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Abstract

Drawings are powerful means of pictorial ab-
straction and communication. Understanding di-
verse forms of drawings, including digital arts,
cartoons, and comics, has been a major prob-
lem of interest for the computer vision and com-
puter graphics communities. Although there are
large amounts of digitized drawings from comic
books and cartoons, they contain vast stylistic vari-
ations, which necessitate expensive manual label-
ing for training domain-specific recognizers. In
this work, we show how self-supervised learning,
based on a teacher-student network with a mod-
ified student network update design, can be used
to build face and body detectors. Our setup al-
lows exploiting large amounts of unlabeled data
from the target domain when labels are provided
for only a small subset of it. We further demon-
strate that style transfer can be incorporated into
our learning pipeline to bootstrap detectors using
a vast amount of out-of-domain labeled images
from natural images (i.e., images from the real
world). Our combined architecture yields detec-
tors with state-of-the-art (SOTA) and near-SOTA
performance using minimal annotation effort. Our
code can be accessed from https://github.
com/barisbatuhan/DASS_Detector.

1 Introduction
Drawings serve as a rich and expressive medium for com-
munication. Here we focus on comic books and cartoons,
which are relatively recent forms of media. They combine
text and graphics in a unique format to convey narratives.
Key problems such as extracting the visual structure of the
scenes, understanding the accompanying text, and modeling
how they connect to form the narrative pose significant chal-
lenges. Hence, understanding comics has been a problem
of interest to computer vision, computer graphics, and NLP
communities.

In drawings, the story is narrated primarily through the
scene’s main characters. Hence, we study on face and body
detection, two primary problems for understanding drawings.

Figure 1: Examples on the adversity of this domain (left: non-
human character, right: samples from different character designs and
styles).

Training face and body detectors is complicated by two chal-
lenges. First, although a tremendous amount of unlabeled
data is available (primarily as digitized comic book pages
and animations), face and body annotations are largely lack-
ing. Second, since character design and drawing style change
substantially across artists, series, and cultures (see Figure
1), each domain inevitably requires domain-specific tuning
to create detectors. In this work, we present a pre-training
pipeline for creating domain-adapted detectors, which ad-
dresses both problems. Our pipeline has two major compo-
nents. The first is a self-learning component that can exploit
vast amounts of unlabeled data from the target domain to cre-
ate detectors that can be tuned with minimal labeled data.
More specifically, we introduce a modified version of teacher-
student architecture to drawings, where we periodically up-
date the student network’s weights with teacher’s after a spe-
cific number of iterations and utilize the OHEM [Shrivastava
et al., 2016] loss with an additional positive and negative con-
fidence threshold limitation for a more stable training. We
show that this self-learning model works best if it starts with
a sufficiently good teacher. This component leads to the sec-
ond key component of our pipeline, which uses style transfer
to transform vast amounts of labeled natural images to create
sufficiently good teacher models by utilizing 11 styles from 4
style transfer algorithms.

We employ a multi-tasking strategy by jointly training the
model for faces and bodies to reduce inference time and to
benefit from the contextual and spatial relationship. To uti-
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Figure 2: Summary of the proposed pipeline.

lize datasets with face-only and body-only annotations, we
use two detection heads: one to predict the faces, and the
other for bodies. Even without drawing domain supervi-
sion, our teacher-student model outperforms previous super-
vised SOTA of DCM 772 [Nguyen et al., 2018] and weakly-
supervised SOTA [Inoue et al., 2018] in most datasets. When
initialized with our pre-trained weights, our supervised model
sets a new SOTA performance for most datasets, even if lim-
ited drawing data is used in training.

2 Related Works
2.1 Detection
With the increasing size of annotated data, models with
high dependence on supervision were able to get good re-
sults (e.g., [Bochkovskiy et al., 2020; Zhang et al., 2020b;
Ge et al., 2021]). [Liu et al., 2021] and [Xu et al., 2021] in-
troduced teacher-student training schemes and gained a sig-
nificant performance boost with a low amount of labeled
data. Unlike this work, these studies target natural images.
Thus, cross-domain detection with these models is prone
to false positives (FP) and negatives (FN). Several studies
have improved the teacher-student scheme to work well in
cross-domain detection. While MTOR [Cai et al., 2019]
exploits object relations in region-level consistency, inter-
graph consistency, and intra-graph consistency, UMT [Deng
et al., 2021] tries to eliminate teacher and student network bi-
ases through distillation and style transferring, D-adapt [Jiang
et al., 2022] adopts an adversarial pipeline to the detector
model, H2FA R-CNN [Xu et al., 2022] utilizes weak su-
pervision and domain classifiers to create a more domain-
invariant model. Although our solution is more similar to
UMT compared to other cross-domain studies, we improve
its style transferring part by mixing multiple styles, we mod-
ify the standard teacher-student training to compensate for the
FP and FN cases, and we change the loss function to force the
model to learn from more confident proposals.

Several studies have been done on face and object detec-
tion, specifically in drawings. [Zhang et al., 2020a] pro-
posed a fully-supervised face detector using only iCartoon-
Face; [Ogawa et al., 2018] trained a detector from Manga

109; [Nguyen et al., 2018] used DCM 772; [Inoue et al.,
2018] utilized Comic2k, Watercolor2k, and Clipart1k. How-
ever, these models are only trained on specific sub-domains
of drawings (i.e., only utilized a single dataset with limited
stylistic coverage). In this study, we leverage unlabeled draw-
ing images from any sub-drawing domain and show that the
performance on drawings can be significantly improved by
using an effective pre-training pipeline and a better detector
architecture.

2.2 Style Transfer
Conversion of natural images to drawings is an unpaired
image-to-image translation task. SOTA models for this task
have been designed with U-Net-like Generative Adversarial
Networks (i.e., down-sampling first and then up-sampling).
We use several cartoonization models to increase the stylis-
tic variety of the pre-training data by selecting 11 styles from
these works: Monet, Van Gogh, Cezanne from CycleGAN
[Zhu et al., 2017]; Shinkai, Hayao, Hosoda, Paprika from
CartoonGAN [Chen et al., 2018]; AS, KH, Miyazaki from
GANILLA [Hicsonmez et al., 2020]; and the default style in
White-Box Cartoonization [Wang and Yu, 2020]. While pre-
vious detection studies on drawings have also utilized style
transfer methods (e.g., [Inoue et al., 2018; Deng et al., 2021]),
we improve on these results by combining multiple styles and
analyzing which styles increase the performance more.

2.3 Datasets
Digitization has made millions of unlabeled drawings reach-
able on the internet. Thousands of old comic book series (e.g.,
Golden Age Comics between the 1930s - 1950s) have been
published on several websites 1 and gathered as an unlabeled
dataset named COMICS [Iyyer et al., 2016]. Newer series
can be obtained through web crawling. Unfortunately, anno-
tated datasets only comprise a small subset of this domain in
terms of stylistic variety and quantity. Regarding the stylistic
distribution of labeled datasets, the majority of iCartoonFace
[Zheng et al., 2020] is retrieved from Asian products (∼74%),
Manga 109 [Matsui et al., 2017] only covers Japanese Manga

1comicbookplus.com and digitalcomicmuseum.com
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styles, DCM 772 [Nguyen et al., 2018] is limited to comics
from Golden Age Era. Although [Inoue et al., 2018] intro-
duces Comic2k, Watercolor2k, and Clipart1k for body detec-
tion, they also remain stylistically bound in their sub-domain.
Currently, none of the available datasets provide comprehen-
sive stylistic coverage. In particular, contemporary US and
Western comics have little if any annotated examples. In
terms of dataset quantity, iCartoonFace contains a significant
amount of face data with its 50,000 training and 10,000 val-
idation images. The situation is a bit more challenging with
body annotations: Manga 109 has ∼21,000 page images, but
the style is limited to black and white mangas. DCM 772
consists of only 772 images. Comic2k, Watercolor2k, and
Clipart1k increase the total labeled data by 2,500 instances.
Building a body detector for drawings that is not fragile to dif-
ferent styles is challenging using only these datasets. Hence,
self-supervised approaches are essential for creating suitable
models for target instances with unseen styles.

3 Methodology
Our training consists of three stages. In the first stage, we use
two large and annotated real-life image datasets, cartoonize
them using style transfer methods, and perform pre-training
for face and body detection. In the second stage, we utilize
the extensive amount of unlabeled comic drawings available
and perform self-supervised training on our pre-trained model
with the modified form of the teacher-student architecture. In
the final stage, we leverage the limited amount of annotated
comic drawings to fine-tune our model. In Figure 2, you can
see a demonstration of our complete pipeline. In the follow-
ing subsections, we describe our base model and the three
stages we propose in more detail.

3.1 Model Architecture
Since the challenge in our domain consists of stylistic vari-
ety in object representations (see Figure 1), we decide that
adopting an object-detector-like model would provide greater
performance, where the architecture is specifically designed
to find multiple objects with various appearances. Secondly,
we aim to use a more robust and simple model with low in-
ference time to focus mainly on the effects of style transfer
and self-supervised training. Therefore, we select one of the
SOTA single-shot non-swin-transformer anchor-free object
detectors, YOLOX [Ge et al., 2021], as our baseline archi-
tecture. However, our pre-training pipeline does not depend
on this specific baseline. Hence it can be applied to any de-
tector.

As discussed in Section 2, COCO [Lin et al., 2014],
WIDER FACE [Yang et al., 2016], and some of the available
drawing datasets do not include both face and body annota-
tions together. To train the model jointly for both face and
body parts and benefit from all the available datasets, we sep-
arate the detection head of the original YOLOX model into
two pieces. Each piece proposes bounding boxes with their
confidence values only for a single class. Our overall archi-
tecture can be seen in Figure 3. During training, the heads are
trained alternately at each forward pass.

3.2 Stage 1: Style Transferred Pre-Training
Preprocessing. We process COCO and WIDER FACE
datasets with 11 different styles. We eliminate all the images
in COCO that do not have people or animals. We also count
animals as bodies during training because drawings may in-
clude animal-like characters. To the best of our knowledge,
no dataset includes annotations for animal faces. Thus, fa-
cial training is solely done through human faces in WIDER
FACE. We discard the images in which a person has a face
with its maximum facial side length smaller than ∼2% of the
image’s minimum side length. These faces are not required in
the dataset since characters in drawings mostly have a bigger
appearance on the image.
Training Experiments. We create 5 different experiments
to test our model’s success at pre-training stage 1:

• Single Styles: We analyze the effect of each style on
the detection performance by training individual models
with only one style transferring method.

• All Styles: We train an additional model by combin-
ing all styles with random selection per each image to
notice if using multiple styles increases the overall per-
formance.

• Best Styles: We choose five styles that result in
the greatest performance individually and train another
model by combining only these to find if selecting the
most effective styles is more logical instead of utilizing
all styles.

• No Style: We train an extra model that uses the original
images without any stylization to observe the benefit of
style transferring.

• No Animals Included: We test the effect of including
animal bodies to body annotations to the performance.
We utilize all of the styles but exclude the animal boxes
from the training data.

3.3 Stage 2: Self-Supervised Pre-Training
Model Architecture. The model consists of two different
network parts: teacher and student. These networks are iden-
tical and initialized from the same pre-trained set of weights
that we obtain from stage 1: style transferred pre-training
with the mixture of all styles. The teacher network processes
a non-augmented complete image and generates bounding
box predictions along with their confidence values. The stu-
dent network also generates predictions, but it processes a
heavily augmented version of the same input image. High-
confidence predictions of the teacher network are further pro-
cessed with the non-maximum suppression (NMS) algorithm,
and the outputs are considered as the pseudo-ground-truth la-
bels of the image. The student network is trained with the
loss computed by using the labels retrieved from the teacher
network. The gradient flow of the teacher network is stopped,
and it is updated at each iteration with respect to the Eq. 1,
where TN is the teacher, SN is the student network weight,
d is a hyper-parameter:

TN = d · TN + (1− d) · SN (1)
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Figure 3: Our complete model architecture.

Although TN is updated with the student weights in earlier
studies, student weights are only changed with backpropaga-
tion. In our experiments, we have seen that this design causes
the development of both modules at the earlier stages but a
significant performance drop in SN in the later iterations due
to the noisy pseudo-ground-truth labels caused by the change
in the input domain between pre-training stage 1 (i.e., car-
toonized natural images) and self-supervised processes (i.e.,
drawings). This drop also affects the performance of TN.
Hence, we load the weights of TN to SN per each Φ itera-
tion to fix the deterioration of SN. Since this step manipu-
lates the values without the gradient flow, an optimizer with
the momentum information may mislead the overall model.
Thus, we change our optimizer to Stochastic Gradient De-
scent (SGD). Our self-supervised architecture can be seen in
Figure 4.

Loss. In Focal Loss, each prediction is included in the con-
fidence loss calculation with a weight that balances the posi-
tive (i.e., predictions in which the actual ground truth object
is present) and negative (i.e., predictions that point to a back-
ground area) boxes. This approach is advantageous in fully
supervised training since the ground truth box areas of every
object in the image are given to the model. On the other hand,
in self-supervised detectors, the high-probability predictions
of the teacher model are selected as pseudo-ground-truth val-
ues, which are prone to false positives (FP) and false nega-
tives (FN). FP cases can be minimized by increasing the con-
fidence threshold for ground truth selection. However, this
choice also increases the FN rate. To further decrease the FN
cases, we follow the OHEM loss [Shrivastava et al., 2016],
where only a subset of predictions are chosen to calculate the
loss. We also modify this loss so that the predictions can be
selected as positive predictions only above a specific confi-
dence threshold and negative predictions below a particular
threshold. Subset selection and this modification help the
model to skip a subset of FN cases of the teacher model in
loss calculations (e.g., if a face/body area is predicted but has

a low confidence value). Loss calculation of a single selected
box proposal can be seen in Eq. 2:

Lconf = −p · ctpos · log(p̂)− (1− p) · ctneg · log(1− p̂)

Lreg =

{w,h,x,y}∑
i

smoothL1(igt, ipred)

Ltotal = Lconf + βLreg

(2)

Lconf is the confidence loss and Lreg is the regression loss.
p ∈ {0, 1} indicates if the box is selected as positive (p = 1)
or negative (p = 0), p̂ ∈ [0, 1] is the confidence value of
the selected box, ctpos ∈ {0, 1} is 1 if the confidence of
the proposed box is above the positive confidence threshold,
ctneg ∈ {0, 1} is 1 if the confidence of the proposed box is
below the negative confidence threshold, {w, h, x, y} are the
width, height, and the center points of the box, β is the bal-
ancing parameter between confidence and regression losses.

Unlabeled Datasets. We crawled 195,321 comic book
pages from today’s US and European series to train our
model. We also utilized 198,657 pages from COMICS and
leveraged iCartoonFace, Manga 109 pages, Comic2k, Water-
color2k, and Clipart1k images. At each forward pass, we se-
lect a random image from these image sets.

Experiments & Hyper-parameters. We run several exper-
iments with different losses, Φ, β, d, positive and negative
student confidence thresholds. In our final model, we set Φ to
500, β to 2, d to 0.9996, and positive and negative thresholds
(ctthrespos and ctthresneg ) to 0.5.

3.4 Stage 3: Fine-Tuning
We conduct experiments with three different pre-training
methods: random initialization, style transferred pre-training
in stage 1, and teacher-student network from stage 2. Since
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each drawing dataset contains its own separate stylistic dis-
tribution, they should be fine-tuned separately to obtain the
maximum performance on their test set. Thus, we fine-tune
the model with single datasets for each pre-training variation
by randomly selecting a limited number of image instances
(i.e., 64, 128, 256, 512, 1024 images, or all data). As Manga
109 and DCM 772 consist of page images instead of indi-
vidual panels, we separate panels during training to increase
the number of input data and test the models with their page
images.

4 Results & Discussion
In the following parts, we explain our training details, dis-
cuss the effect of style transferring in stage 1, analyze the
experiments done by utilizing the teacher-student network,
and present our results retrieved after fine-tuning with limited
and unlimited drawing data. We will use abbreviations2 of
datasets in the given tables to save space since there are many
datasets for evaluation. Average Precision (AP) is selected
as the evaluation metric for detection, and the intersection of
union value for evaluation is fixed at 0.5. At each table given
in this section, the best result per column is marked in bold
and the second is underlined.

4.1 Training Details
In all variations and experiments, the batch size is set to 16,
and one Tesla T4 GPU is used. AP scores are calculated by
running the same variation five times and computing the aver-
age of these runs. At stages 1 and 3, the learning rate is fixed
at 0.001. The highest-scoring checkpoints in the evaluation

2iCartoonFace as iCF, Manga 109 faces as M109-F, Manga 109
bodies as M109-B, DCM 772 faces as DCM-F, DCM772 bodies as
DCM-B, Comic2k as C2k, Watercolor2k as W2k, and Clipart1k as
C1k. If Manga 109 is used directly, then it means that the face and
body AP scores are averaged.

set among 350 epochs are chosen as the final models. The
first and the last 15 epochs include no augmentation. Other-
wise, horizontal & vertical flips, the color distortion between
[−20◦, 20◦] degrees, shear, and mosaic augmentation (i.e.,
combining four random images and passing them as a sin-
gle image) are applied randomly between the 15th and 335th
epochs. For the teacher-student network, the learning rate is
set as 0.0001, and the best checkpoints in 10000 iterations are
taken as final models. While the input image of the teacher
network is only horizontally flipped, Gaussian noise, color
distortion, and random crop are applied additionally to the
student network in all epochs.

4.2 Stage 1: Style Transferred Pre-Training
In this stage, we try to find the best combination to initialize
the teacher-student network. For this purpose, we train the
model variations with cartoonized natural images but evalu-
ate them with drawing datasets. Scores retrieved after pre-
training stage 1 are given in Table 2 for the individual top-5
styles (i.e., Whitebox, Hosoda, KH, Hayao and Shinkai) and
other experiments.

In the drawing domain, characters can be drawn in vari-
ous styles. Although texture and colors continuously change
among products, key fragments of faces and bodies preserve
their existence (e.g., faces include at least one eye, and bodies
contain either a head, arms, or legs). In our case, we believe
that using multiple styles instead of one forces the model to
focus more on to shape of the object rather than texture. Con-
sequently, the model learns more generalizable information
rather than style-specific; the objects are detected more accu-
rately when the model is tested with unseen examples. There-
fore, while leveraging even a single style transferring method
from top-5 ensures performance increase compared to using
No Styles, All Styles outperforms both individual styles and
Top-5 Styles. Furthermore, adding animal annotations to the
ground truth during the style transferred pre-training stage
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Index Φ Loss ctthrespos ctthresneg ST γ iCF Manga 109 DCM-B AP Diff.

1 250 OHEM 0.15 0.85 Yes 0.0 49.10 69.21 77.52 0.12
2 500 OHEM 0.15 0.85 Yes 0.0 49.05 69.32 77.83 0.09
3 1000 OHEM 0.15 0.85 Yes 0.0 48.48 69.02 77.93 0.52
4 Never OHEM 0.15 0.85 Yes 0.0 47.83 67.68 77.29 1.56

5 500 SimOTA - - Yes 0.0 47.13 65.64 75.42 2.89
6 Never SimOTA - - Yes 0.0 47.10 65.71 75.48 2.87

7 500 OHEM 0.70 0.30 Yes 0.0 49.14 69.20 77.63 0.10
8 500 OHEM 0.50 0.50 Yes 0.0 49.19 69.32 77.90 0.02
9 500 OHEM 0.30 0.70 Yes 0.0 49.09 69.32 77.90 0.07

10 500 OHEM 0.00 1.00 Yes 0.0 49.22 69.20 77.75 0.06

11 500 OHEM 0.15 0.85 No 0.0 41.66 62.64 75.64 7.12

12 500 OHEM 0.15 0.85 Yes 0.9 48.72 65.72 76.59 2.05

Table 1: AP scores of different stage 2 configurations in the largest 3 drawing datasets. Φ is the number of iterations where teacher weights
are loaded to student networks afterward, ctthrespos is the minimum confidence threshold for the student network prediction to be counted as
positive in ohem loss, ctthresneg is the maximum confidence threshold for the student network prediction to be counted as negative in ohem loss.
ST indicates if style transfer is applied in pre-training stage 1, γ is the momentum value that is used in the SGD optimizer (if used, nesterov
SGD is utilized). The “AP Diff.” column is calculated by averaging the maximum score in each dataset minus the experiment score.

Styles iCF Manga 109 DCM-B

Hayao 36.53 ± 0.77 35.30 ± 3.66 51.63 ± 4.48

Shinkai 34.88 ± 1.26 36.03 ± 2.33 56.40 ± 1.85

Hosoda 38.81 ± 0.40 43.05 ± 0.96 54.63 ± 3.13

KH 37.69 ± 0.62 36.39 ± 1.43 49.10 ± 1.41

Whitebox 42.22 ± 1.49 45.86 ± 1.93 52.46 ± 2.23

No Styles 33.00 ± 1.97 35.57 ± 2.82 58.94 ± 3.75

Top-5 Styles 42.04 ± 1.41 47.90 ± 2.61 59.96 ± 1.82

No Animals 42.31 ± 0.70 44.81 ± 1.30 62.85 ± 1.16

All Styles 42.50 ± 1.25 48.73 ± 2.60 65.46 ± 1.35

Table 2: AP scores after stage 1 in the largest 3 drawing datasets.

pushes the performance even further.

4.3 Stage 2: Self-supervised Pre-Training
In this Section, we discuss all of our experiments in the
self-supervised stage. We will refer to Table 1 for the
additional student network (SN) update interval (Φ), loss se-
lection, positive (ctholdpos ) and negative (ctholdneg ) SN confidence
thresholds, usage of momentum in the optimizer (γ), and for
highlighting the importance of style transferring before the
self-supervised stage (ST).

Loss. In experiments 2, 4, 5, and 6, our modified OHEM
loss is compared with the SimOTA loss, which is the de-
fault loss method in YOLOX and an advanced variation of
Focal loss. We believe that selecting a subset of predictions
for backpropagation reduces the amount of misleading in FP
and FN cases. Our results also validate that OHEM loss is
more suitable for our self-supervised architecture. Models
with OHEM loss outperform others with up to ∼ 2.8 AP dif-
ference.

Updating SN per Φ Iterations. Between experiments 1
and 4, we try various iteration counts for Φ. We observe that
the overall performance drops if Φ > 500. The score is worst
if there is no manual SN update (i.e., Φ = None).

Student Confidence Thresholds (ctholdpos and ctholdneg ). We
test the influence of positive and negative SN confidence
thresholds in experiments 2 and 7-10. With a threshold start-
ing from too high for positive and too low for negative (exp.
7), the average performance is lower than the others. While
the original OHEM loss corresponds to exp. 10, adding ad-
ditional thresholds for SN results in greater or similar scores
(e.g., experiments 8 and 9). The best performance is obtained
by setting both ctholdpos and ctholdneg to 0.5.

Optimizer Selection. Our study states that manually
changing SN’s weights with TN’s may mislead the overall
model if an optimizer with momentum is utilized. To test
our statement, we train two models with the same hyper-
parameter configurations but select standard SGD in one and
Nesterov SGD in the other (exp. 2 and 12). In almost every
dataset, standard SGD scores ∼ 1.5− 2% higher.

Style Transferring Before Self-supervised Stage 2. We
investigate if style transferring is needed in stage 1 before ap-
plying self-supervised stage 2. We train two models with the
same settings but initialize the pre-trained weights of these
models in the teacher-student stage differently: one with the
weights retrieved from pre-training stage 1, including style
transferring, the other without style transferring (exp. 2 and
11). Overall, AP difference is ∼ 7%. Hence, applying style
transferring in stage 1 has a significant positive effect on the
self-supervised stage 2 model performance.

4.4 Stage 3: Fine-Tuning
We train our architecture for single datasets with limited in-
stances to evaluate their behavior when only a low amount
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Types Models iCF M109-F DCM-F M109-B DCM-B C2k W2k C1k

NS All Styles 42.50 54.74 69.93 42.72 65.46 56.80 67.36 55.65
SS Teacher-Student 49.19 69.25 82.45 69.38 77.90 67.41 71.53 64.25

SS UMT [Deng et al., 2021] - - - - - - 69.90 70.50
SS D-adapt [Jiang et al., 2022] - - - - - 53.50 68.90 69.30
WS [Inoue et al., 2018] - - - 36.71* 41.89* 57.30 73.20 63.00
WS H2FA R-CNN [Xu et al., 2022] - - - - - 66.80 73.80 75.70

FS Train w/ 64 Images ** 65.47 80.41 69.80 77.72 77.28 68.36 71.24 58.74
FS Train w/ 256 Images ** 71.24 84.20 73.72 80.79 80.91 69.96 73.83 65.18
FS Train w/ 512 Images ** 74.39 85.15 74.85 82.32 82.40 71.05 77.63 -
FS Train w/ All Images ** 87.75 87.86 75.87 87.06 84.89 71.66 89.17 77.97

FS XL Model w/ All Images ** 90.01 87.88 77.40 87.98 86.14 73.65 89.81 83.59

FS ACFD [Zhang et al., 2020a] 90.94 - - - - - - -
FS [Ogawa et al., 2018] - 76.20 - 79.60 - - - -
FS [Nguyen et al., 2018] - - 74.94 - 76.76 - - -
FS [Inoue et al., 2018] - - - - - 70.10 77.30 76.20

Table 3: Overall AP performances of our models and previous SOTA models. Our models are titled in italic. The teacher-student network is
initialized with the style transferred pre-training, All of our supervised models are initialized with pre-training stage 2 weights. NS: no target
domain supervision. SS: self-supervision, WS: weak-supervision, FS: full target domain supervision. Scores with ”*” mean that they are
evaluated by us using the model from the original project repository. ”**” indicates that the results are retrieved from single-dataset trainings
and each score is calculated by a separate model trained specifically with the particular dataset.

Image Instance Counts
Pre-training 64 512 All

None 47.79 ± 1.38 69.38 ± 0.82 80.60 ± 0.65

Stage 1 66.90 ± 1.40 75.34 ± 0.99 82.87 ± 1.53

Stage 1 + 2 71.13 ± 0.92 77.44 ± 0.47 82.78 ± 0.93

Table 4: Average AP performance of our model when trained with a
subset of individual datasets having annotations of a limited number
of random images. Average is calculated by taking the mean of each
score retrieved from each 6 datasets.

of data is available. The average scores for all datasets
we evaluated are shared in Table 4. In the cases with ex-
tremely low instance counts (i.e., 64 and 512 images), uti-
lization of natural images and self-supervised learning results
in up to ∼ 24% performance increase compared to starting
from a random initial state. When trained with all avail-
able data, both style-transferring-based and teacher-student-
based pre-training methods score similar values. We believe
this is caused since there is sufficient data for these spe-
cific sub-domains to close the gap that emerged from the
self-supervised stage. However, we still obtain a significant
improvement (∼ 2.2%) when models start from pre-trained
weights instead of random initialization. This shows that
leveraging style transferred pre-training enhances the perfor-
mance independently from the amount of labeled fine-tuning
data.

In Table 3, we compare previous SOTA models with our re-
sults from each stage checkpoint (i.e., style transfer, teacher-
student, fine-tuning with individual datasets). Our model
achieves close scores to ACFD [Zhang et al., 2020a] and out-

performs other SOTA models. Even with a low amount of
training images, we obtain better or comparable results with
[Nguyen et al., 2018] and [Ogawa et al., 2018]. Increasing
the model size from the tiny version of YOLOX to the XL
version also results in a further performance increase. Our XL
model dominates our tiny version in each individual dataset.

5 Conclusion
In this study, we work on efficient pre-training for face and
body detection models in drawings. First of all, we intro-
duce a self-supervised teacher-student network to the domain
of drawings. We propose a modified OHEM loss to over-
come the false-negative cases caused by the teacher network
and equalize the student network’s weights to the teacher net-
work’s per 500 iterations to prevent distortions in the student
network. By leveraging the existing style-transferring meth-
ods, we highlight the importance of using pre-trained weights
for the domain adaptation task and the positive effects of us-
ing style-transfer on the pre-training data. Additionally, we
show that using multiple style-transferring variations together
provides higher performance. Lastly, we train fully super-
vised models with limited and available labeled data. Our
model obtains the new SOTA score in most drawing datasets
when pre-trained with our pipeline. This finding indicates
that efficient pre-training is important where a low amount of
data is available, and the teacher-student network is an effec-
tive way of pre-training.
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