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Abstract
Hyperspectral image (HSI) denoising has achieved
promising results with the development of deep
learning. A mainstream class of methods exploits
the spatial-spectral correlations and recovers each
band with the aids of neighboring bands, collec-
tively referred to as spectral auxiliary networks.
However, these methods treat entire adjacent spec-
tral bands equally. In theory, clearer and nearer
bands tend to contain more reliable spectral infor-
mation than noisier and farther ones with higher un-
certainties. How to achieve spectral enhancement
and adaptation of each adjacent band has become
an urgent problem in HSI denoising. This work
presents the UA-Adjustor, a comprehensive adjus-
tor that enhances denoising performance by con-
sidering both the band-to-pixel and enhancement-
to-adjustment aspects. Specifically, UA-Adjustor
consists of three stages that evaluate the impor-
tance of neighboring bands, enhance neighboring
bands based on uncertainty perception, and ad-
just the weight of spatial pixels in adjacent bands
through estimated uncertainty. For its simplicity,
UA-Adjustor can be flexibly plugged into existing
spectral auxiliary networks to improve denoising
behavior at low cost. Extensive experimental re-
sults validate that the proposed solution can im-
prove over recent state-of-the-art (SOTA) methods
on both simulated and real-world benchmarks by a
large margin.

1 Introduction
Hyperspectral image (HSI) captures plentiful spectral infor-
mation of the same scene with contiguous wavebands and
provides an internal perspective to analyze the observed tar-
gets, unlike gray-scale or RGB images. Thanks to the advan-
tages of hyperspectral imaging [Cai et al., 2022b], a series of
tasks based on HSI have been proposed, such as object recog-
nition [Cai et al., 2021a], classification [Hong et al., 2021;
Zhong et al., 2021], detection [Liu et al., 2021] and so on.
However, due to photon effects, atmosphere, and other in-
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Figure 1: Visual presentation of the adjacent bands contaminated
by inconsistent and unknown noise on the real-world datasets Urban
and Indian Pines (IPs).

evitable degradation factors, the practical HSIs are often suf-
fered from various complex noises such as stripe, deadline,
impulse, and more. These degradations largely hinder the
analysis and interpretation of HSI. Therefore, HSI denoising
is a critical pre-processing step before the downstream HSI
applications.

As the booming of the deep learning era, more re-
searches [Wei et al., 2020; Rui et al., 2021; Cao et al., 2021]
focus on extending the Deep Convolutional Neural Network
(DCNN) to the HSI denoising task. Most of these meth-
ods attempt to extract and utilize rich spectral information
to restore noisy HSI. Among them, the framework of most
mainstream networks [Yuan et al., 2018; Yuan et al., 2021;
Kan et al., 2022] is to recover one band at a time with the
spectral complementary information from a fixed number K
of adjacent bands and performs the HSI denoising task band
by band. These spectral auxiliary networks consider spatial-
spectral correlation simultaneously and achieve impressing
performance compared with directly applying the grayscale
or RGB image restoration methods in the HSI denoising task.

However, achieving such improvements often requires
complex network architectures and training strategies. There-
fore, we aim to enhance denoising performance without mod-
ifying their original network structure. In existing methods,
adjacent bands are typically treated equally, assuming that
spectral information is uniformly distributed. However, it is
widely known that the noise intensity and distribution vary
across bands, as shown in Fig. 1, making it challenging to op-
timize denoising performance. Additionally, pixels in differ-
ent spatial areas exhibit varying levels of degradation, indicat-
ing the varying importance of visual information. Therefore,
for the current denoising band, the uncertainties of neighbor-
ing bands and pixels are not consistent. Based on these obser-
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Figure 2: Overview of HSI denoising process with the proposed UA-Adjustor. UA-Adjustor is a plug-and-play module that can be effortlessly
inserted into existing spectral auxiliary networks.

vations, we propose to enhance and adjust the adjacent spec-
tral bands via uncertainty perception, leveraging their valu-
able information for network denoising.

In this paper, we take a novel perspective on HSI denois-
ing and propose a general uncertainty-aware adjustor (UA-
Adjustor), which can be flexibly crafted on top of existing
spectral auxiliary networks effortlessly to improve their per-
formance significantly. An overview of the HSI denoising
process with the proposed UA-Adjustor is illustrated in Fig. 2.
It can be seen that UA-Adjustor generates adjusted adjacent
bands preceding noise removal, which is decoupled from the
spectral auxiliary network. The flowchart of UA-Adjustor
is detailed in Fig. 3, including three designed modules, i.e.,
Adjacent Derivative Function (ADF), Spectral Significance
Module (SSM) and Uncertainty Estimator (UE). ADF is de-
signed to make the interaction between two bands by per-
forming a novel bidirectional derivative, SSM is proposed to
generate a list of significant weights of the adjacent bands,
and UE is devised to estimate the uncertainty of spatial pix-
els adaptively. The end-to-end learning steps of UA-Adjustor
can be described as follows. In the first stage, we evaluate
the importance of each neighboring band. The more informa-
tive spectral bands tend to impose higher weights to benefit
subsequent feature learning. In the second stage, we enhance
each band by aggregating the spatial content of a short local
range neighboring bands based on uncertainty awareness. In
the last stage, we aim to adjust the weight of each spatial pixel
in the enhanced adjacent bands by its uncertainty and produce
the final spectral auxiliary bands. Unlike channel-wise atten-
tion modules like SE-Net [Hu et al., 2018] or S-MSA [Cai et
al., 2022a], UA-Adjustor is a more comprehensive adjustor
that enhances denoising performance by considering both the
band-to-pixel and enhancement-to-adjustment aspects.

The main contributions are summarized as follows:
1. A general UA-Adjustor is proposed, which can be flexi-

bly crafted on existing spectral auxiliary networks and
improve denoising performance without any network
structural modification.

2. We propose three progressive stages in UA-Adjustor,
i.e., evaluating the significance of neighboring bands,

enhancing neighboring bands based on uncertainty per-
ception, and adjusting the weight of spatial pixels in ad-
jacent bands using estimated uncertainty.

3. Experimental results on several simulated and real-
world benchmarks demonstrate that the proposed UA-
Adjustor can improve the denoising performance of re-
cent SOTA networks with a huge boost which achieves
a great trade-off between efficiency and performance.

2 Related Work
Different from grayscale or RGB image denoising meth-
ods [Cai et al., 2021b], hyperspectral image (HSI) denoising
techniques face the challenge of inconsistent and unknown
noise across abundant spectral bands. Consequently, most
HSI denoising methods leverage the rich spectral information
to restore noisy HSIs.

A prevalent category of HSI denoising approaches involves
restoring each band in the noisy HSI using adjacent bands
as auxiliary information, commonly referred to as spectral
auxiliary networks. Among these methods, [Yuan et al.,
2018] proposes a joint spatial-spectral learning strategy that
captures multiscale spatial-spectral features to recover noisy
HSIs. [Maffei et al., 2019] devises a downsampling kernel to
achieve fast denoising without losing performance and uses
the noise-level map to make the network more robust. [Yuan
et al., 2021] attempts to estimate the noise intensity of each
band and extracts multiscale spatial–spectral features to retain
the texture details in HSI. [Kan et al., 2022] aims to decom-
pose high-frequency features from the original features to bet-
ter suppress noise. While these methods have shown promis-
ing results, they treat all adjacent bands equally, limiting the
network’s ability to attain optimal performance. To overcome
this limitation, we propose a UA-Adjustor and elaborate on its
workflow in the subsequent sections.

3 Proposed Method
In this section, we first introduce the preliminary and overall
pipeline of UA-Adjustor. Afterwards, we elaborate on each
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Figure 3: Flowchart of the proposed UA-Adjustor and the details of each component.

function and module in UA-Adjustor. Finally, we describe
the workflow of the three progressive stages in detail.

3.1 Preliminary
The HSI can be treated as a 3-D image data of size H ×
W ×B, where H , W , and B denote the spatial height, spatial
width, and number of spectral bands of the HSI. The goal of
HSI denoising is to give clean results {xi}Bi=1 for all bands of
noisy HSI {yi}Bi=1. Suppose the current band to be denoised
is yi and {yj}i+k/2

j=i−k/2 indicates the fixed number K of adja-
cent bands. The workflow of the previous spectral auxiliary
networks can be represented as:

{xi}Bi=1 =
{
denoiser(yi, {yj}i+k/2

j=i−k/2)
}B

i=1
. (1)

In UA-Adjustor, we aim to adjust the neighboring bands
{yj}i+k/2

j=i−k/2 based on uncertainty perception. The workflow
of UA-Adjustor can be denoted as:{

y3j
}i+k/2

j=i−k/2
= adjustor(yi, {yj}i+k/2

j=i−k/2), (2)

where the y3j is the j-th adjusted neighboring band after the
third stage. In the following, the functions and modules of
each stage will be explained.

3.2 Adjacent Derivative Function
As noted in previous studies [Zhang et al., 2019; Guan et al.,
2022], it has been discovered that the spectral derivative can
effectively attenuate irrelevant scene details while emphasiz-
ing noise components. In these works, the spectral derivative

is defined as the forward difference along the spectral dimen-
sion between two adjacent bands, as given below:

di→i−1 = yi − yi−1. (3)
However, we contend that the constraints on the direc-

tion of spectral difference and the specific pairing of spectral
bands, as defined in Eq. 3, are not applicable for the extrac-
tion of long-range spectral information. Here, yi represents
the current band, while yj represents an adjacent band that
can be located either in front of or behind yi. In order to cap-
ture diverse spectral correspondences and ensure consistency,
we introduce the concept of bidirectional derivatives, which
extend the spectral derivative to incorporate both forward
and backward differences between any pair of bands. This
bidirectional derivative, illustrated in Fig. 4, effectively sup-
presses irrelevant and redundant spectral information, while
highlighting the spectral disparities. To better leverage the
spectral correlation, we propose the integration of the bidirec-
tional derivative into an adjacent derivative function (ADF).
The ADF explicitly binds the current denoising band with
each of its neighbors as a spectrum pair and reasons the rela-
tions between every pair to exploit only valuable information
for stronger denoising. Mathematically, the ADF is expressed
as follows:
Ri→j = ADF (yi, yj) = concat(yi, yj , di→j , dj→i), (4)

where i ∈ [0, B], j ∈ [i − k/2, i + k/2], and Ri→j is the
interaction relation between yi and yj .

3.3 Spectral Significance Module
To efficiently evaluate the significance of different spectral
bands, we introduce a lightweight spectral significance mod-
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Figure 4: Visual presentation of adjacent derivative function on the
real-world Urban dataset, where i = 0 and j = 3.

ule (SSM) comprising a 3-D convolution operation, a 3-D
adaptive average pooling operation, and a hyperbolic tangent
activation function (Tanh). The SSM takes the interaction re-
lation group {Ri→j}i+k/2

j=i−k/2, generated by the ADF, as input

and produces a significance list {Si→j}i+k/2
j=i−k/2 for the adja-

cent bands:

{Si→j}i+k/2
j=i−k/2 = {SSM(Ri→j)}i+k/2

j=i−k/2 . (5)

3.4 Uncertainty Estimator
To capture the uncertainty of each spatial pixel in the adja-
cent bands, we introduce a lightweight uncertainty estimator
(UE) comprising two 3-D convolutions and a hyperbolic tan-
gent activation function (Tanh). The UE takes the relation
group {Ri→j}i+k/2

j=i−k/2 as input and dynamically learns the

uncertainties {Ui→j}i+k/2
j=i−k/2 of different pixels in the adja-

cent bands during the training process. The workflow of the
UE can be described as follows:

{Ui→j}i+k/2
j=i−k/2 = γ · {UE(Ri→j)}i+k/2

j=i−k/2 , (6)

where γ represents the restriction factor, which is a learnable
parameter. As illustrated in Fig. 5a, the current denoising
band yi is heavily affected by high-intensity noise. To en-
hance the noise removal process, we leverage the relatively
clean adjacent band yj (see Fig. 5b) as a spectral auxiliary
band. Notably, we observe that the outline within the red
rectangles in Fig. 5c is clearly visible in Fig. 5a. Conse-
quently, these areas are assigned lower uncertainty values,
while higher uncertainties are assigned to other pixels. In
contrast, Fig. 5d shows the current denoising band yi con-
taminated by low-intensity noise. Here, the relatively clean
adjacent band yj (see Fig. 5e) exhibits lower uncertainties in
most areas (see Fig. 5f). As a result, pixels with higher cer-
tainty are given greater attention to extract valuable feature.

3.5 Spectral Significance Evaluation
Considering that the spectral information from different
neighboring bands may contribute differently to the denois-
ing process of the current band, we propose to evaluate the
importance of each neighboring band. Consequently, we in-
troduce the concept of modified adjacent bands

{
y1j
}i+k/2

j=i−k/2
,

which can be calculated as follows:{
y1j
}i+k/2

j=i−k/2
= {(1 + α · Si→j) ∗ yj}i+k/2

j=i−k/2 , (7)

(a) yi - 103th (b) yj - 104th (c) Uncertainty 104th

(d) yi - 100th (e) yj - 101th (f) Uncertainty 101th

Figure 5: Visual presentation of current denoising band yi, adjacent
band yj and its uncertainty estimated by UE on the Urban dataset.

where α represents the restriction factor, which is a learnable
parameter. Si→j is the significance weight learned by SSM
and y1j denotes the modified yj of stage 1.

3.6 Spectral Enhancement
The second stage aims to enhance the adjacent spectral bands
by leveraging the correlation and constraint between bands.
However, enhancing the entire spectral range is computation-
ally impractical due to the large number of bands in HSI. To
address this, a novel spectral enhancement strategy based on
uncertainty perception is proposed. This strategy involves the
introduction of UE to estimate the uncertainty of each spatial
pixel in a short local band range. Based on the estimated un-
certainty, the adjacent bands are modified accordingly, gen-
erating uncertainty masks that represent spectral gain infor-
mation. To normalize the uncertainty masks within a short
local range, the softmax function is applied to these bands.
This ensures that the enhancement is balanced and takes into
account the relative importance of different pixels within the
local range. Finally, the weighted uncertainty masks are ag-
gregated to obtain the final enhancement information, which
is then added to the corresponding band. This stage follows
the workflow described bellow, allowing for efficient and ef-
fective enhancement of the adjacent spectral bands in the HSI:

{Mj→jn}
j+n/2
jn=j−n/2 =

{
Uj→jn ⊗ y1jn

}j+n/2

jn=j−n/2
, (8)

Aj =
∑j+n/2

jn=j−n/2softmax(Mj→jn)⊗Mj→jn , (9)

where n is the number of short local range, yjn is the neigh-
boring bands of yj , Uj→jn is the uncertainty of yjn learned
by UE, Mj→jn is the uncertainty mask of yjn , ⊗ is element-
wise multiplication and Aj is the aggregated enhancement
information. Thus the enhanced spectral bands of this stage
can be calculated as follows:{

y2j
}i+k/2

j=i−k/2
=

{
β ·Aj + y1j

}i+k/2

j=i−k/2
, (10)

where β denotes the restriction factor and is a learnable pa-
rameter, the y2j is the enhanced yj of stage 2.
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Methods Case 1 Case 2 Case 3 Case 4
PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy (ICVL) 17.65 0.1386 0.8684 17.56 0.1385 0.8806 14.88 0.1024 0.9110 13.82 0.0792 0.9271
HSID-CNN [Yuan et al., 2018] 38.11 0.9450 0.1061 37.83 0.9439 0.1038 36.60 0.9263 0.1457 35.10 0.9123 0.1681

HSID-CNN (Ours) 39.37 0.9491 0.1047 39.43 0.9506 0.1019 38.27 0.9377 0.1315 37.05 0.9305 0.1382
P-DNet [Yuan et al., 2021] 39.40 0.9526 0.0810 39.15 0.9511 0.0820 37.72 0.9218 0.1440 36.53 0.9084 0.1631

P-DNet (Ours) 40.72 0.9613 0.0826 40.87 0.9623 0.0806 39.71 0.9546 0.1005 38.48 0.9457 0.1110
AODN [Kan et al., 2022] 39.94 0.9503 0.1052 39.85 0.9492 0.1031 39.07 0.9424 0.1206 38.05 0.9356 0.1287

AODN (Ours) 40.89 0.9607 0.0827 40.97 0.9617 0.0824 39.78 0.9534 0.0995 38.36 0.9428 0.1052

Table 1: Quantitative evaluation the recent SOTA spectral auxiliary methods under different complex noise cases on the ICVL dataset.
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Figure 6: Denoising results (PSNR, dB) and visual comparison of
the simulated HSI from the ICVL dataset under complex noise case
4. The visual image is synthesized by HSI bands 23, 12, 9.

3.7 Spectral Adjustment
Up till now, the enhanced adjacent spectral bands with more
robustness are generated through the preceding two stages. In
this stage, we aim to estimate the uncertainty of each spatial
pixel in enhanced neighboring bands for current denoising
and produce final spectral auxiliary bands. Thus the UE is
also used in this stage. The workflow of this stage can be
formulated as follows:

{Mi→j}i+k/2
j=i−k/2 =

{
Ui→j ⊗ y2j

}i+k/2

j=i−k/2
, (11)

where Ui→j is the uncertainty of yj learned by UE and the
Mi→j is the uncertainty mask of yj . Ultimately, the final
adjacent spectral bands can be adjusted as follows:{

y3j
}i+k/2

j=i−k/2
= {Mi→j + yj}i+k/2

j=i−k/2 , (12)

where the y3j is the adjusted yj of stage 3.

4 Experiments and Discussions
To illustrate the effectiveness of the proposed UA-Adjustor, in
this section, we conduct comprehensive experiments on both
simulated and real-world benchmarks. More results and fu-
ture works are explained in the supplementary materials.

4.1 Experiment Setups
Dataset and Evaluation Setup
We integrate UA-Adjustor into several state-of-the-art sys-
tems, namely HSID-CNN [Yuan et al., 2018], P-DNet [Yuan

13.87
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37.87

(h) AODN
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Figure 7: Denoising results (PSNR, dB) and visual comparison of
the simulated remotely sensed dataset WDCM under complex noise
case 4. The visual image is synthesized by HSI bands 78, 45, 12.

et al., 2021], and AODN [Kan et al., 2022], to evaluate its ef-
fectiveness. The training process is performed on the CAVE
dataset [Park et al., 2007], and we evaluate these models on
the ICVL dataset [Arad and Ben-Shahar, 2016] and the re-
motely sensed dataset WDCM1 for simulation experiments.
For real-data experiments, we use the real-world datasets Ur-
ban [Mnih and Hinton, 2010] and Indian Pines [Landgrebe,
2003]. The details of dataset processing can be found in the
supplementary materials. To assess the performance, we fol-
low the commonly used protocols in HSI denoising meth-
ods and employ metrics such as peak signal-to-noise ratio
(PSNR), structure similarity (SSIM) [Wang et al., 2004], and
spectral angle mapper (SAM) [Yuhas et al., 1993]. For real-
world datasets, we also use overall accuracy (OA) to evaluate
the classification accuracy, which indirectly reflects the de-
noising performance. Additionally, we consider the parame-
ters (Params) and runtime to evaluate the efficiency of UA-
Adjustor in the ablation study.

Simulated Noise Setup
To simulate the various noisy situations in corrupted real-
world HSIs, we generate four types of complex noise follow-
ing the settings in [Wei et al., 2023] (i.e., Case 1: Non-i.i.d.
Gaussian + Stripe noise; Case 2: Non-i.i.d. Gaussian + Dead-
line noise; Case 3: Non-i.i.d. Gaussian + Impulse noise and

1https://engineering.purdue.edu/∼biehl/MultiSpec/
hyperspectral.html
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76.54
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93.79

(b) HSID-CNN
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91.47
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Figure 8: Visual comparison and classification results (OA) of the real-world HSI from the Indian Pines dataset. The visual image is
synthesized by HSI bands 27, 3, 1.

Case 4: Mixture noise) to contaminate clean HSIs.

Implementation Details
Following common protocols in existing spectral auxiliary
networks, the number K of adjacent bands is set to 24. The
number N of the short local range is set to 4. The working
mechanism of UA-Adjustor is to be crafted on spectral aux-
iliary networks and these two parts are trained as a whole
architecture. In practice, the complex noises randomly se-
lected from Case 1 to Case 3 are added to the training set.
For head-to-head comparisons, we fairly train baseline net-
works and their counterparts with UA-Adjustor integrated in
the same experimental setup. All experiments are conducted
on the NVIDIA GeForce RTX 3090 GPU.

4.2 Experimental Results and Analysis

In this subsection, we fairly compare the recent SOTA spec-
tral auxiliary networks and their original networks with the
UA-Adjustor integrated.

Simulation Experiments
Table 1 presents the performance comparison on the ICVL
dataset across four types of complex noise cases. The integra-
tion of UA-Adjustor significantly improves the performance
of each compared method. Notably, HSID-CNN and P-DNet
achieve an absolute improvement of 1.95 dB in Case 4, which
is the most challenging scenario and not learned in training
process. AODN leverages the UA-Adjustor to enhance de-
noising performance by 0.31 to 1.12 dB. Furthermore, Fig. 6
provides visual comparisons under complex noise Case 4. It
is evident that methods integrated with UA-Adjustor can bet-
ter preserve the texture of the original images. To further as-
sess the effectiveness of UA-Adjustor, we also evaluate the
entire architecture on the WDCM remotely sensed dataset.
The PSNR results and visual comparisons under complex
noise Case 4 are shown in Fig. 7. Our method demonstrates
satisfactory performance, with a significant improvement of
2.28 dB observed in P-DNet. HSID-CNN and AODN also
achieve improvements of 1.84 dB and 1.24 dB, respectively.

Real-Data Experiments
We further evaluate the impact of UA-Adjustor on real-world
noisy HSI datasets, namely Urban and Indian Pines. The as-
sessments on the Urban dataset can be found in the supple-
mentary materials. Given that image quality directly influ-
ences the performance of downstream HSI applications, we
employ classification algorithms [Pedregosa et al., 2011] to
objectively evaluate the denoising results of real-world HSIs.

The quantitative and qualitative evaluation results on the
Indian Pines dataset are depicted in Fig. 8, the methods in-
tegrated with UA-Adjustor effectively remove noise and re-
cover lost details without introducing noticeable oversmooth-
ing artifacts. Consequently, they generate superior classifica-
tion results compared to the original denoising network.

Ablation Study and Discussions
We conduct a series of ablation studies to examine the impact
of different settings of the UA-Adjustor and reveal their con-
tribution to our final performance. All ablations are validated
on WDCM benchmark.

Analysis of progressive stages. We conducted experiments
to thoroughly validate the functionality of each stage in UA-
Adjustor. The denoising results on the WDCM dataset are
presented in Table 2. The original P-DNet and AODN serve
as the backbones. From the table, it can be observed that
the introduction of stage 1, which involves spectral signifi-
cance evaluation, leads to a performance improvement of 1.60
dB for P-DNet and 0.68 dB for AODN. Subsequently, the
addition of the modified adjacent bands from the first stage
into the second enhancement stage results in further improve-
ments of 1.74 dB and 0.55 dB for P-DNet and AODN, re-
spectively, compared to their original versions. Finally, after
the adjustment stage, P-DNet achieves an absolute gain of
2.28 dB, while AODN achieves a gain of 1.24 dB, compared
to their respective backbones. Importantly, each stage intro-
duces only a few parameters, making the lightweight UA-
Adjustor require a total of only 0.0089 M of additional pa-
rameters. As the stages progress, P-DNet and AODN inte-
grated with UA-Adjustor demonstrate a significant improve-
ment in denoising performance, while the increase in time
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Methods PSNR (dB) Params (M) Time (ms)

P-DNet 35.40 1.2791 25.88
+ stage 1 37.00 1.2878 27.57
+ stage 2 37.14 1.2880 29.08
+ stage 3 37.68 1.2880 32.99

AODN 36.63 2.0753 43.56
+ stage 1 36.97 2.0840 45.27
+ stage 2 37.18 2.0842 46.79
+ stage 3 37.87 2.0842 50.68

Table 2: The efficiency comparisons of the SOTA methods P-DNet
and AODN with the integration of UA-Adjustor at different stages.

ADF PSNR SSIM SAM

– 35.06 0.8284 0.1419
di→j 36.39 0.8749 0.1229
dj→i 36.54 0.8828 0.1210
yi, yj 36.53 0.8769 0.1191

yi, yj , di→j 36.78 0.8890 0.1181
yi, yj , dj→i 36.71 0.8822 0.1152

yi, yj , di→j , dj→i 36.90 0.8887 0.1130

Table 3: Different combination results of adjacent derivative func-
tion. The ’–’ denotes denoising result of backbone HSID-CNN.

costs remains within an acceptable range, especially for larger
models.

Experiments on ADF. To evaluate the effectiveness of the
proposed ADF, including the bidirectional derivative, we con-
ducted ablation studies on different combinations of spectral
bands and their derivatives in Eq. 4. The denoising results and
efficiency evaluation on the WDCM dataset are presented in
Table 3, using the HSID-CNN integrated with UA-Adjustor.
As observed, one basic idea is to employ either di→j or dj→i

as input, resulting in an improvement of 1.30 dB and 1.48
dB on HSID-CNN. However, this approach has limitations
as it only uses spectral derivatives and loses image content.
Conversely, combining (yi, yj) without spectral derivative in-
formation leads to a limited improvement of 1.47 dB. There-
fore, we attempt to combine (yi, yj) with either di→j or dj→i,
resulting in improvements of 1.72 dB and 1.65 dB, respec-
tively. Finally, the most comprehensive combination of yi, yj ,
di→j , and dj→i is adopted as our adjacent derivative function,
achieving improvement 1.85 dB and optimal performance.

Analysis of short local range N . We conduct an ablation
study to see how long the short local range N is optimal in
the spectral enhancement stage. As shown in Table 4a, N
= 2 costs the lowest runtime but achieves unsatisfactory de-
noising results. As the value of N increases, the denoising
performance shows an initial improvement, but then starts to
decline due to a larger range may introduce interference with
high uncertainty. Ultimately, we observe that using a short lo-
cal range of N = 4 offers the best trade-off between efficiency
and performance.

N PSNR Time (ms)

2 36.48 17.91
6 36.71 18.59
8 36.62 18.92
4 36.90 18.24

(a) Short local range N

K PSNR Time (ms)

12 37.03 45.68
18 37.71 47.17
30 37.68 52.29
24 37.87 50.68

(b) Adjacent bands K

Table 4: Ablations of different N on HSID-CNN and K on AODN.

Methods PSNR Params (M) Time (ms)

Ori. 35.40 1.2791 25.88
SE 35.92 1.2794 29.73

S-MSA 36.53 1.2818 28.01
Ours 37.68 1.2880 32.99

Table 5: Ablations of different attention modules on P-DNet.

Analysis of adjacent bands K . We also conduct an ab-
lation study to determine the optimal length of the adjacent
bands, denoted as K . Table 4b presents the results of abla-
tion. Similar to the analysis of short local range, when K is
set to 12, we observe the lowest runtime, but the denoising
results are unsatisfactory. Ultimately, the K is set to 24 pro-
vides the best trade-off between efficiency and performance.

Attention scheme comparison. We compare UA-Adjustor
with other attention modules and present the results in Ta-
ble 5. The baseline model achieves a denoising performance
of 35.40 dB with 1.2791 M Params and 25.88 ms time cost.
We apply the SE-Net, S-MSA, and our UA-Adjustor, respec-
tively. By using these methods, the model’s denoising per-
formance improves by 0.52, 1.13, and 2.28 dB, while adding
0.0003, 0.0027, and 0.0089 M Params and 3.85, 2.13, and
7.11 ms time cost, respectively. UA-Adjustor achieves the
most significant improvement in denoising performance with
only three learnable 3D-conv layers, which maintains a great
balance between efficiency and performance. However, it is
anticipated that the denoising performance improvement may
be limited when HSI is affected by low levels of simple noise,
which can disrupt this balance.

5 Conclusion

In this work, we discuss the problems of existing HSI de-
noising methods and present UA-Adjustor, an approach that
derives an effective strategy of adjacent spectral bands ad-
justment based on uncertainty perception so as to generate
more suitable and powerful adjacent spectral bands on a per-
band basis. The UA-Adjustor is general and can be plugged
into existing spectral auxiliary networks effortlessly, which
contains three progressive stages to achieve improved per-
formance, i.e., spectral significance evaluation, spectral en-
hancement, and spectral adjustment. Extensive results indi-
cate that the UA-Adjustor can improve over recent state-of-
the-art methods on both simulated and real-world datasets.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1566



Acknowledgments
This research is supported by National Key Research
and Development Project of China grant number
2020AAA0105600, National Natural Science Founda-
tion of China grant number 62006183, and Fundamental
Research Funds for the Central Universities under grant
Numbers xhj032021017-04. We also thank Yantao Ji and
Jiehua Zhang for discussions.

References
[Arad and Ben-Shahar, 2016] Boaz Arad and Ohad Ben-

Shahar. Sparse recovery of hyperspectral signal from nat-
ural rgb images. In European Conference on Computer
Vision, pages 19–34. Springer, 2016.

[Cai et al., 2021a] Weiwei Cai, Zhanguo Wei, Runmin Liu,
Yuan Zhuang, Yan Wang, and Xin Ning. Remote sensing
image recognition based on multi-attention residual fusion
networks. ASP Transactions on Pattern Recognition and
Intelligent Systems, 1(1):1–8, 2021.

[Cai et al., 2021b] Yuanhao Cai, Xiaowan Hu, Haoqian
Wang, Yulun Zhang, Hanspeter Pfister, and Donglai Wei.
Learning to generate realistic noisy images via pixel-level
noise-aware adversarial training. Advances in Neural In-
formation Processing Systems, 34:3259–3270, 2021.

[Cai et al., 2022a] Yuanhao Cai, Jing Lin, Xiaowan Hu,
Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte,
and Luc Van Gool. Mask-guided spectral-wise transformer
for efficient hyperspectral image reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17502–17511, 2022.

[Cai et al., 2022b] Yuanhao Cai, Jing Lin, Haoqian Wang,
Xin Yuan, Henghui Ding, Yulun Zhang, Radu Timo-
fte, and Luc V Gool. Degradation-aware unfolding
half-shuffle transformer for spectral compressive imag-
ing. Advances in Neural Information Processing Systems,
35:37749–37761, 2022.

[Cao et al., 2021] Xiangyong Cao, Xueyang Fu, Chen Xu,
and Deyu Meng. Deep spatial-spectral global reason-
ing network for hyperspectral image denoising. IEEE
Transactions on Geoscience and Remote Sensing, 60:1–
14, 2021.

[Guan et al., 2022] Juntao Guan, Rui Lai, Huanan Li, Yin-
tang Yang, and Lin Gu. Dnrcnn: Deep recurrent convo-
lutional neural network for hsi destriping. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

[Hong et al., 2021] Danfeng Hong, Zhu Han, Jing Yao,
Lianru Gao, Bing Zhang, Antonio Plaza, and Jocelyn
Chanussot. Spectralformer: Rethinking hyperspectral im-
age classification with transformers. IEEE Transactions
on Geoscience and Remote Sensing, 60:1–15, 2021.

[Hu et al., 2018] Jie Hu, Li Shen, and Gang Sun. Squeeze-
and-excitation networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
7132–7141, 2018.

[Kan et al., 2022] Ziwen Kan, Suhang Li, Mingzheng Hou,
Leyuan Fang, and Yi Zhang. Attention-based octave net-
work for hyperspectral image denoising. IEEE Journal
of Selected Topics in Applied Earth Observations and Re-
mote Sensing, 15:1089–1102, 2022.

[Landgrebe, 2003] David A Landgrebe. Signal theory meth-
ods in multispectral remote sensing, volume 24. John Wi-
ley & Sons, 2003.

[Liu et al., 2021] Jun Liu, Zengfu Hou, Wei Li, Ran Tao,
Danilo Orlando, and Hongbin Li. Multipixel anomaly de-
tection with unknown patterns for hyperspectral imagery.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021.

[Maffei et al., 2019] Alessandro Maffei, Juan M Haut, Mer-
cedes Eugenia Paoletti, Javier Plaza, Lorenzo Bruzzone,
and Antonio Plaza. A single model cnn for hyperspectral
image denoising. IEEE Transactions on Geoscience and
Remote Sensing, 58(4):2516–2529, 2019.

[Mnih and Hinton, 2010] Volodymyr Mnih and Geoffrey E
Hinton. Learning to detect roads in high-resolution aerial
images. In European conference on computer vision,
pages 210–223. Springer, 2010.

[Park et al., 2007] Jong-Il Park, Moon-Hyun Lee, Michael D
Grossberg, and Shree K Nayar. Multispectral imaging us-
ing multiplexed illumination. In 2007 IEEE 11th Interna-
tional Conference on Computer Vision, pages 1–8. IEEE,
2007.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux,
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