd:

Fd = fc3(Fe ⊙ (σ(fc3(D(R̂1/2))))⊕ Fe), (10)

where D denotes down-sampling and fc3 is 3 × 3 convolu-
tion. σ is a sigmoid function and ⊕ is element-wise addi-
tion. To enhance feature representations, inspired [Wang et
al., 2020], we aggregate the features Fd using a channel-wise
global average pooling (GAP). Then the channel weight is
obtained by the 1D convolution followed by a sigmoid func-
tion. Finally, the channel attention is multiplied with the input
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features Fd to obtain the final output FRFA, i.e.,

FRFA = fc1(σ(f1d(GAP (Fd)))⊙ Fd), (11)

where fc1 is 1 × 1 convolution and f1d is 1D convolution.

3.4 Loss Function
DisGRL has two kinds of supervision: the image-level bi-
nary classification label based on the cross-entropy loss (i.e.,
Lcls), and the pixel-level reconstruction learning label. Dur-
ing training, we employ the reconstruction loss (Lr1 and
Lr2) [Cao et al., 2022] between real images and their two
reconstructed images. Besides, a metric-learning loss (i.e.,
Lm) [Cao et al., 2022] based on F5 is used to enhance the
reconstruction difference to facilitate model learning. Thus,
the total loss can be expressed as:

Ltotal = Lcls + λ1Lr1 + λ2Lr2 + λ3Lm, (12)

where λ is a trade-off hyper-parameter for loss balance.

4 Experiments
4.1 Experimental Settings
Datasets. To facilitate a fair result comparison with state-
of-the-art methods, we conducted experiments on four funda-
mental yet challenging face forgery datasets, including Face-
Forensics++ (FF++) [Rössler et al., 2019], Celeb-DF [Li et
al., 2020b], WLD [Zi et al., 2020], and DFDC [Dolhansky et
al., 2019]. Due to the page limit, details of each dataset are
given in supplementary materials.
Implementation Details. We implemented our model on the
PyTorch framework and used Xception [Chollet, 2017] pre-
trained on ImageNet [Deng et al., 2009] as our mainstream
backbone. The input face images are resized into 299 ×
299 and augmented by random horizontal flipping. In the
training phase, the batch size is set to 32, and Adam opti-
mizer [Kingma and Ba, 2015] with learning rate 1e-4, and
weight decay 1e-5 are adopted to optimize the model. The
step learning rate strategy with a gamma of 0.5 is utilized to
adjust the learning rate. Following [Cao et al., 2022], λ1, λ2,
and λ3 in Eq. (12) are empirically set to 0.1.
Evaluation Metrics. In this work, we reported results on the
commonly used evaluation metrics [Cao et al., 2022; Sun et
al., 2022b; Zhuang et al., 2022], including Accuracy (ACC),
Area Under the Curve (AUC), and Equal Error Rate (EER).

4.2 Quantitative Results
To demonstrate the effectiveness of our proposed method,
we compare it with the state-of-the-art methods, i.e., Xcep-
tion [Rössler et al., 2019], Two-branch [Masi et al., 2020],
SPSL [Liu et al., 2021], RFM [Wang and Deng, 2021], Freq-
SCL [Li et al., 2021], Add-Net [Zi et al., 2020], F3-Net [Qian
et al., 2020], MAT [Zhao et al., 2021], RECCE [Cao et al.,
2022], ITA-SIA [Sun et al., 2022a], Multi-task [Nguyen et
al., 2019], MLDG [Li et al., 2018], LTW [Sun et al., 2021],
and DCL [Sun et al., 2022b]. For a fair comparison, all exper-
imental results of these methods which we employ for com-
parisons are either explicitly cited from works or generated
by models that are retrained with open-source codes.

Intra-Dataset Evaluation. Table 1 shows result compar-
isons with our DisGRL against 10 competitors under intra-
dataset evaluations. We can observe that DisGRL consis-
tently outperforms other models on FF++ [Rössler et al.,
2019], WLD [Zi et al., 2020], and DFDC [Dolhansky et al.,
2019]. Especially on the challenging WLD, our method still
surpasses the second-best RECCE by 1.25% in terms of AUC.
This suggests that when confronted with more identities from
real-world scenes, our method owns the superior ability to
detect discrepancies between real faces and fake ones. On
Celeb-DF [Li et al., 2020b], though ITA-SIA achieves the
highest AUC, our DisGRL still achieves comparable results
on the other datasets, especially on the low-quality setting of
the FF++ (↑ 1.74%). Different from ITA-SIA which intro-
duces a self-information metric to enhance the feature rep-
resentation, DisGRL produces a more robust representation
through double-head reconstruction, which works well in
conjunction with single reconstruction for forgery detection.
Cross-Dataset Evaluation. To explore the generalization of
our method on unseen datasets compared with recent general
face forgery detection methods, we focus on the more chal-
lenging cross-dataset evaluation. Table 2 reports the quanti-
tative results by training the models on FF++ (LQ) [Rössler
et al., 2019] and testing them on Celeb-DF [Li et al., 2020b],
WLD [Zi et al., 2020], and DFDC [Dolhansky et al., 2019],
accordingly. It can be concluded that our method achieves a
certain improvement in generalization ability by taking good
advantage of double-head reconstruction structures. In partic-
ular, the AUC score of our method on Celeb-DF (↑ 1.32%),
WLD (↑ 2.42%), and DFDC (↑ 1.83%) datasets is enhanced
when compared with RECCE. Overall, our method promotes
the extraction of genuine compact visual patterns and can be
generalized to unseen forgeries rather than modeling the pat-
tern of the single forgery techniques.
Cross-Manipulation Evaluation. To further demonstrate
the generalization among different manipulated manners, we
conduct the fine-grained cross-manipulation evaluation by
training a model on one specific method and testing it on
all four methods listed in FF++ (LQ). As shown in Table 3,
our DisGRL generally outperforms the competitors in most
cases, including both intra-manipulation (diagonal of the ta-
ble) results and cross-manipulation. Specifically, when train-
ing on NT and testing on F2F, though MAT is equipped with
EfficientNet-b4, our DisGRL based on Xception still outper-
forms it by a margin of 2.69%. Additionally, a 2.41% per-
formance gain in terms of AUC is achieved by our method
compared with RECCE, which illustrates that it is feasible
to explore common features of real faces to distinguish real
and fake faces. With help of the double-head reconstruction
strategy and carefully designed cascaded discrepancy exter-
nal attention, our method exceeds all other methods in terms
of the average AUC of cross-manipulation evaluations.
Multi-Source Manipulation Evaluation. Multi-source ma-
nipulation evaluation refers to situations in which the forged
techniques utilized for training are not restricted to just one
way. Following the LTW [Sun et al., 2021] and DCL [Sun
et al., 2022b], we conduct experiments on the low-quality
(LQ) version of FF++ [Rössler et al., 2019] to demonstrate
the practicality of our method in real-world scenarios. As
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Methods Pub./Year FF++ HQ FF++ LQ Celeb-DF WLD DFDC

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Xception ICCV’19 95.73 96.30 86.86 89.30 97.90 99.73 77.25 86.76 79.35 89.50
Two branch ECCV’20 96.43 98.70 86.34 86.59 – – – – – –

Add-Net ACM MM’20 96.78 97.74 87.50 91.01 96.93 99.55 76.25 86.17 78.71 89.85
F3-Net ECCV’20 97.52 98.10 90.43 93.30 95.95 98.93 80.66 87.53 76.17 88.39

SPSL CVPR’21 91.50 95.32 81.57 82.82 – – – – – –
RFM CVPR’21 95.69 98.79 87.06 89.83 97.96 99.94 77.38 83.92 80.83 89.75

Freq-SCL CVPR’21 96.69 99.28 89.00 92.39 – – – – – –
MAT CVPR’21 97.60 99.29 88.69 90.40 97.92 99.94 82.86 90.71 76.81 90.32

RECCE CVPR’22 97.06 99.32 91.03 95.02 98.59 99.94 83.25 92.02 81.20 91.33
ITA-SIA ECCV’22 97.64 99.35 90.23 93.45 98.48 99.96 83.95 91.34 – –
DisGRL IJCAI’23 97.69 99.48 91.27 95.19 98.71 99.91 84.53 93.27 82.35 92.50

Table 1: Intra-dataset evaluation and result comparisons on four benchmarks. “HQ” and “LQ” denote the High-Quality version and the
Low-Quality version of the corresponding dataset, respectively. The top three results are highlighted in red, green, and blue, respectively.

Methods Celeb-DF WLD DFDC

AUC EER AUC EER AUC EER

Xception 61.80 41.73 62.72 40.65 63.61 40.58
F3-Net 61.51 42.03 57.10 45.12 64.60 39.84

Add-Net 65.29 38.90 62.35 41.42 64.78 40.23
RFM 65.63 38.54 57.75 45.45 66.01 39.05
MAT 67.02 37.90 59.74 43.73 68.01 37.17

RECCE 68.71 35.73 64.31 40.53 69.06 36.08
DisGRL 70.03 34.23 66.73 39.24 70.89 34.27

Table 2: Cross-dataset result evaluation on FF++ (LQ), Celeb-DF,
WLD, and DFDC in terms of AUC ↑ (%) and EER ↓ (%).

shown in Table 4, we can observe that our DisGRL obtains
cutting-edge performance in terms of AUC and ACC on all
protocols. In particular, DisGRL outperforms the recent DCL
by around 7% in the setting of GID-F2F, proving its durability
and ability to ensure generalization under various scenarios.

4.3 Ablation Study
To validate the effectiveness of each component, we designed
several ablation experiments on the WildDeepfake dataset in
varied configurations with the components added progres-
sively. As shown in Table 5, the setup model variants are
as follows: for the baseline model of a), we follow the classic
image classification pipeline, i.e., Xception [Chollet, 2017].
b) and c) the encoder-decoder backbone with the introduc-
tion of a single-head reconstruction (Rec-1 or Rec-2) learn-
ing scheme. d), the encoder-decoder backbone equipped with
double-head reconstruction (Rec-1 and Rec-2). For the model
of e), we remove the RFA and adopt the element-wise addi-
tion to replace it, f) is the proposed DisGRL without DEA,
and g) is our DisGRL.
Effectiveness of DouHR. We can observe in Table 5 that the
double-head reconstruction learning module performs better
than the baseline model of a) and its variant b), c) Baseline +
single-head. Therefore, Rec-2, as the complementary infor-
mation of Rec-1, aims to capture the genuine compact visual
pattern of real regions and fake regions, which is beneficial to
boost detection performance.

Methods Train DF F2F FS NT CAvg.

Freq-SCL

DF

98.91 58.90 66.87 63.61 63.13
MAT 99.51 66.41 67.33 66.01 66.58

RECCE 99.65 70.66 74.29 67.34 70.76
DisGRL 99.67 71.76 75.21 68.74 71.90

Freq-SCL

F2F

67.55 93.06 55.35 66.66 63.19
MAT 73.04 97.96 65.10 71.88 70.01

RECCE 75.99 98.06 64.53 72.32 70.95
DisGRL 75.73 98.69 65.71 74.15 71.86

Freq-SCL

FS

75.90 54.64 98.37 49.72 60.09
MAT 82.33 61.65 98.82 54.79 66.26

RECCE 82.39 64.44 98.82 56.70 67.84
DisGRL 82.73 64.85 99.01 56.96 68.18

Freq-SCL

NT

79.09 74.21 53.99 88.54 69.10
MAT 74.56 80.61 60.90 93.34 72.02

RECCE 78.83 80.89 63.70 93.63 74.47
DisGRL 80.29 83.30 65.23 94.10 76.27

Table 3: Cross-manipulation evaluation in terms of AUC (%). Di-
agonal results indicate intra-domain performance. DeepFakes (DF),
Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT) are four
image manipulation approaches in FF++ [Rössler et al., 2019].
“CAvg.” denotes the average of cross-manipulation evaluations.

Effectiveness of DisGE. Then the model of e) DisGRL w/o
RFA achieves better overall performance compared with the
model of d) Baseline + double-head, especially in terms of
AUC with 1.37 % performance gains. It verifies that DEA
enhances the model’s efficiency to mine the forgery-sensitive
visual pattern within the instance by cascading shallow and
deep features in the encoder to focus on image forgery cues
rather than on semantic image content. Therefore, it is feasi-
ble to improve the classification learning capabilities of the
detector when combined with the integrated representation
collected by the decoder, leading to a larger performance in-
crease for variation e) DisGRL w/o RFA.
Effectiveness of DisAD. The comparison between variants
d) Baseline + double-head and f) DisGRL w/o DEA in Ta-
ble 5 can demonstrate the effectiveness of our proposed RFA,
which aggregates the obtained genuine compact visual pat-
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Figure 5: Reconstruction and differential visualization of the proposed model on the FaceForensics++ dataset. “Rec-1” and “Rec-2” are the
double reconstructions results. “Diff-1” and “Diff-2” denote the corresponding pixel-level difference, respectively.

Methods GID-DF GID-F2F GID-FS GID-NT

Multi-task 66.8/– 56.5/– 51.7/– 56.0/–
MLDG 67.2/73.1 58.1/61.7 58.1/61.7 56.9/60.7

LTW 69.1/75.6 65.7/72.4 62.5/68.1 58.5/60.8
DCL 75.9/83.8 67.9/75.1 –/– –/–

DisGRL 77.3/86.1 75.8/84.3 76.9/86.3 66.3/72.8

Table 4: Multi-source results on ACC (%)/AUC (%).

NO B Rec-1 Rec-2 DEA RFA ACC AUC

a) ✓ 77.13 86.21
b) ✓ ✓ 80.76 88.47
c) ✓ ✓ 81.37 88.94
d) ✓ ✓ ✓ 82.84 90.98
e) ✓ ✓ ✓ ✓ 83.68 92.35
f) ✓ ✓ ✓ ✓ 83.24 91.68
g) ✓ ✓ ✓ ✓ ✓ 84.53 93.27

Table 5: Ablation studies on WildDeepfake [Zi et al., 2020] in terms
of ACC (%) and AUC (%).

tern and emphasizes the probably forged regions. And com-
bining all the proposed components can achieve the best per-
formance in terms of ACC and AUC scores.

4.4 Visualizations
Our proposed reconstruction learning aims to preserve more
variations by building a double-head reconstruction scheme.
To validate its effectiveness, as illustrated in Figure 5, we vi-
sualize the outputs of the two reconstructions and the cor-
responding difference masks between the original input and

reconstruction maps. We can observe that the real faces can
be well reconstructed with little blurring, while the forged
portions of the fake ones cannot be recovered. Difference
masks, indicating possible traces of forged areas, further am-
plify the differences between real and forged faces. Com-
pared with Diff-1, Diff-2 is able to additionally enhance and
complement the forged areas in faces. For instance, NT op-
erates around the mouth region and the response in Diff-1 of
the corresponding sample is weak around the mouth region,
while the value is larger in Diff-2, illustrating the importance
and usefulness of an additional head for reconstruction in im-
age forgery detection.

5 Conclusion
In this work, we proposed a novel image forgery detection
paradigm, termed DisGRL, to improve the model learning ca-
pacity on forgery-sensitive and genuine compact visual pat-
terns. DisGRL primarily consisted of a discrepancy-guided
encoder, a decoder, a double-head reconstruction module, and
a discrepancy-aggregation detector head network. The ad-
vantage of DisGRL was that it can not only encode general
semantic features but also enhance the forgery cues of the
given image. Experimental results on four widely used face
forgery datasets validated the effectiveness of our proposed
method against state-of-the-art competitors on both seen and
unseen forgeries. DisGRL is a general paradigm, which can
be used in general image forgery detection tasks. Therefore,
in the future, we will explore how to apply DisGRL to more
challenging natural scene datasets in terms of quantity and
quality. Besides, exploring how to use DisGRL in the forgery
detection of video data is also a promising research direction.
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