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Abstract

Compositional Zero-Shot Learning (CZSL) aims
to imitate the powerful generalization ability of
human beings to recognize novel compositions of
known primitive concepts that correspond to a state
and an object, e.g., “purple apple”. To fully cap-
ture the intra- and inter-class correlations between
compositional concepts, in this paper, we propose
to learn them in a hierarchical manner. Specifically,
we set up three hierarchical embedding spaces that
respectively model the states, the objects, and their
compositions, which serve as three “experts” that
can be combined in inference for more accurate
predictions. We achieve this based on the recent
success of large-scale pretrained Vision-Language
Models, e.g., CLIP, which provides a strong ini-
tial knowledge of image-text relationships. To bet-
ter adapt this knowledge to CZSL, we propose to
learn three hierarchical prompts by explicitly fixing
the unrelated word tokens in the three embedding
spaces. Despite its simplicity, our proposed method
consistently yields superior performance over cur-
rent state-of-the-art approaches on three widely-
used CZSL benchmarks.

1 Introduction

When someone shows a photo of purple apple, even
though you may have never seen one, it should be easy for
you to immediately recognize it based on the common knowl-
edge of how purple and apple respectively look like. This
ability of compositional generalization [Atzmon et al., 2016]
is one of the key differences between human beings and other
creatures, which underlies the human intelligence by com-
posing and understanding new things based on known knowl-
edge. Therefore, compositional generalization is also deemed
as a holy grail in artificial intelligence, attracting decades of
devotion from a large number of researchers [Johnson et al.,
2017; Hudson and Manning, 2018].

In light of this, Compositional Zero-Shot Learning
(CZSL) [Misra et al., 2017] has emerged as a promising test
bed of compositional generalization. Specifically, in CZSL,
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Figure 1: The illustration of our motivation. Each robot represents
an expert with different expertise. We can obtain more accurate pre-
dictions for compositional concepts by fully leveraging the comple-
mentary ability of each expert.

the content in each image sample is regarded as a combi-
nation of two primitive concepts — a state and an object,
e.g., red apple and purple eggplant. In inference,
the model is expected to recognize unseen combinations of
known primitives (e.g., purple apple) after trained on
other seen combinations (e.g., red apple and purple
eggplant). The challenge of CZSL lies in the entangle-
ment of the two primitive concepts — states and objects are
highly dependent on each other in visual contents, making it
considerably difficult to generalize to unseen combinations.
Some existing attempts [Purushwalkam et al., 2019; Li
et al., 2020] respectively train two separate classifiers for
states and objects, aiming to directly predict each of them
based on visual features. Due to the lack of consider-
ation of the aforementioned entanglement, these methods
are not able to capture discriminative enough state and ob-
ject features, resulting in limited recognition performance.
In contrast, other methods [Nagarajan and Grauman, 2018;
Nan erf al., 2019] attempt to project visual features and state-
object embeddings into a shared embedding space, aiming
to pull closer associated visual and text embeddings using
metric learning techniques such as cosine similarity. De-
spite showing effective in capturing the entanglement be-
tween states and objects, however, these methods are prone
to over-fit to seen compositions, which may produce ambigu-
ous predictions for unseen compositions in inference, limit-
ing the overall CZSL performance. As a result, most exist-
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ing methods may suffer when handling varying compositional
concepts due to the lack of comprehensive modeling of the
intriguing state-object relationships.

In this paper, we propose to combine the strengths of ex-
isting methods by learning the compositional concepts in a
hierarchical manner. Specifically, we set up three hierarchi-
cal embedding spaces that respectively model the states, the
objects, and their combinations, which serve as three “ex-
perts” that can be integrated in inference for more accurate
predictions. As shown in Fig. 1, given an image of purple
apple, the composition expert may prefer to predict it as
red apple or purple eggplant due to the entangle-
ment in {red, apple} and {purple, eggplant} since
these samples are more common in training. In this regard,
the state expert can be of help thanks to its object-agnostic
expertise — it can easily identify the purple concept in the
given image, which is beneficial to correcting the bias in pair
expert predictions. Likewise, the object expert can also help
a more accurate object prediction; with their union, each ex-
pert plays a complementary role to derive a more accurate
answer. There are also cases when the state and the object
experts cannot produce faithful predictions due to the ambi-
guity in compositional concepts. In these cases, the pair ex-
pert can instead help to discern the compositional concepts
as a whole. We show in experiments that the integration of
the three experts always makes the best of the overall CZSL
performance.

We achieve this based on the recent success of large Vision-
Language Models (VLMs), e.g., CLIP [Radford et al., 20211,
which provides a strong initial knowledge of image-text re-
lationships. To better adapt this knowledge to CZSL, we
propose to learn three hierarchical prompts in the three em-
bedding spaces based on our above motivation, by explicitly
fixing the unrelated word tokens. For example, in the state
embedding space, we learn the prompt with the template of A
photo of [state] thinginwhich [state] is filled
with the state label while other word tokens are kept fixed.
After training, the learned hierarchical prompts are ready to
use in the three embedding spaces, which can be integrated to
achieve more accurate CZSL performance.

In summary, our main contributions are

1. We construct three hierarchical embedding spaces at dif-
ferent levels, which serve as three “experts” who play
complementary and comprehensive roles to help a better
CZSL performance.

2. We propose to learn three hierarchical prompts by ex-
plicitly fixing the unrelated word tokens in the three em-
bedding spaces to adapt the strong knowledge of pre-
trained VLMs.

3. Extensive experiments demonstrate the effectiveness of
our method, which shows clear superiority over the
state-of-the-art approaches in both closed-world and
open-world settings.

2 Related Work

Compositional Zero-Shot Learning. The task of Compo-
sitional Zero-Shot Learning (CZSL) [Misra e al., 2017, Pu-
rushwalkam et al., 2019; Wei et al., 2019; Yang et al., 2020;

1471

Huynh and Elhamifar, 2020; Xu et al., 2021] is to recognize
images of novel primitive compositions that are absent dur-
ing the training stage, which is a special case of Zero-Shot
Learning (ZSL) task [Wei er al., 2020; Yang et al., 2021;
Lietal.,2021].

Some recent works utilize two separate classifiers to recog-
nize states and objects respectively, and then combine them
for the final predictions [Li et al., 2020; Saini et al., 2022;
Karthik et al., 2022; Li et al., 2022]. However, these works
consider simple primitives as independent probability distri-
butions, ignoring the inherent dependence among states, ob-
jects and compositions. Existing studies learn a joint em-
bedding space using separate encoders for states and ob-
jects, and then combine them with a linear layer or a multi-
layer perceptron to achieve the alignment with the images.
CGE [Naeem et al., 2021] establishes the dependencies be-
tween states and objects using a Graph Convolutional Neural
(GCN) network. Moreover, in the open-world setting, there
exist a huge amount of unreasonable compositions from arbi-
trary combinations of states and objects. Some works address
this challenge by using external knowledge to filter out infea-
sible compositions [Mancini et al., 2021; Karthik et al., 2022;
Mancini et al., 2022]. Besides, because of the ability of large-
scale pretrained Vision-Language Models (VLMs) for repre-
senting arbitrary classes as natural language prompts in their
flexible text encoders, [Nayak et al., 2023] first attempted
to learn soft state and object tokens in a language prompt,
while overlooking the individual roles of states and objects.
Inspired by [Yang er al., 2022], our proposed method com-
bines the advantages of the previous methods by learning
more comprehensive representations for compositional con-
cepts in a hierarchical manner.

Prompt Learning. In the past few years, the “pretraining
and fine-tuning” paradigm [Peters ef al., 2018; Dong et al.,
2019; Yang et al., 2019] plays an important role in Natu-
ral Language Processing (NLP) tasks. As models become
larger, storing and serving a tuned copy of the model for
each downstream task becomes impractical. Nowadays, the
“pretraining and fine-tuning” procedure is replaced by the
one we dub “pretraining, prompting, and predicting”. In
prompt learning [Bommasani et al., 2021; Sanh et al., 2022;
Vu et al., 2022; Zhou et al., 2022; Bach et al., 2022], down-
stream tasks are reformulated to adapt to the form of original
pretrained models with the help of a textual prompt. Prompt-
ing renders the pretrained model and downstream tasks closer
by tuning only the input with a specific template, which is
different from fine-tuning which requires to update the model
parameters.

Benefiting from the multi-modal knowledge of VLMs
which are pretrained on large-scale datasets, prompt learn-
ing achieves outstanding performance across a wide range of
tasks, under the zero-shot and few-shot settings [Qin and Eis-
ner, 2021; Radford et al., 2021]. Also, because of the success-
ful applications of CLIP [Radford et al., 20211, prompt learn-
ing is also of great interest in computer vision. Unlike the dis-
crete text prompts used by GPT-3 [Brown et al., 20201, which
is time-consuming and impractical to find the best choice,
soft prompting can achieve this through back-propagation
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Figure 2: Overview of our framework. We learn three hierarchical prompts with different fixed word tokens for each compositional concept.
We embed the three prompts using the text encoder from a large-scale pretrained Vision-Language Model (VLM), and pull close the visual
embedding from the associated image which is also encoded using the same VLM.

and shows its surprising performance without fine-tuning the
entire models. Context Optimization (CoOp) [Zhou et al.,
2022] demonstrated that CLIP’s performance is susceptible
to prompts and soft prompting can improve performance in
the image recognition task. In light of this, we learn three
hierarchical soft prompts by explicitly fixing the unrelated
word tokens in the three embedding spaces to adapt the strong
knowledge of pretrained VLMs.

3 Approach

In Compositional Zero-Shot Learning (CZSL), each image
is composed of two primitive concepts, i.e., a state and an
object, and the model needs to be trained on a set of seen
state-object combinations and tested on another set of unseen
combinations. In this paper, we propose Hierarchical Prompt
Learning (HPL), i.e., learning hierarchical prompts for com-
positional concepts in different levels. We start with the prob-
lem definition of CZSL, followed by the detailed formula-
tion of our proposed HPL, the overall framework of which is
shown in Fig. 2.

3.1 Problem Definition

We use S = {sg,81,...,8,} and O = {0g,01,...,0m} t0
denote the sets of states and objects respectively. Let the com-
position set C be the Cartesian product of the state set and
object set, i.e., C = S x O = {(s,0) | s € S,0 € O}.
We define two disjoint subsets of the composition set C,
namely Cgen C C and Cypseen € C, Where Cgeens Cunseen
represent the seen set and the unseen set, respectively, and
Cseen N Cunseen =0.

At training time, the seen set Cge, 1S used for
training, and the training data is defined as 7 =
{(zi,¢;) | © C Xseen s ¢ C Cyeen }> Where Xyeen is a set of seen
images. Each corresponding label is a tuple ¢ = (s,0) of a
state s € S and an object 0 € O. During inference, the un-
seen set Cynseen 18 Used for testing, and the testing data can be
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denoted as N = {(z4,¢;) | * C Xunseen » ¢ C Cunseen - Fol-
lowing [Purushwalkam et al., 2019; Chao er al., 2016], we
study the generalized CZSL where the test set also includes
images from seen compositional labels. Other than that, we
follow [Mancini et al., 2021] to adopt two evaluation proto-
cols, namely the closed-world and the open-world settings. In
the close-world setting, the test set is Ciest = Cseen U Cunseens
while in the open-world setting, the label space contains all
possible combinations, i.e., Cest = C.

3.2 Hierarchical Embedding Spaces

In CZSL, based on above problem definition, the prediction
g for a given image x is made by calculating

§ = (5,6) = arg max p(als, o), (1)

(s,0)eC

in which the model is required to learn to fit the likelihood
p(z|s,0). To this end, a straightforward way is to learn a
shared embedding space where the associated visual features
and state-object compositions are mapped close to each other.
It is also feasible to learn p(x|s) and p(x|o) separately and
combine them in inference to output state-object predictions.
However, as discussed in Sec. 1, solely learning a shared em-
bedding space for visual features and state-object composi-
tions may lead to spurious correlations between certain states
and objects, while separately modeling them, on the other
hand, ignores their inherent correlation. We propose to ad-
dress this dilemma by learning with three hierarchical em-
bedding spaces that respectively capture the state, the object,
and the paired concepts, which can serve as three experts with
complementary expertise. After training, we can combine the
three experts for inference:

y=(50)= a(rg r)nzzx p(z[s) p(zfo) p(z]s,0).  (2)
s,0)€

3.3 Hierarchical Prompt Learning

We aim to better adapt large-scale pretrained Vision-
Language Models (VLMs) to the task of CZSL; more specif-
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Train Set Val Set Test Set
Dataset State Object Pairs Images Pairs (S/U) Images Pairs (S/U) Images
MIT-States 115 245 1,262 30,338 300/300 10,420 4007400 12,995
UT-Zappos 16 12 83 22,998 15/15 3,214 18/18 2914
C-GQA 413 674 5,592 26,920 1,252/1,040 7,280 888/923 5,098

Table 1: Dataset details with respect to state/object numbers, pair/image numbers in seen/unseen (S/U) splits, and in val/test sets.

ically, we propose to teach them to respectively recognize
the states, the objects, and the state-object compositions in
a hierarchical manner. To achieve that, as shown in Fig. 2,
we represent each compositional concept using three lan-
guage prompts as the input to the VLM’s text encoder. These
prompts are all in the form of a photo of [state]
[object], with fixed prefix a photo of whichisacom-
mon practice in prompt learning literature [Vu et al., 2022;
Zhou et al., 2022]. The tokens [state] and [object] are
to be filled with the compositional concept of each training
sample, such as young cat in Fig. 2. To further encourage
different expertise, we define the state prompt by replacing
[object] into a fixed word thing, enabling the model to
solely focus on the state representation. Likewise, we define
the object prompt by replacing [state] into a fixed word
the. Finally, the composition prompt is constructed with the
original prompt template untouched.

In practice, we initialize each prompt using the pretrained
word embeddings in the VLM:

ti‘,o = (w07w1aw270f;7010) ) (3)

where wg, w1, wo correspond to the word embeddings of the
fixed prefix “a photo of”, and 67,0, are learnable pa-
rameters for state and object word. Specifically, state, ob-
Ject, and composition prompts are initialized as ¢ ,, t3 ,, and
ts , with learnable parameters (67,80;), (05,6;), (65,0;)
corresponding to [state] thing,the [object],and
[state] [object], respectively.

Accordingly, the three prompts are passed into the VLM’s
text encoder to obtain the /5-normalized text representations:

ti,o =& (tZ,O)/Het (ti,0)| ) “4)

where ¢, , is one of ¢5 ,, t2 ,, and t¢ . Likewise, we can get

5,0° V5,07

the £5-normalized visual representation of a given image x as
@ = e, (z)/[les ()] - ®)

Now we can optimize the learnable parameters (02, 02) by
minimizing the cross-entropy loss on the training set 7~ with
seen compositions from Cgeep:

1
—m Z log

(z,(s,0)ET

exp (@ -ty ,/7)
(57,0 ®P (@ By /T)

L=

9

(6)
where T is the temperature parameter.
3.4 Training and Inference

Our overall training loss is the linear combination of the three
terms defined in Eq. (6):

L=L+L0+LC. @)
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During training we only update the learnable parameters
(62, 0.) of the three prompts while keeping other model pa-
rameters fixed.

In inference, we predict the compositional concepts of a
given image x by calculating

(8,0) = argmax a(z-t] ,+ -2 ,) + (1—a)z-t ,, (8)

(s,0)eC i ’ ’

in which o € [0,1] is a linear combination coefficient that
controls the contribution of each prompt.

4 Experiments

4.1 Experimental Setup

Datasets. Our method is evaluated on three Compositional
Zero-Shot Learning (CZSL) benchmark datasets, i.e., MIT-
States [Isola et al., 2015], UT-Zappos [Yu and Grauman,
2014] and C-GQA [Naeem et al., 2021]. We follow the stan-
dard split in previous works [Purushwalkam et al., 2019],
and the detailed information of each dataset is summarized
in Tab. 1.

MIT-States is a challenging dataset containing 53,753 ev-
eryday images, e.g., “young cat” and “old dog”. It is anno-
tated to a variety of classes with 115 state classes and 245
object classes. MIT-States has 1,962 compositions in total
under the closed-world setting, in which 1,262 compositions
are seen in training and 700 compositions are unseen.

UT-Zappos is a fine-grained dataset containing 50,025 im-
ages, primarily of various types of shoes, e.g., “canvas slip-
pers” and “rubber sandals”, with 12 object classes and 16
state classes, yielding 116 plausible compositions, 83 of
which are seen compositions and the rest 33 compositions
are unseen.

C-GQA is a compositional version of Stanford GQA
dataset [Hudson and Manning, 2019], contains 39,298 im-
ages in total, including 5,592 seen compositions and 1,932
unseen compositions. It contains 413 state classes and 674
object classes.

Evaluation Metrics. We evaluate the performance accord-
ing to prediction accuracy for recognizing seen and unseen
compositions. Following the setting in [Purushwalkam et al.,
2019], we compute the accuracy in two situations: 1) Seen,
testing only on seen compositions; 2) Unseen, testing only
on unseen compositions. Based on these, we can compute
3) Harmonic Mean (HM) of the two metrics, which balances
the performance between seen and unseen accuracy. Eventu-
ally, we compute 4) Area Under the Curve (AUC) to quantify
the overall performance of both seen and unseen accuracy at
different operating points with respect to the bias. Follow-
ing [Chao er al., 2016], we utilize a calibration bias to trade
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Val AUC Test AUC Test
Method Top 1 Top 2 Top 3 Top 1 Top 2 Top 3 Seen Unseen HM
RedWine [Misra et al., 2017] 29 7.3 11.8 24 5.7 9.3 20.7 17.9 11.6
LE+ [Misra et al., 2017] 3.0 7.6 12.2 2.0 5.6 94 15.0 20.1 10.7
AoP [Nagarajan and Grauman, 2018] 2.5 6.2 10.1 1.6 4.7 7.6 14.3 17.4 9.9
TMN [Purushwalkam et al., 2019] 35 8.1 12.4 2.9 7.1 11.5 20.2 20.1 13.0
SymNet [Li et al., 2020] 4.3 9.8 14.8 3.0 7.6 123 44 252 16.1
Causal [Atzmon et al., 2020] 1.7 4.0 5.9 1.5 34 53 17.5 11.8 9.5
CGE [Naeem et al., 2021] 6.8 - - 5.1 - - 28.7 253 17.2
CompCos [Mancini et al., 2021] 59 134 19.8 4.5 10.9 16.5 253 24.6 16.4
ProtoProp [Ruis er al., 2021] 4.1 9.5 144 2.7 7.0 11.3 19.2 204 12.6
Co-CGE [Mancini e al., 2022] - - - 6.6 - - 32.1 28.3 20.0
CLIP [Radford et al., 2021] 13.0 26.2 344 11.0 23.0 31.7 30.0 46.0 26.1
CoOp [Zhou et al., 2022] 16.3 314 41.5 15.0 284 37.2 36.4 49.3 31.7
CSP [Nayak et al., 2023] 21.7 39.1 48.7 194 353 45.1 47.2 49.6 36.3
HPL (Ours) 22.7 40.0 50.1 20.2 35.8 45.9 47.5 50.6 37.3

Table 2: Comparison with state-of-the-art baselines on MIT-States in the closed-world setting. Results are reported in seen/unseen composi-
tion recognition accuracy (%). Best and second best results are highlighted in each column.

Val AUC Test AUC Test
Method Top 1 Top 2 Top 3 Top 1 Top 2 Top 3 Seen Unseen HM
RedWine [Misra et al., 2017] 304 522 63.5 27.1 54.6 68.8 57.3 62.3 41.0
LE+ [Misra et al., 2017] 26.4 49.0 66.1 25.7 52.1 67.8 53.0 61.9 40.6
AoP [Nagarajan and Grauman, 2018] 21.5 44.2 61.6 25.9 51.3 67.6 59.8 54.2 40.8
TMN [Purushwalkam et al., 2019] 36.8 57.1 69.2 29.3 55.3 69.8 58.7 60.0 45.0
SymNet [Li ez al., 2020] 259 - - 234 - - 49.8 574 40.4
Causal [Atzmon et al., 2020] 21.0 43.4 58.3 243 47.1 62.0 59.1 51.8 40.5
CGE [Naeem et al., 2021] 38.7 - - 264 - - 56.8 63.6 41.2
CompCos [Mancini ef al., 2021] 38.6 60.1 71.8 28.7 559 72.5 59.8 62.5 43.1
ProtoProp [Ruis et al., 2021] 31.6 52.0 65.5 232 47.3 63.2 54.1 54.7 38.8
Co-CGE [Mancini e al., 2022] - - - 339 - - 62.3 66.3 48.1
CLIP [Radford et al., 2021] 6.3 222 37.5 4.9 14.0 232 15.6 49.0 15.5
CoOp [Zhou et al., 2022] 41.1 67.3 76.9 25.7 54.9 72.6 61.8 59.6 39.1
CSP [Nayak et al., 2023] 42.2 69.4 80.7 325 62.8 78.6 64.0 65.8 46.2
HPL (Ours) 454 71.8 81.9 35.0 64.2 78.4 63.0 68.8 48.2

Table 3: Comparison with state-of-the-art baselines on UT-Zappos in the closed-world setting. Results are reported in seen/unseen composi-
tion recognition accuracy (%). Best and second best results are highlighted in each column.

off between the prediction scores of seen and unseen pairs.
As the calibration bias varies, we can draw a seen-unseen ac-
curacy curve where the AUC metric can be computed. We
also follow [Mancini et al., 2021] to conduct evaluations in
both closed-world and open-world settings.

Implementation Details. We follow CSP [Nayak et al.,
2023] to use the pretrained CLIP [Radford et al., 2021] as
our backbone. Specifically, the image encoder and text en-
coder are directly inherited from the pretrained CLIP ViT-
L/14 model’s vision transformer (ViT) and language trans-
former. Our model is implemented with PyTorch [Paszke et
al., 2019] and optimized by Adam [Kingma and Ba, 2014]
optimizer with the learning rate set to 5e¢ — 05, be — 04,
5e—05 for MIT-State, UT-Zappos, C-GQA, respectively. The
weight decay is respectively 1e — 05, 1e — 05, 5e — 05 for the
datasets mentioned above. The batch size is set to 128 for all
three datasets. All of our experiments were conducted on an
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NVIDIA RTX A6000 GPU.

4.2 Comparison with State of the Arts

We compare our proposed HPL with the state-of-the-art
methods on the three CZSL benchmark datasets. The results
are shown in Tabs. 2 to 5. According to the used backbone,
we divide the compared methods into traditional ResNet-
based methods and VLM-based methods, which are indicated
in the tables.

The experiments are conducted in both closed-world and
open-world settings. The results on the closed-world set-
ting are shown in Tabs. 2 to 4, respectively for MIT-States,
UT-Zappos and C-GQA, from which we can observe that
our method consistently outperforms all baselines in terms
of both HM and AUC metrics. We reach the highest AUC
of 20.2% on MIT-States, 35.0% on UT-Zappos and 7.2% on
C-GQA. Besides, we improve the harmonic mean on all the



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Val AUC Test AUC Test
Method Top 1 Top 2 Top 3 Top 1 Top 2 Top 3 Seen Unseen HM
LE+ [Misra et al., 20171 3.0 - - 2.0 - - 15.0 20.1 10.7
AoP [Nagarajan and Grauman, 2018] 2.5 - - 1.6 - - 14.3 17.4 9.9
TMN [Purushwalkam et al., 2019] 35 - - 2.9 - - 20.2 20.1 13.0
SymNet [Li ez al., 2020] 43 - - 3.0 - - 244 252 16.1
CGE [Naeem et al., 2021] 6.8 - - 5.1 - - 28.7 253 17.2
CompCos [Mancini et al., 2021] 59 - - 4.5 - - 253 24.6 16.4
Co-CGE [Mancini et al., 2022] - - - 4.1 - - 33.3 14.9 15.5
CLIP [Radford et al., 2021] 0.7 2.0 32 14 35 53 7.6 5.0 8.6
CoOp [Zhou et al., 2022] 34 7.3 10.9 44 9.1 13.1 21.4 25.2 17.2
CSP [Nayak et al., 2023] 5.1 10.3 14.3 6.1 123 17.5 28.5 26.9 20.0
HPL (Ours) 5.8 11.6 16.3 7.2 13.2 18.2 30.8 28.4 224

Table 4: Comparison with state-of-the-art baselines on C-GQA in the closed-world setting. Results are reported in seen/unseen composition
recognition accuracy (%). Best and second best results are highlighted in each column.

MIT-States UT-Zappos C-GQA
Method Seen Unseen HM AUC Seen Unseen HM AUC Seen Unseen HM AUC
LE+ [Misra et al., 2017] 14.2 2.5 2.7 0.3 60.4 36.5 305 163 192 0.7 1.0 0.08
AoP [Nagarajan and Grauman, 2018]  16.6 5.7 4.7 0.7 509 342 29.4  13.7 - - - -
TMN [Purushwalkam e al., 2019] 12.6 0.9 1.2 0.1 55.9 18.1 217 84 - - - -
SymNet [Li ez al., 2020] 21.4 7.0 5.8 0.8 533 44.6 345 185 26.7 2.2 33 043
CGE [Naeem et al., 2021] 32.4 5.1 6.0 1.0 617 47.7 39.0 23.1 327 1.8 29 047
CompCos [Mancini er al., 2021] 25.4 10.0 8.9 1.6 59.3 46.8 369 21.3 - - - -
Co-CGE [Mancini et al., 2022] 30.3 11.2 10.7 23 61.2 45.8 408 233 32.1 3.0 48 0.78
CLIP [Radford et al., 2021] 30.1 14.3 128 3.0 15.7 20.6 11.2 22 7.5 4.6 40 027
CoOP [Zhou et al., 2022] 34.6 9.3 123 28 52.1 31.5 289 132 21.0 4.6 5.5 0.70
CSP [Nayak er al., 2023] 46.3 15.7 174 57 64.1 44.1 38.9 227 287 52 69 1.20
HPL (Ours) 46.4 18.9 198 69 634 48.1 40.2 24.6 30.1 5.8 7.5 137

Table 5: Comparison with state-of-the-art baselines in the open-world setting. Results are reported in seen/unseen composition recognition
accuracy (%). Best and second best results are highlighted in each column.

datasets compared with other existing methods. The seen
and unseen accuracy on these datasets are also the best. It
is worth noting that the seen accuracy of CSP and Co-CGE
for UT-Zappos and C-GQA is higher, but their AUC and HM
are lower. This is probably because they may have encoun-
tered an over-fitting during training, so that their unseen accu-
racy and harmonic mean are relatively lower during testing.
Similarly, on the C-GQA dataset, CGE over-fits in the vali-
dation set, so it cannot generalize well to the test set, which
shows a lower harmonic mean. Tab. 5 shows the results in the
open-world setting, which also demonstrates that our method
achieves superior results in this challenging setting. Experi-
mental results on the three challenging datasets demonstrate
that our method can effectively improve the performance of
the model in CZSL.

4.3 Ablation Study

To evaluate the effectiveness of each proposed prompt, we
ablate our method on the validation set of the three bench-
mark datasets. The results are summarized in Tab. 6, Tab. 7
and Fig. 3.

Is Each Prompt Necessary? We test the effects of respec-
tively removing state prompt, object prompt and composi-
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tion prompt, corresponding to rows 1-3 in Tab. 6. Compared
with using full prompt combinations, no matter which one
is removed, unfortunately, the accuracy will decrease, which
means that all three prompts play positive roles to the com-
positional recognition ability. We can also observe that, for
MIT-States and C-GQA, the composition prompt seems to
be more important for recognition, while the combination
of state and object prompts is better for UT-Zappos. This
is mainly because of the distribution difference between the
three datasets: the images of MIT-States and C-GQA present
significant visual diversity, while UT-Zappos contains only
same-orientated shoe images in white background. The num-
ber of state and object in UT-Zappos are much less than that
in the other two datasets, and also, with less ambiguity, so that
the state and object prompts will have better chance to cap-
ture disentangled state and object representations. Broadly
speaking, even though either the combination of state prompt
with object prompt or the composition prompt can be used to
recognize images, one can play a positive role for the recog-
nition performance to each other. The fourth row in Tab. 6
can prove the superiority of combining all three prompts.

How Three Prompts Cooperate? We explore the effect of
a in Eq. (8) to see how three prompts can be combined to
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MIT-State UT-Zappos C-GQA
Method Seen Unseen HM AUC Seen Unseen HM AUC Seen Unseen HM AUC
w/o state prompt 46.9 55.1 39.9 22.3 63.4 70.0 57.8 41.0 27.9 23.6 18.9 5.3
w/o object prompt 46.9 54.9 394 22.2 65.8 70.4 52.4 39.5 28.6 24.0 19.3 5.5
w/o comp. prompt 40.2 48.5 32.7 16.0 66.0 73.9 59.5 44.5 27.3 22.4 17.5 4.7
Full (HPL) 47.2 55.6 39.9 22.7 66.0 74.9 60.6 454 29.2 24.6 19.8 5.8

Table 6: Ablation study. Results are reported in seen/unseen composition recognition accuracy (%) in the validation sets of MIT-States,

UT-Zappos and C-GQA. Best results are highlight in each column.
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Figure 3: The effect of « in Eq. (8). Results are reported in seen/unseen composition recognition accuracy (%) in the validation sets.

Datasets — MIT-States ~ UT-Zappos C-GQA
Tokens | HM AUC HM AUC HM AUC
[the] +[thing] (ori.) 37.3 202 482 350 224 72
[a] + [thing] 372 20.0 480 348 220 7.0
[the] + [stuff] 37.1  20.1 483 350 222 7.1
[a]l+ [stuff] 372 202 484 353 223 7.0
[?] + [thing] 37.5 204 48.1 349 225 74
[the] +[?] 373 202 480 349 222 7.1
[2]1+1[?] 374 204 485 353 224 74

Table 7: Ablation studies on different tokens in the prompts.

boost the CZSL performance. Concretely, a controls the de-
cision about how we assign prediction strengths for different
prompts. Note that we equally treat state and object prompts
since they should be firstly combined to produce a composi-
tional prediction. Haven said that, carefully tuning their pro-
portion will arguably lead to better accuracy, but we intend to
make it simple by equally treating these two prompts.

We report in Fig. 3 the results by changing « € [0, 1] with
a 0.1 interval. The ends of the lines in each figure are two
extreme cases: when a = 0, only composition prompt is
used in inference; when o = 1, we only use the sum of state
and object prompt. As can be observed, in MIT-States and
C-GQA, the recognition accuracy reaches its peak when o
equals 0.2 and 0.3 respectively; in UT-Zappos, the value is
0.5. A possible explanation is that UT-Zappos contains most
of the similar appearance combinations, such that the side in-
formation provided by the state/object can be of more help
to compositional generalization. In contrast, the composition
prompt in MIT-State and C-GQA provides more precise de-
cision than the state/object prompts since the images in these
two datasets are already diverse. But what can be certained
is that either solely using the composition prompt (o« = 0) or
the sum of state and object prompts (o« = 1) cannot make the
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best of the final results; by combining all three prompts with a
proper «, we can achieve the overall best CZSL performance.

Token-Agnostic Setting. In the whole training stage, we fix
partial tokens in different prompts to allow complementary
and fine-grained concept learning. To achieve that, these to-
kens are kept invariant to different state-object compositions,
while their embeddings are totally learnable and optimized
to be close to the visual features in the state and the object
embedding spaces, respectively. In other words, our default
token choices, i.e., the and thing, are only used for initial-
izing the learnable token embeddings.

To verify how different token choices affect our model’s
performance, Tab. 7 shows the results of ablation studies in
the token-agnostic setting, where the and thing in origin
prompts are replaced with a, stuff, and even random vari-
ables (denoted as “[ ?]”"). We can see from the results in rows
2-7 that different tokens result in negligible performance dis-
crepancy since they are optimized with the same objective.
Overall, the performance of our method is agnostic to the
choice of tokens, showing its wide applicability.

5 Conclusion

In this paper, we propose to address Compositional Zero-Shot
Learning (CZSL) by learning hierarchical prompts based on
large-scale pretrained Vision-Language Models (VLMs). Our
motivation comes from the need for a comprehensive model-
ing for the states, the objects, and the compositions. Specifi-
cally, we learn three hierarchical prompts with different fixed
word tokens, which can be regarded as three experts with
each own expertise. For a given image in inference, we
calculate the prediction by combining the strengths of all
the three prompts, and demonstrate consistent improvements
over using either one (or two) of them. Extensive experiments
on three challenging benchmarks also validate its superiority
against state-of-the-art competitors.
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