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Abstract
Adversarial attacks aim to disturb the functionality
of a target system by adding specific noise to the
input samples, bringing potential threats to secu-
rity and robustness when applied to facial recogni-
tion systems. Although existing defense techniques
achieve high accuracy in detecting some specific
adversarial faces (adv-faces), new attack methods
especially GAN-based attacks with completely dif-
ferent noise patterns circumvent them and reach a
higher attack success rate. Even worse, existing
techniques require attack data before implementing
the defense, making it impractical to defend newly
emerging attacks that are unseen to defenders. In
this paper, we investigate the intrinsic generality of
adv-faces and propose to generate pseudo adv-faces
by perturbing real faces with three heuristically de-
signed noise patterns. We are the first to train an
adv-face detector using only real faces and their
self-perturbations, agnostic to victim facial recog-
nition systems, and agnostic to unseen attacks. By
regarding adv-faces as out-of-distribution data, we
then naturally introduce a novel cascaded system
for adv-face detection, which consists of training
data self-perturbations, decision boundary regular-
ization, and a max-pooling-based binary classi-
fier focusing on abnormal local color aberrations.
Experiments conducted on LFW and CelebA-HQ
datasets with eight gradient-based and two GAN-
based attacks validate that our method generalizes
to a variety of unseen adversarial attacks.

1 Introduction
1Deep neural networks have been widely used in many tasks
[Ou et al., 2017; Shi et al., 2020; Zhang et al., 2021],
and have achieved remarkable success in facial recognition
systems (FRS) [Deng et al., 2019] with a wide range of
real-world applications such as online payment [Avariki-
oti et al., 2019] and financial management [Dumbre et al.,

∗Corresponding author
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Figure 1: Trained only on real faces and their self-perturbed faces,
the detector learns a generic representation of adversarial faces pro-
duced by unseen attacks.

2016]. However, deep neural networks are known to be
vulnerable to adversarial attacks [Goodfellow et al., 2014;
Kurakin et al., 2016; Madry et al., 2017], making commer-
cial FRSs unreliable.

Some research attempts to defend against adversarial at-
tacks by adversarial example detection techniques [Feinman
et al., 2017; Ma et al., 2018; Tian et al., 2021] which filter
out adversarial samples before feeding them into protected
systems. However, they tend to overfit to known attacks and
do not generalize well to unseen advanced attacks [Wu et al.,
2021; Yang et al., 2021]. In specific, GAN-based adversarial
attacks such as AdvMakeup [Yin et al., 2021] and AMT-GAN
[Hu et al., 2022] are recently developed to generate more
natural adversarial faces (adv-faces) by adding completely
different noise patterns to face images in contrast to tradi-
tional gradient-based attacks such as FGSM [Goodfellow et
al., 2014], and are able to circumvent detection. Therefore, a
plug-and-play method of detecting adv-faces with improved
generalization performance over both unseen gradient-based
attacks and unseen GAN-based attacks is highly demanded.

Due to the insight that adversarial samples are all modi-
fied from real samples [Ma et al., 2018], one direct way to
encourage models to learn generic representations for detect-
ing adv-faces is to train models with synthetic data [Shiohara
and Yamasaki, 2022], forming a decision boundary wrapping
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Figure 2: Overview of training pipeline. We design three kinds of self-perturbations to generate synthesized pseudo-adv faces. ”GC patch”
denotes a gradient color patch for GAN-based attack. ”MP Classifier” denotes Max-Pooling Classifier which focuses on abnormal local color
aberrations. By synthesizing virtual outliers of real faces, we incorporate an uncertainty loss to regularize the decision boundary to enhance
detection performance on adv-faces. Previous methods require pre-computed adv-faces and access permission to the victim FRS for training.
By contrast, our method is agnostic to both attacks and FRS. Using only real faces with self-perturbations in the training phase, our method
is able to detect all kinds of adv-faces from unseen attacks without modifying or visiting FRS.

the synthetic subspace. To achieve this, we investigate the
intrinsic generality of adv-faces generated by gradient-based
attacks and GAN-based attacks respectively, and propose two
assumptions: (1) Gradient-based attacks have a resemblance
in noise pattern on account of the consistency of the basic
attack algorithm which uses gradients to construct adversar-
ial examples. (2) GAN-based attacks aim to simultaneously
change the prediction of FRSs while preserving visual qual-
ity. In the meantime, FRSs pay the most attention to high-
frequency regions [Li et al., 2020], which induces GANs to
modify these regions. Therefore, GAN-made adv-faces have
manipulated clues like abnormal color aberrations in high-
frequency regions. If universal noise patterns that cover all
kinds of adversarial noises are attainable, a set of pseudo adv-
faces could be produced, and we can train a model with them
to learn generic representations for adv-faces.

Based on the above assumptions, we propose three kinds
of real face self-perturbations synthesized with pseudo noise
patterns which summarize adversarial noises of gradient-
based attacks and GAN-based attacks, and a max-pooling-
based classifier focusing on capturing abnormal local color
aberration. Unlike previous methods, this data-augmentation-
like method is proposed from a novel and more intrinsic per-
spective by investigating the generality of adversarial noise
patterns, to detect all recent adv-faces from unseen attacks,
protecting FRSs without access to them. Trained on only real
faces and their self-perturbations, as shown in Figure 1, our
model is able to detect all the recent adv-faces. This new
framework simultaneously ensures detection performance on
unseen adversarial attacks and portability in use, without any
access to protected systems.

Although we are trying to make self-perturbed faces as
general as possible, the trained network still overfits to in-
domain data and might fail to classify adv-faces far away
from the distribution of self-perturbed faces. Regarding adv-
faces as out-of-distribution (OOD) data from a shifted data
manifold [Deng et al., 2021], we incorporate a regulariza-
tion term to narrow the model’s decision boundary of real

face class during training, and naturally introduce a novel cas-
caded system for adv-face detection, which consists of train-
ing data self-perturbations, decision boundary regularization,
and max-pooling-based binary classifier. We evaluate our ap-
proach on LFW and CelebA-HQ datasets with eight gradient-
based attack methods and two GAN-based attack models. Ex-
periment results validate our assumptions and demonstrate
the reliability of our detection performance on adv-faces from
unseen adversarial attack methods.

Our contributions are summarized in four thrusts:
• By investigating the intrinsic similarities among varying

adv-faces, we propose two assumptions that (1) different ad-
versarial noises have resemblances, and (2) color aberrations
exist in high-frequency regions. We empirically validate the
assumptions which in turn indicate universal noise patterns
are attainable for all the recent adv-faces.

• Based on our assumptions, we propose three kinds of
real face self-perturbations for gradient-based adv-faces and
GAN-based adv-faces. We are the first to train an adv-face
detector using only real faces and their self-perturbations, ag-
nostic to victim FRSs and agnostic to adv-faces. This enables
us to learn generalizable representations of adv-faces without
overfitting to any specific one.

• We then naturally introduce a novel cascaded system
for adv-face detection, which consists of training data self-
perturbations, decision boundary regularization, and a max-
pooling-based binary classifier focusing on abnormal local
color aberrations.

• Evaluations are conducted on LFW and CelebA-HQ
datasets with eight gradient-based attacks and two GAN-
based attacks, demonstrating the consistently improved per-
formance of our system on adv-face detection.

2 Related Work
Adversarial attacks Adversarial attacks [Goodfellow et
al., 2014] aim to disturb a target system by adding sub-
tle noise to input samples, while maintaining impercepti-
bility from human eyes. In contrast to previous works
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[Madry et al., 2017; Kurakin et al., 2016], DIM [Wu et
al., 2021] and TIM [Dong et al., 2019] are improved at-
tack algorithms with enhanced black-box attack accuracy and
breaching several defense techniques. Focusing on breaking
through FRSs, TIPIM [Yang et al., 2021] generates adver-
sarial masks for faces to conduct targeting attacks while re-
maining visually identical to the original version for human
beings. Recently, GAN-based attack models [Yin et al., 2021;
Hu et al., 2022] are presented to generate adversarial patches
and imperceptible adv-faces, bringing new challenges to adv-
faces detection. In this paper, we proposed a simple yet ef-
fective detection method against all the above attacks while
being blind to them during training.

Adversarial example detection One of the technical solu-
tions for protecting DNNs from adversarial attacks is adver-
sarial example detection [Feinman et al., 2017], aiming to
filter out adversarial inputs before the protected system func-
tions. Remedying the limitations of the previous method, LID
[Ma et al., 2018] is proposed for evaluating the proximity of
an input to the manifold of normal examples. Incorporated
with wavelet transform, SID [Tian et al., 2021] is able to
transform the decision boundary and can be collaboratively
used with other classifiers. While all of these methods focus
on utilizing features subtracted by FRS backbone and show
effective performance in detecting adversarial examples, they
require modifying or visiting the protected system and do not
generalize well to new-type attacks like GAN-based AMT-
GAN [Hu et al., 2022] and AdvMakeup [Yin et al., 2021]. To
address the problems above, our method is proposed to de-
tect all recent adv-faces from unseen attacks, protecting FRSs
without access to them.

Out-of-distribution (OOD) detection OOD detection
techniques [Girish et al., 2021] have been widely used in im-
age classification tasks [Yu et al., 2019], trying to recognize
examples from an unknown distribution. ODIN [Liang et al.,
2017] uses temperature scaling and tiny perturbations to the
inputs to separate the in-distribution (ID) and OOD images.
Lee et al. [Lee et al., 2018] uses the Mahalanobis distance
to evaluate the dissimilarity between ID and OOD samples.
By sampling and synthesizing virtual outliers from the low-
likelihood regions, VOS [Du et al., 2022] adaptively regular-
izes the decision boundary during training. Sun et al. [Sun
et al., 2021] introduce a simple and effective post hoc OOD
detection approach utilizing activation truncation. Regarding
adv-faces as OOD data, we leverage an uncertainty regular-
ization term to narrow the decision boundary of real face class
during the training phase to boost the accuracy of adv-faces
detection.

3 Methodology
We propose a plug-and-play cascaded system for adv-
faces detection method which consists of training data self-
perturbations, decision boundary regularization, and a max-
pooling-based binary classifier focusing on abnormal local
color aberrations, agnostic to unseen adversarial attacks, and
agnostic to victim FRSs. Training pipeline as shown in Fig-
ure 2. We propose to synthesize diverse self-perturbed faces

Algorithm 1 Self-perturbation for gradient-based attack
Input: A empty perturbation matrix ηp ∈ RH×W×3 with the
same shape of real face image xr.
Parameter: Max perturbation magnitude ϵ, pattern mode.
Output: Self-perturbed face image xp.

1: A random direction matrix R = {r⃗ij} ∈ RH×W×3.
2: for η⃗ij in ηp do
3: Select random noise value α.
4: if pattern mode is ‘point-wise’ then
5: η⃗ij := α · r⃗ij .
6: else if pattern mode is ‘block-wise’ then
7: Select a random neighborhood Aij of η⃗ij .
8: for η⃗ijk in Aij do
9: η⃗ijk := α · r⃗ij .

10: end for
11: end if
12: end for
13: Clip perturbation ηp using Equation 2.
14: Generate self-perturbed face xp using Equation 3.
15: return xp

by adding three noise patterns to real face images, summa-
rizing adv-faces generated from gradient-based and GAN-
based attacks. A convolutional neural network is learned via
real faces and self-perturbed faces, regularized by uncertainty
loss, to distinguish real and adversarial faces. As no attack
method is observed during training, the resulting network is
not biased to any attack, yielding generic and discriminative
representations for detecting unseen adv-faces. Therefore, in
the testing phase, the embeddings are sent to the learned Max-
Pooling Classifier to accomplish prediction.

3.1 Real Face Self-Perturbations
Self-perturbation for gradient-based attack
Given a real face image xr, adversarial attack generates an
adversarial image xa by adding a perturbation image η to xr

[Goodfellow et al., 2014]:

xa = xr + η, (1)

where ||η|| ≤ ϵ, and ϵ called perturbation magnitude.
We observe that a binary classifier trained on real faces and

adv-faces generated by FGSM is able to classify a part of
attack images generated from other attack methods as shown
in Table 2. This generalization in classification means that
attack noises have intrinsic similarities. And it means once
we master all the similarities we master the attacks, even for
unseen attacks. This leads to non-trivial designs for our self-
perturbation image ηp.

The noise value of neighbor points in ηp may be the same
or different. From this perspective, we introduce point-wise
and block-wise noise patterns for gradient-based attacks. As
presented in Algorithm 1, we perturb each point in the point-
wise pattern and each block in the block-wise pattern in a
stochastic direction, where blocks are random neighborhoods
of a set of scattered points. The generated perturbation image
ηp is constrained in l∞ norm, and clipped according to ϵ,

ηp = Clip[−ϵ,ϵ](η
p). (2)
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Algorithm 2 Self-perturbation for GAN-based attack
Input: Real face image xr. A empty perturbation matrix
ηp = {ηij} with the same shape of xr.
Parameter: Max perturbation magnitude ϵ, face landmarks,
high-frequency threshold γ, and empty high-frequency pixel
set H .
Output: Self-perturbed face image xp.
Function: value(x) measures pixel value of x,
neighborhood(x) is a random neighborhood of x.

1: Obtain gradient image of xr using Sobel operator.
2: Obtain high-frequency convex hull from gradient image

according to landmarks.
3: for xij in convex hull do
4: if value(xij) < γ then
5: ηij join to H .
6: end if
7: end for
8: Random select a subset Hs of H .
9: for ηHij in Hs do

10: Generate a random gradient color patch P .
11: neighborhood(ηHij ) := P .
12: end for
13: Clip perturbation ηp using Equation 2.
14: Generate self-perturbed face xp using Equation 3.
15: return xp

And self-perturbed face is calculated as

xp = xr + ηp. (3)

Self-perturbation for GAN-based attack
Spectrums of real and fake images distribute differently in
high frequency [Luo et al., 2021], such as eyes, nose, and
mouth. This distribution difference should become more in-
tense because GAN-made adv-faces aim to change the clas-
sification results of FRSs meanwhile maintain perceptual in-
variance. This leads to color aberration and boundary abnor-
mality in high-frequency regions on account of that FRSs pay
the most attention to these regions. Focusing on producing
natural and imperceptible attack noise, these abnormal color
aberrations should have gradient or blurred boundaries. In
such a perspective, we use gradient color patches to act as
self-perturbation.

As presented in Algorithm 2, we first obtain the gradient
image of a real image using Sobel operator [Duda and Hart,
1973] and convex hull of the high-frequency area according
to facial landmarks. The pixels in the convex hull are selected
as high-frequency pixels if their values surpass a threshold
γ. Then we generate a few gradient color patches through a
series of affine transformations. Finally, the pseudo adv-faces
are generated by adding gradient color patches to a random
set of high-frequency pixels.

After crafting a part of real faces to self-perturbed faces
as negative samples, we label other real faces as positive
samples and train a well-designed backbone network such as
XceptionNet [Chollet, 2017] in a binary classification man-
ner.

3.2 Max-Pooling Classifier
In view of abnormal speckles in GAN-based adv-faces are al-
ways tiny and are not easy to be observed, we proposed Max-
Pooling Classifier (MPC) to capture abnormal local color
aberrations. MPC produces classification scores and predicts
whether input images are real or adversarial.

A typical backbone network includes a feature extractor
f(·;φ) composed of several convolutional blocks, and a clas-
sifier g(·;ϕ) comprising an average pooling layer, an activa-
tion layer, and a fully connected layer [Chollet, 2017]. To de-
tect adv-faces with abnormal local color aberrations, a simple
derivation is to divide an image into several rectangle areas,
and if abnormal color aberration occurs in any of the rectan-
gle areas we classify this image as adv-face.

Input an image x to feature extractor f(·;φ), it produces
a feature map M(x) ∈ RN×N×d composed of N × N fea-
tures, where d is the embedding size, and each feature is cor-
responding to a rectangle area i.e. the receptive field. Fea-
tures are sent to the activation function and fully connected
layer respectively and produce N × N logits. We take the
max-pooling of these logits as the final logit and obtain pre-
diction score Scls ∈ R2 by softmax operation. Classification
of input image x is computed by argmax function:

Gcls(x) = argmax(Scls), (4)

where Gcls(x) = 1 indicates real face and Gcls(x) = 0 indi-
cates adv-face.

3.3 Decision Boundary Regularization
Although we are trying to make self-perturbed faces as gen-
eral as possible, the trained network still overfits to ID data
and might fail to classify faces far away from the distribu-
tion of negative samples. Regarding adv-faces as OOD data,
we incorporate a regularization term [Du et al., 2022] to our
work to enhance adv-face detection performance.

Assuming the feature representation of real faces forms a
multivariate Gaussian distribution, we sample virtual outliers
V ⊂ Rm from the ε-likelihood region of the estimated class-
conditional distribution:

V =

v |
exp

(
− 1

2 (v − µ̂)
⊤
Σ̂

−1
(v − µ̂)

)
(2π)m/2|Σ̂|1/2

< ε

 , (5)

where µ̂ and Σ̂ are the estimated mean and covariance using
latent features of real faces.

The uncertainty loss regularizes the model to produce a low
OOD score for ID data and a high OOD score for the synthe-
sized outliers, and narrows the decision boundary of real face
class to boost the performance of adv-face detection:

Luncertainty = Ev∼V

[
log(exp−ϕ(−f(v;θ)) +1)

]
+ Ex∼Dr

[
log(

1

exp−ϕ(−f(x;θ))
+ 1)

]
,

(6)

where Dr represents distribution of real face, f(·; θ) is a lin-
ear transformation function, and ϕ(·) is a nonlinear MLP
function. The learning process shapes the uncertainty sur-
face, which predicts a high probability for ID data and a low
probability for virtual outliers v.
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Study Method Detect Attacks Attack-Agnostic FRS-Agnostic
A

D LID [Ma et al., 2018] Local intrinsic dimensionality Gradient-based × ×
SID [Tian et al., 2021] Wavelet transform Gradient-based × ×

FD

Luo et al. [Luo et al., 2021] SRM convolution + DCMA GAN-based × ✓
He et al. [He et al., 2021] Re-Synthesis Residuals GAN-based × ✓

O
O

D ODIN [Liang et al., 2017] Softmax score Gradient-based + GAN-based ✓ ×
MD [Lee et al., 2018] Mahalanobis distance. Gradient-based + GAN-based ✓ ×
ReAct [Sun et al., 2021] Rectified truncation Gradient-based + GAN-based ✓ ×

Ours Self-Perturbation Gradient-based + GAN-based ✓ ✓

Table 1: Baselines used in our study. ”AD” and ”FD” denotes adversarial example detection and face forgery detection respectively. ”OOD”
denotes OOD detection. ”Attack-Agnostic” means that attacks are unseen and no adv-faces are required for training. ”FRS-Agnostic” means
that victim FRS are unknown and access is forbidden. Only our method does not rely on pre-computed adv-faces or victim FRS.

The training objective combines the real-adv classification
loss and the regularization term:

minE(x,y)∼D(Lcls + β · Luncertainty), (7)

where D represents the distribution of training data. β is the
weight of the regularization Luncertainty, and Lcls is the Cross-
Entropy classification loss [Zhang and Sabuncu, 2018].

4 Experiment
To validate the detection performance of our approach on
adv-faces generated by various adversarial attack methods,
we conduct extensive empirical studies on two datasets in
this section. We validate our assumptions by investigating
the intrinsic similarity of adv-faces and compare our method
to baselines from three research streams. After that, we ana-
lyze our approach through a series of ablation studies.

General setup During model training, real faces are used as
positive samples, and only self-perturbations of real faces are
used as negative samples. Any adv-faces are agnostic. During
testing, all the negative samples are adv-faces. In detail, half
of the real faces in the training phase are labeled 1 as the
positive samples, and others are self-perturbed and labeled 0
as the negative samples. In the testing phase, all of adv-faces
are labeled 0. For evaluating the performance of detectors,
we choose the widely used AUC score as the main metric.

Datasets Face images in this work are sampled from LFW
[Gary et al., 2007] and CelebA-HQ [Karras et al., 2017]
datasets. LFW contains 13,233 face images of 5,749 sub-
jects. Subjects with at least two face images take part in adv-
face producing. The first image of each subject is regarded
as a reference and the others are sampled to produce adv-
faces which includes 7,484 images. CelebA-HQ is a high-
resolution subset of CelebA, containing 30,000 images.

Attack methods We employ eight recent gradient-based
adversarial attack methods FGSM [Goodfellow et al., 2014],
BIM [Kurakin et al., 2016], PGD [Madry et al., 2017],
RFGSM [Tramèr et al., 2018], MIM [Dong et al., 2018],
DIM [Wu et al., 2021], TIM [Dong et al., 2019] and TIPIM
[Yang et al., 2021], and two GAN-based attack methods:
AdvMakeup [Yin et al., 2021] and AMT-GAN [Hu et al.,
2022] as attackers, and ArcFace [Deng et al., 2019] as victim
FRS to produce adv-faces on gradient-based attacks. All the

Detector FGSM PGD DIM TIM AdvM.
FGSM 100 99.9 99.7 49.2 0.0
PGD 99.4 100 99.7 6.8 0.0
DIM 98.7 99.4 99.6 2.2 0.0
TIM 71.3 85.8 79.5 93.2 0.0
AdvM. 22.1 19.9 19.5 23.2 98.5

Table 2: Detection accuracy (%) on adv-faces generated by various
of attack algorithms. All adv-faces are generated at ϵ = 5/255.
Networks are trained on adv-faces generated by attacks in the left
column, and tested on adv-faces produced by attacks in the top row.

gradient-based attacks are applied on LFW and CelebA-HQ
datasets to generate adv-faces, while AdvMakeup and AMT-
GAN are on the CelebA-HQ dataset.
Implementation details We modify an ImageNet-pre-
trained XceptionNet [Deng et al., 2009; Chollet, 2017] as the
backbone network in our method. We set N = 7 to produce
a 7 × 7 feature map in the last convolution layer and choose
ReLU as an activation function. We utilize DLIB [Sagonas
et al., 2016] for face extraction and alignment, Torchattacks
[Kim, 2020] for generating adv-faces, and OpenOOD [Girish
et al., 2021] for network training. All face images are aligned
and resized to 256 × 256 before training and testing. The
perturbation magnitude ϵ in self-perturbations and adv-faces
producing is set to 5/255, a small value. Threshold γ in the
convex hull of gradient image in Algorithm 2 is set to 50. The
regularization loss weight β is set to 0.1. Training epochs are
set to 5 and convergence is witnessed.
Baselines Previous adversarial example detection methods
[Ma et al., 2018; Tian et al., 2021] focus on specific tasks
or gradient-based attacks and hence can hardly be effectively
extended to GAN-based adv-faces, while face forgery detec-
tion methods [Luo et al., 2021; He et al., 2021] are used
to detect GAN-made fake faces. On the other hand, some
OOD detection methods [Liang et al., 2017; Lee et al., 2018;
Sun et al., 2021] only rely on output features and logits of
the backbone network and keep agnosticism to unknown at-
tacks, closing to our setting. On account of this, we compare
our method to various methods in three problem settings. All
baselines listed in Table 1 include methods of adversarial ex-
ample detection, OOD detection, and face forgery detection.
It is worth noting that only our method does not require either
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pre-computed adv-faces or access to FRS.

4.1 Assumption Validation
Our assumption for gradient-based noise patterns stands on
the visual similarities between adversarial noises. However,
the human eye is sometimes unreliable because we cannot ob-
serve tiny differences between pixels. To verify the reliability
of the hypotheses, we train a simple XceptionNet with real
faces from the CelebA-HQ dataset and adv-faces generated
by one attack algorithm and test detection accuracy on 1,000
adv-faces per attack. As shown in Table 2, a detector for a
specific gradient-based attack is able to generalize to other
attacks except those based on GANs. but the success rate on
some attacks such as TIM is much lower. We also calculate
the Fréchet Inception Distance of various attacks. What the
results demonstrate is that attack noises are to some extent
similar to each other, and the way of extracting a universal
noise pattern is feasible. The result also indicates that noise
patterns of GAN-based attacks are not close to gradient-based
attack noise patterns and need to be specifically treated.

4.2 Main Results
Gradient-based adv-face detection We first compare the
detection performance of our method to other detectors on
gradient-based attacks. Baselines include 2 detectors pro-
posed for adversarial example detection [Ma et al., 2018;
Tian et al., 2021] and 3 detectors for OOD detection [Liang
et al., 2017; Lee et al., 2018; Sun et al., 2021]. The detec-
tors are trained on real images, along with adv-faces images
(LID and SID) or pseudo adv-faces images (Ours). We com-
pute the classification AUC for all methods on a dataset com-
prising of 1k real images and 1k adversarial face images per
attack type in LFW and CelebA-HQ datasets. As shown in
Table 3, trained on the known attack (FGSM), previous ad-
versarial example detection methods is difficult to detect un-
known attacks. In a contrast, our method reaches a high level
of detecting gradient-based adv-faces and almost approaches
saturation performance on the LFW dataset. This is likely
because the network learns a generic representation for adv-
faces. The result that the AUC score on LFW is higher than
which on CelebA-HQ may contribute to the fact that CelebA-
HQ is a more complicated dataset with high resolution and di-
versified background so self-perturbation works much harder
on it. Thus we speculate that a more complex and more diver-
sified data environment will increase the difficulty of adv-face
detection tasks.
GAN-based adv-face detection To investigate the advan-
tage of our method on detecting GAN-based samples, we
make comparisons with SOTA methods of face forgery de-
tection [He et al., 2021; Luo et al., 2021] and OOD detection
[Liang et al., 2017; Lee et al., 2018; Sun et al., 2021]. We
train our model with only real faces and self-perturbed faces
from CelebA-HQ and test both our approaches and baseline
models on GAN-based adv-faces. As shown in Table 4, the
performance of our method exceeds which of other algo-
rithms and models. This result verifies our assumption that
GAN-made adv-faces have manipulated clues like an abnor-
mal color aberration in high-frequency regions. The obser-
vation that detection performance on Adv-Makeup is higher

Figure 3: 2D t-SNE visualization. Left: flattened noise images of
adv-faces and self-perturbed faces. Right: face features prior to the
logit layer extracted by our model, where ▲ denotes adv-face, × de-
notes self-perturbed face, and + denotes real face. Different colors
represent different types of attack and self-perturbation. We use a
zero-vector to represent the noise of real faces.

than which on AMT-GAN is likely because abnormal local
aberrations of Adv-Makeup are more obvious than that of
AMT-GAN. Besides, the result shows that the detection of
face forgery can not generalize to adv-faces although both
deepfake faces and adv-faces are generated by GANs. This is
possible because a huge difference exists between the finger-
prints of deepfake GANs and that of adv-face GANs.

4.3 Ablation

Component ablation As argued, self-perturbation makes
the detector learn a more generic representation of adv-faces,
Max-Pooling Classifier captures abnormal local color aber-
rations, and the regularization term helps to boost adv-faces
detection. We then conduct an ablation study to verify the
effectiveness of each component. As result shown in Table
5, detectors trained without self-perturbation totally failed in
detecting adv-faces from TIPIM and GAN-based attacks, in-
dicating the indispensability of self-perturbation in detecting
advanced adversarial attacks. There is also an obvious gap be-
tween using and not using Max-Pooling Classifier, especially
on GAN-based adv-faces. Narrowing the decision bound-
ary, the regularization term helps to filter out a small number
of adversarial samples which are not similar enough to self-
perturbed faces, further improving detection performance. As
for some gradient-based adv-faces such as DIM, detection ac-
curacy is high enough regardless of using Max-Pooling Clas-
sifier and a regularization term. It is likely because self-
perturbation is similar enough to attack noise patterns so that
the representations learned by networks are generic enough.

Complementarity of self-perturbations To explore the
necessity and complementarity of self-perturbations, we train
a simple XceptionNet on self-perturbed faces generated from
CelebA-HQ using only a single self-perturbation. The results
are shown in Table 6. As we can see, training a detector only
relying on one of the self-perturbations is insufficient for de-
tecting all unseen adv-faces. Due to the differences in gen-
eration procedures, self-perturbations are complementary to
each other in the detection tasks.
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Method LFW CelebA-HQ
FGSM BIM PGD RF. MIM DIM TIM TIP. FGSM BIM PGD RF. MIM DIM TIM TIP.

LID 76.7 74.0 70.7 73.0 77.7 70.2 62.1 69.0 82.0 55.2 52.5 54.4 57.7 53.7 54.0 59.3
SID 99.7 81.8 73.7 77.8 90.1 72.2 73.4 88.5 96.7 79.2 63.4 72.8 84.5 76.4 81.0 85.2
ODIN 75.6 71.1 71.6 75.2 79.8 73.6 74.8 71.4 76.7 75.7 75.8 75.7 75.0 76.0 72.4 72.2
MD 95.2 91.3 91.9 91.4 90.1 94.0 88.9 86.6 94.1 91.6 91.6 91.7 90.7 93.2 91.9 87.4
ReAct 92.3 89.2 88.4 89.1 89.9 92.2 91.3 90.8 93.6 90.7 90.5 90.6 89.9 92.3 91.9 87.3
Ours 100 100 100 100 99.9 99.7 100 100 99.7 99.0 99.6 99.4 98.1 99.5 96.2 91.7

Table 3: Comparison of AUC scores (%) of detecting gradient-based adv-faces from LFW and CelebA-HQ datasets. Detectors of LID and
SID are trained on FGSM adv-faces. As for other detectors, all attacks are unseen. ”RF.” denotes RFGSM and ”TIP.” denotes TIPIM.

Method Adv-Makeup AMT-GAN Mean
He et al. 52.5 88.2 70.4
Luo et al. 61.8 65.1 62.0
ODIN 63.3 69.7 66.5
MD 72.3 78.2 72.3
React 77.6 82.9 80.3
Ours 96.6 89.7 93.2

Table 4: Comparison of AUC (%) of detecting GAN-based adv-
faces from CelebA-HQ dataset. All attacks are unseen by all detec-
tors. The detector of He et al. is pre-trained on CelebA-HQ and
detector of Luo et al. is pre-trained on FF++ [Rössler et al., 2019].

Ablation FGSM DIM TIM TIP. AdvM. AMT.
w/o SP 100 92.5 72.4 66.1 52.1 50.8
w/o MPC 99.2 99.0 96.8 88.5 90.0 82.0
w/o LU 99.7 99.0 95.5 91.2 95.1 88.4
SP+MPC+LU 99.7 99.5 96.2 91.7 96.6 89.7

Table 5: AUC (%) comparison on CelebA-HQ dataset for ablation
study. ”w/o SP” means training on adv-faces generated by FGSM in-
stead of self-perturbation. ”MPC” refers to Max-Pooling Classifier.
”LU” refers to training under the regularization Luncertainty. ”AdvM.”
and ”AMT.” denote AdvMakeup and AMT-GAN respectively.

4.4 Analysis of Our Approach
Functionality of self-perturbations To explore the func-
tionality of self-perturbations for gradient-based attacks, we
extract noise features and face features of adversarial, self-
perturbed, and real faces and visualize them using 2D t-SNE
projection. As Figure 3 shows, self-perturbation is very close
to attack noise and far from zero-vector (real faces). By sep-
arating real faces from self-perturbed faces, the trained net-
work is able to distinguish between real and adv-faces indi-
rectly. Although some adv-faces generated by TIM are not
covered by self-perturbations, a model trained on decision
boundary regularization still separates them from real faces.

Impact of hyper-parameter Another experiment is about
the choice of ϵ. We train a simple XceptionNet on FGSM
adv-faces at ϵ = 1/255 to ϵ = 15/255 and test on adv-faces
at different ϵ. The result shows that detectors trained on a
smaller ϵ are able to detect adv-faces generated with a larger
ϵ. But an extremely small ϵ may cause failure in model train-
ing. In practice, we do not need to select an extremely small

Self-Perturbation FGSM TIM TIP. AdvM. AMT.
Point-wise 99.6 64.5 68.6 50.8 50.1
Block-wise 81.4 98.9 81.7 76.5 62.3
GC 65.5 70.7 68.0 85.5 78.0

Table 6: Detection AUC (%) on CelebA-HQ. Self-perturbed faces
are generated using one of the self-perturbations. ”GC” denotes self-
perturbation for GAN-based attack mentioned in Algorithm 2.

value for ϵ because the attack success rate is too low to take
into account as shown in the Appendix. In consideration of
this, we choose ϵ = 5/255 (attack success rate lower than
1%) for producing and detecting adv-faces.

5 Conclusion
In this paper, we investigate the intrinsic similarities of re-
cent adv-faces and heuristically design three kinds of real
face self-perturbations close to attack noise pattern. Regard-
ing adv-faces as OOD data, we propose an FRS-agnostic
and attack-agnostic cascaded system for adv-faces detection,
which includes real face self-perturbations, decision bound-
ary regularization, and Max-Pooling Classifier focusing on
abnormal local color aberrations. Trained on only real faces
and self-perturbed real faces, our model learned generic rep-
resentations for adv-faces. Comprehensive analysis validates
the proposed assumptions that noises of adv-faces have in-
trinsic similarities and exist in high-frequency areas, and ex-
tensive experiments demonstrate the improved effectiveness
of our method compared with several recent baselines. We
also observe that the latent representation learned by the de-
tector is hard to generalize to other domains. For future work,
we will try to solve this matter.
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