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Abstract
Transfer learning has been widely adopted for few-
shot classification. Recent studies reveal that ob-
taining good generalization representation of im-
ages on novel classes is the key to improving the
few-shot classification accuracy. To address this
need, we prove theoretically that leveraging ensem-
ble learning on the base classes can correspond-
ingly reduce the true error in the novel classes. Fol-
lowing this principle, a novel method named En-
semble Learning with Multi-Order Statistics (EL-
MOS) is proposed in this paper. In this method, af-
ter the backbone network, we use multiple branches
to create the individual learners in the ensemble
learning, with the goal to reduce the storage cost.
We then introduce different order statistics pooling
in each branch to increase the diversity of the in-
dividual learners. The learners are optimized with
supervised losses during the pre-training phase. Af-
ter pre-training, features from different branches
are concatenated for classifier evaluation. Exten-
sive experiments demonstrate that each branch can
complement the others and our method can produce
a state-of-the-art performance on multiple few-shot
classification benchmark datasets.

1 Introduction
Few-shot Classification (FSC) is a promising direction in alle-
viating the labeling cost and bridging the gap between human
intelligence and machine models. It aims to accurately differ-
entiate novel classes with only a few labeled training samples.
Due to limited supervision from novel classes, an extra base
set with abundant labeled samples is often used to improve
the classification performance. According to the adopted
training paradigms, FSC methods can be roughly divided into
meta-learning-based [Finn et al., 2017; Snell et al., 2017] and
transfer-learning-based [Chen et al., 2019; Liu et al., 2020;
Afrasiyabi et al., 2020]. The first type takes the form of
episodic training, in which subsets of data are sampled from
the base set to imitate the meta-test setting. Since sampling
does not cover all combinations, this paradigm cannot fully
utilize the information provided by the base set. In con-
trast, the transfer-learning takes the base set as a whole, so

Figure 1: (a) The traditional methods often use different backbone
networks as individuals, which significantly increases the computa-
tion and storage costs. (b) Our method takes the same backbone and
equips different branches with multi-order statistics as learning in-
dividuals. They are parameter-free and trained jointly, and do not
require extra model size and computation time.

it avoids the drawback of meta-learning and achieves bet-
ter performance. Many effective regularization techniques
have been exploited in transfer-learning, for example, man-
ifold mixup [Mangla et al., 2020], self-distillation [Tian et
al., 2020], and self-supervised learning [Zhang et al., 2020b],
which leads to significant improvement on the generalization
of image representations and the FSC performance.

Ensemble learning combines multiple learners to solve
the same problem and exhibits better generalization perfor-
mance than any individual learners. When combining en-
semble learning with deep Convolutional Neural Networks
(CNN), the new paradigm usually requires large-scale train-
ing data for classification tasks [Horváth et al., 2021; Agar-
wal et al., 2021], making it challenging to be adopted for
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FSC. Recently, two notable studies [Dvornik et al., 2019;
Bendou et al., 2022] employed an ensemble of deep neu-
ral networks for FSC tasks under either a meta-learning or
a transfer-learning setting. They demonstrated that ensem-
ble learning is also applicable to FSC. Yet, these works are
still preliminary and lack a theoretical analysis to explain the
underlying reason behind the promising performance. To ad-
dress this challenge, we provide an FSC ensemble learning
theorem for the transfer-learning regime. Its core idea is a
tighter expected error bound on the novel classes, in which
the expected error on the novel classes can be reduced by im-
plementing ensemble learning on the base classes, given the
base classes-novel classes domain divergence.

The generalization ability of ensemble learning is strongly
dependent on generating diverse individuals [Yang et al.,
2013]. As shown in Figure 1 (a), traditional methods often
use different backbone networks as individuals, which sig-
nificantly increases the computation and storage costs. Our
work finds that different-order statistics of the CNN features
are complementary to each other, and integrating them can
better model the whole feature distribution. Based on this
observation, we develop a parameter-free ensemble method,
which takes the same backbone and equips different branches
with multi-order statistics as learning individuals. We name
this method Ensemble Learning with Multi-Order Statistics
(ELMOS), as shown in Figure 1 (b). The main contributions
of this paper are summarized as follows:

• To our knowledge, this is the first theoretical analysis
to guide ensemble learning in FSC. The derived theo-
rem proves a tighter expected error bound is available
on novel classes.

• We propose an ensemble learning method by adding
multiple branches at the end of the backbone networks,
which can significantly reduce the computation time of
the training stage for FSC.

• This is the first time that multi-order statistics is in-
troduced to generate different individuals in ensemble
learning.

• We conduct extensive experiments to validate the effec-
tiveness of our method on multiple FSC benchmarks.

2 Related Work
2.1 Few-shot Classification
According to how the base set is used, FSC methods
can be roughly categorized into two groups, meta-learning-
based [Bertinetto et al., 2019; Zhang et al., 2020a] and
transfer-learning-based [Chen et al., 2019; Liu et al., 2020].
Meta-learning creates a set of episodes to simulate the real
FSC test scenarios and simultaneously accumulate meta-
knowledge for fast adaptation. Typical meta-knowledge in-
cludes optimization factors such as initialization parame-
ters [Finn et al., 2017] and task-agnostic comparing ingre-
dients of feature embedding and metric [Snell et al., 2017;
Wertheimer et al., 2021]. Recent literature on transfer learn-
ing [Tian et al., 2020; Chen et al., 2019] questioned the effi-
ciency of the episodic training in meta-learning, and alterna-
tively used all base samples to learn an off-the-shelf feature

extractor and rebuilt a classifier for novel classes. Feature
representations play an important role in this regime [Tian
et al., 2020]. To this end, regularization techniques such
as negative-margin softmax loss and manifold mixup [Liu
et al., 2020; Mangla et al., 2020] have been adopted to en-
hance the generalization ability of cross-entropy loss. More-
over, self-supervised [Zhang et al., 2020b; Rajasegaran et al.,
2020] and self-distillation [Ma et al., 2019; Zhou et al., 2021]
methods have also shown promising performance in transfer-
learning. To this end, supervised learning tasks can be as-
sisted by several self-supervised proxy tasks such as rotation
prediction and instance discrimination [Zhang et al., 2020b],
or by adding an auxiliary task of generating features during
the pre-training [Xu et al., 2021b]. When knowledge dis-
tillation is adopted, a high-quality backbone network can be
evolved through multiple generations by a born-again strat-
egy [Rajasegaran et al., 2020]. All these methods suggest the
importance of obtaining generalization representations, and
we will leverage ensemble learning to achieve this goal.

2.2 Ensemble Learning
Ensemble learning builds several different individual learners
based on the same training data and then combines them to
improve the generalization ability of the learning system over
any single learner. This learning scheme has shown promis-
ing performance on traditional classification tasks with deep
learning on large-scale labeled datasets [Horváth et al., 2021;
Agarwal et al., 2021]. Recently, ensemble learning for FSC
methods has been presented. For example, [Dvornik et
al., 2019] combined an ensemble of prototypical networks
through deep mutual learning under a meta-learning setting.
[Bendou et al., 2022] reduced the capacity of each backbone
in the ensemble and pre-trained them one by one with the
same routine. However, the size of the ensemble learner
increased for inference in the former work, while the latter
required extra time to pre-train many learning individuals.
Therefore, it still lacks efficient designs for learning individ-
uals in FSC ensemble learning. Moreover, these works did
not involve any theoretical analysis of the underlying mech-
anism of ensemble learning in FSC. In this paper, we inves-
tigate why ensemble learning works well in FSC under the
transfer-learning setting. Based on the analysis, we propose
an efficient learning method using a shared backbone network
with multiple branches to generate learning individuals.

2.3 Pooling
Convolutional neural network models progressively learn
high-level features through multiple convolution layers. A
pooling layer is often added at the end of the network to
output the final feature representation. To this end, Global
Average Pooling (GAP) is the most popular option, how-
ever, it cannot fully exploit the merits of convolutional fea-
tures because it only calculates the 1st-order feature statistics.
Global Covariance Pooling (GCP) such as DeepO2P [Ionescu
et al., 2015] explores the 2nd-order statistic by normalizing
the covariance matrix of the convolutional features, which
has achieved impressive performance gains over the classi-
cal GAP in various computer vision tasks. Further research
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Figure 2: An overview of our framework. The images from Sb are augmented by the image processing module and fed into the backbone for
feature extraction. The CNN features from the backbone are then reshaped into the matrix, which is used to calculate multi-order statistics to
equip different branches. Ensemble learning is implemented by the linear combination of multiple branches during the pre-training phase.

shows that using richer statistics may lead to further possi-
ble improvement. For example, Kernel Pooling [Cui et al.,
2017] generates high-order feature representations in a com-
pact form. However, a certain order statistic can only describe
partial characteristics of the feature vector from the view of
the characteristic function of random variables. For example,
the first- and second-order statistics can completely represent
their statistical characteristic only for the Gaussian distribu-
tion. Therefore, higher-order statistics are still needed for
the non-Gaussian distributions, which are more ubiquitous in
many real-world applications. This motivates us to calculate
multi-order statistics to retain more information on features.

3 The Proposed Method
Here we present the proposed method. We start with a for-
mal definition of FSC, and then present a theorem on FSC
ensemble learning. This theorem leads to the development of
an ensemble learning approach with multi-order statistics.

3.1 Theory Foundation
Under the standard setting of few-shot classification, three
sets of data with disjoint labels are available, i.e., the base
set Sb, the validation set Sval and the novel set Sn. In
the context of transfer-learning, Sb is used for pre-training a
model to well classify the novel classes in Sn, with the hyper-
parameters tuned on Sval. Let Sb = {(xi, yi)}Nb

i=1 denotes
the source domain with Nb labelled samples and Sn denotes
the target domain labelled with K samples in each episode,
where Nb >> K. Let the label function of Sb and Sn be
fb and fn, respectively. During the pre-training, a learner h
is obtained to approximate the optimal mapping function h∗
based on all Nb training samples in Sb from all possible hy-
potheses H. When ensemble learning is introduced into the
pre-training, several learners denoted as {ho}Oo=1 can be ob-
tained. With the ensemble technique of weighted averaging,
the final learner h is produced as:

h =
O∑

o=1

αoho, (1)

where αo is the weight parameter. There is a domain shift
between the base and novel classes [Tseng et al., 2020], and
we use the L1 distance [Kifer et al., 2004] to measure the
domain divergence between Sb and Sn:

D(Sb, Sn) =

∫
|ηb(x)− ηn(x)|

∣∣h(x)− fn(x)
∣∣ dx, (2)

where ηb(x) and ηn(x) is the density functions of Sb and Sn

respectively.
Theorem 1 (FSC Ensemble Learning) Let H be a hypoth-
esis space, for any h ∈ {ho}Oo=1 ∈ H is learned from Sb, and
h =

∑O
o=1 αoho ∈ H, the expected error on Sn respectively

with h and h holds the following relationship:
en(h) ≤ eb(h) + D(Sb, Sn)︸ ︷︷ ︸

(Sb-Sn) divergence

+λ

≤ eb(h) + D(Sb, Sn)︸ ︷︷ ︸
(Sb-Sn) divergence

+λ,

where λ = EX∈Sb
|fn(x)− fb(x)| is a constant, en(h) is the

expected error on Sn with h, eb(h) is the expected error on
Sb with h, eb(h) is the expected error on Sb with h.
The proof is provided in the Supplementary Material.
Remark 1 The core idea of Theorem 1 is to define a tighter
expected error bound on the novel classes with the learned
mapping function in the form of ensemble learning during the
pre-training. Theorem 1 tells that the true error on the novel
classes can be reduced by implementing ensemble learning
on the base classes, given the domain divergence between the
novel class and base class. This can well explain the effective-
ness of ensemble learning in few-shot classification, in which
multiple learners are assembled to enhance the generaliza-
tion on the base set, resulting in better performance in novel
classes.

3.2 FSC via Ensemble Learning with Multi-order
Statistics

Overview
Our method employs the transfer-learning paradigm in a two-
phase manner. In the first phase, a good feature extractor is
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pre-trained on the base set. In the second phase, FSC evalu-
ation is done on the novel set with the pre-trained feature ex-
tractor. Following Theorem 1, we introduce ensemble learn-
ing in the first phase to improve the FSC performance. The
key to this phase is to effectively train multiple diverse in-
dividuals. Different from the previous works [Dvornik et
al., 2019; Bendou et al., 2022] that use many different net-
works as individuals, we add multiple branches after the
backbone network to create individuals for reducing train-
ing costs. Each branch calculates different-order statistics for
pooling to highlight the discrepancy between the individu-
als. This step is optimized by supervised losses. After pre-
training, features from different branches are concatenated for
FSC evaluation. We name this method as Ensemble Learning
with multi-Order Statistics (ELMOS) for FSC. An overview
of ELMOS is shown in Figure 2, and a flow description of
ELMOS is given in Algorithm 1.

Pre-training via Multi-order Statistics
The proposed model architecture mainly consists of the fol-
lowing four components: an image processing module, the
backbone network, a multi-order statistics module, and a su-
pervised classifier module. The image processing module is
denoted as M (·), which performs transformation of multi-
scale rotation to augment the original base set and their label
space. The backbone network is denoted asBθ (·) and param-
eterized by θ, which converts each image into a tensor of size
H ×W × d. The multi-order statistics module module is de-
noted as S (·), which maps the tensor from the backbone into
multiple feature representations to generate individual learn-
ers for ensemble learning. The supervised classifier module
is composed of softmax classifiers LW (·) and the projectors
LU (·) with parameter matricesW and U , respectively, which
are used to build the supervised losses for pre-training.

Given L samples be randomly sampled from Sb with Cb

classes, in which an image and its corresponding label are
denoted as (xi, yi), yi ∈ {1, 2, ...Cb}. M (·) scales the
images with the aspect-ratio of 2:3 and rotates the images
with {0◦, 90◦, 180◦, 270◦} under both the new and the orig-
inal scales, resulting in eight times expansion of training
samples. Feed xi into Bθ to produce a tensor feature of
Ti = Bθ(xi) ∈ RH×W×d. Next, we reshape the tensor Ti
into the matrix Ti ∈ RHW×d, and view each row vector in
the matrix tj ∈ Rd as an observation of the random variable
of t ∈ Rd. When d = 1, the first characteristic function of
variable t in the Laplace operator is given by:

ϕ(s) =

∫ +∞

−∞
f(t)estdt =

∫ +∞

−∞
estdF (t), (3)

where f(t) and F (t) are the density function and distribution
function of t, respectively. Let ψ(s) = lnϕ(s) be the second
characteristic function of the random variable t.
Theorem 2 (The Inversion Formula for Distributions)
Let t be a random variable with distribution function F (t)
and characteristic function ϕ(s). For a, b ∈ C(F ) and
a < b,

F (b)− F (a) = lim
c→∞

1

2π

∫ c

−c

e−sa − e−sb

s
ϕ(s)ds.

Corollary 1 (Uniqueness) If two distributions of F1(t) and
F2(t) are identical, then the corresponding characteristic
functions ψ1(s) and ψ2(s) are identical.

See proof of Theorem 2 and Corollary 1 in [Shiryaev, 2016].
From Theorem 2 and Corollary 1, we can see that there is a
one-to-one correspondence between the characteristic func-
tion and the probability density function such that the charac-
teristic function can completely describe a random variable.

The oth-order cumulant of the random variable t is defined
as the oth derivative of function ψ(s) at the origin, which is:

co =
doψ(s)

dso

∣∣∣∣
s=0

. (4)

Then the Taylor series expansion of function ψ(s) at the ori-
gin with respect to s yields:

ψ(s) = c1s+
1

2
c2s

2 + ...+
1

o!
cps

o +Rs(s
o), (5)

where Rs(s
o) is the remainder term. It can be seen from

Equation (5) that the oth-order cumulant of t is the coefficient
of the term so in Equation (5).
Proposition 1 Consider a Gaussion distribution f(t) with
mean µ and variance Σ2 for the random variable t, its second
characteristic function is:

ψ(s) = µs+
1

2
Σ2s2.

Consequently, the cumulant of the random variable t are:

c1 = µ, c2 = Σ2, co = 0 (o = 3, 4, ...).

Remark 2 Proposition 1 implies that for Gaussian signals
only, the cumulants are identically zero when the order is
greater than 2. Please note this conclusion can be natu-
rally extended to the scenario of multivariate variables when
d > 1. For the random variables with Gaussian distribution,
the first and second-order statistics can completely represent
their statistical characteristics. However, the non-Gaussian
signals are more common in real-world applications. In this
case, higher-order statistics also contain a lot of useful infor-
mation. Therefore, we propose a multi-order statistics module
consisting of multiple branches, each equipped with different
order statistics of the tensor feature Ti.

In particular, we employ three branches in the multi-order
statistics module, which respectively calculate three orders
cumulants of the variable t with the observations in Ti. The
specific formulation of the 1st-order, 2nd-order and 3rd-order
cumulants of t are expressed as:

ci1 =
1

H ×W

H×W∑
j=1

tj ci1 ∈ Rd,

ci2 =
1

H ×W

H×W∑
j=1

(tj − ci1)(tj − ci1)
T ci2 ∈ Rd×d,

ci3 =
1

H ×W

H×W∑
j=1

(tj − ci1)
2(tj − ci1)

T

c2i2c
T
i2

ci3 ∈ Rd×d.

(6)
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As ci2 and ci3 are d × d matrices, we flatten them into d2-
dimensional vectors and finally get the feature representations
of zi1, zi2 and zi3. We use these three features as individuals
in ensemble learning, which respectively pass through their
corresponding softmax classifierLW (·) and projectorsLU (·).
So the o-th (o = 1, 2, 3) outputs are:

P o
ij = LWo (zio) =

exp(zi0
Twoj)∑8Cb

j=1 exp(zi0
Twoj)

,

uio = ∥LUo(zio)∥ =
∥∥zioTUo

∥∥ , (7)

where LWo(·) is the o-th softmax classifier with the parame-
ter matrix of Wo, woj is the j-th component of Wo. LUo(·)
is the o-th projector with the parameter matrix Uo. P o

ij is the
j-th component of the output probability from the o-th soft-
max classifier. uio is the output vector from the o-th projector.
We simultaneously employ Classification-Based (CB) loss of
cross-entropy and Similarity-Based (SB) loss of supervised
contrastive in supervised learning for each individual [Scott
et al., 2021]. These two losses are formulated as:

Lo
CB (θ,Wo) = −

8L∑
i=1

8Cb∑
j=1

yij logP
o
ij ,

Lo
SB(θ, Uo) =−

8L∑
i=1

log
∑

q∈Q(ui0)

exp(uio · uqo/τ)∑8L
a=1 exp(uao · uqo/τ)

,

(8)
where yij is the j-th component of label yi, τ is a scalar
temperature parameter. Q(uio) is the positive sample set, in
which each sample has the same label as uio. uqo is the q-th
sample in Q(uio). Then the learning objective function for
the o-th individual is:

Lo(θ,Wo, Uo) = Lo
CB (θ,Wo) + Lo

SB(θ, Uo). (9)

The overall loss function with ensemble learning is:

Loverall =
O∑

o=1

αoLo(θ,Wo, Uo), (10)

where αo is a weight controlling the contribution of each in-
dividual in the ensemble learning. The pre-training adopts the
gradient descent method to optimize the above loss function.

Few-shot Evaluation
The phase of few-shot evaluation still needs to construct a
set of N -way K-shot FSC tasks, with a support set and a
query set in each task. The support set randomly selects K
samples from each of the N classes that are sampled from
Sn, which is denoted as Sp = {xs, ys}NK

s=1 , where (xs, ys)
is the s-th images and its corresponding label. The query set
consists of the remaining images in these N classes, which
is denoted as Sq = {xq}Qq=1 with any image of xq . After
pre-training, we get rid of the softmax classifier LW (·) and
projectors LU (·) and fix the backbone network Bθ(·) and the
multi-order statistics module module S(·). The support set Sp

is input into Bθ(·) and S(·) to produce the output features:

zso = Bθ ◦ S(xs) (o = 1, 2, 3), (11)

Algorithm 1: Ensemble Learning with multi-Order
Statistics (ELMOS) for FSC

Input: Base set Sb, support set Sp, query set Sq;
augmentation module M (·), backbone
network Bθ (·), multi-order statistics module
S(·), softmax classifier LWo, projector LUo

and logistic regression gξ (·); temperature
parameter τ , weight αo (o = 1, 2, 3).

Output: Final prediction of the query samples
Stage 1: Pre-training with ensemble learning
for numbers of training epochs do

Sample a mini-batch with any image of {xi, yi};
Feed xi into T (·) and Bθ (·) to obtain feature map
Ti ∈ RH×W×d ;

Pass Ti through S(·) to output features zio,
(o = 1, 2, 3);

Pass zio through LWo and LUo to get the output
probability and projection feature ;

Calculate optimization loss for each individual
via Equation (9);

Calculate overall loss for pre-training via
Equation (10);

Update the parameters of θ, Wo, Uo using SGD;
end
Stage 2: Few-shot evaluation
for all iteration = 1, 2, ..., MaxIteration do

Feed xs ∈ Sp into Bθ(·) and S(·) to output feature
zso, (o = 1, 2, 3);

Concatenate zso into the feature zs to train the
classifier of gξ (·);

end
Classify the query samples according to
Equation (13).

where ◦ is the stack operator. The features zs1, zs2, zs3 are
concatenated into a final expression of xs:

zs = con(zs1, zs2, zs3), (12)

where con(·) is the concatenated operator. A logistic regres-
sion classifier gξ (·) parameterized by ξ is then trained with zs
and its corresponding label ys. The query image xq is finally
classified as:

ŷq = gξ(zq), (13)
where ŷq is the inference label value of xq .

4 Experiments
4.1 Datasets
miniImageNet contains 600 images over 100 classes, which
are divided into 64, 16 and 20 respectively for base, vali-
dation and novel sets. tiredImageNet consists of 779, 165
images belonging to 608 classes, which are further grouped
into 34 higher-level categories with 10 to 30 classes per
category. These categories are partitioned into 20 cate-
gories (351 classes), 6 categories (97 classes) and 8 cat-
egories (160 classes) respectively for base, validation and
novel sets. CIFAR-FS is derived from CIFAR100 and con-
sists of 100 classes with 600 images per class. The total
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Method Backbone miniImageNet CIFAR-FS CUB
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

B 1 ResNet12 69.06±0.44 83.61±0.29 77.09±0.46 88.46±0.34 81.46±0.39 92.55±0.18
B 2 ResNet12 66.42±0.42 85.76±0.26 71.53±0.48 88.83 ±0.27 77.79±0.39 94.44±0.17
B 3 ResNet12 67.68±0.43 82.81±0.29 72.83±0.46 86.34±0.34 83.89±0.38 91.20±0.17

ELMOS ResNet12 70.30±0.45 86.17±0.26 78.18±0.41 89.87±0.31 85.21±0.38 95.02±0.16

Table 1: Test accuracy (%) of each branch and their ensemble under 5-way 1-shot and 5-shot tasks on three datasets.

(a) 5-way 1-shot (b) 5-way 5-shot

Figure 3: Test accuracy (%) of the classification-based (CB) loss,
similarity-based (SB) loss and their combination (CB&SB) under
5-way 1-shot and 5-way 5-shot tasks on three datasets.

classes are split into 64, 16 and 20 for base, validation and
novel sets. Caltech-UCSD Bird-200-2011(CUB) has a to-
tal number of 11,788 images over 200 bird species. These
species are divided into 100, 50, and 50 for the base, valida-
tion and novel sets, respectively.

4.2 Implementation Details
In the experiments, we primarily used ResNet12 architecture
with 4 residual blocks. Each block had 3 convolutional layers
with 3×3 kernels. The number of kernels for the 4 blocks was
64, 160, 320, and 640, respectively. A max-pooling layer was
added at the end of the first three blocks. The last block was
branched with three pooling layers, which respectively mod-
eled different statistical representations of the images. We
opted for the SGD optimizer with a momentum of 0.9 and
a weight decay of 5e-4. The learning rate was initialized
to be 0.025. We trained the network for 130 epochs with a
batch size of 32 in all the experiments. For miniImageNet,
tiredImageNet and CIFAR-FS, the learning rate was reduced
by a factor of 0.2 at the 70-th and 100-th epoch. For CUB,
the learning rate was reduced by a factor of 0.2 for every 15
epochs after the 75-th epoch. We randomly sampled 2,000
episodes from Sn with 15 query samples per class for both 5-
way 1-shot and 5-shot evaluations, to produce the mean clas-
sification accuracy as well as the 95% confidence interval.

4.3 Ablation Studies
The effectiveness of our method is attributed to the ensemble
of different branches equipped with multi-order statistics. In
this section, we conducted ablation studies to analyze the ef-
fect of the 1st-order, 2nd-order and, 3rd-order statistical pool-
ing and their combination on the miniImageNet, CIFAR-FS
and CUB datasets. Above methods are respectively denoted
as B 1, B 2, B 3,and ELMOS. Their accuracies under 5-way

Method CUB
1-shot 5-shot

Meta-learning
DeepEMD [Zhang et al., 2020a] 75.65±0.83 88.69±0.50
BML [Zhou et al., 2021] 76.21±0.63 90.45±0.36
RENet [Kang et al., 2021] 79.49±0.44 91.11± 0.24
FPN[Wertheimer et al., 2021] 83.55±0.19 92.92±0.10
IEPT [Zhang et al., 2020b] 69.97±0.49 84.33±0.33
APP2S [Ma et al., 2022b] 77.64±0.19 90.43±0.18
MFS [Afrasiyabi et al., 2022] 79.60±0.80 90.48±0.44
DeepBDC [Xie et al., 2022] 84.01±0.42 94.02±0.24
HGNN [Yu et al., 2022] 78.58±0.20 90.02±0.12
INSTA[Ma et al., 2022a] 75.26±0.31 88.12±0.54
Transfer-learning
Neg-Cosine [Liu et al., 2020] 72.66±0.85 89.40±0.43
S2M2 [Mangla et al., 2020] 80.68±0.81 90.85±0.44
DC-LR[Yang et al., 2021] 79.56±0.87 90.67±0.35
CCF [Xu et al., 2021b] 81.85±0.42 91.58±0.32
ELMOS (ours) 85.21±0.38 95.02±0.16

Table 2: Comparison of results against state-of-the-art methods on
CUB dataset.The top three results are marked in red, blue and green.

1-shot and 5-shot tasks on three datasets are shown in Table 1.
From the results, we can see that: (1) On all three datasets,
the test accuracy of B1 and B3 is higher than B2 under the
1-shot task, but the test accuracy of B2 is higher than B1 and
B3 under the 5-shot task. The above phenomenon shows that
different order statistics provide different information about
the images. (2) The test accuracy of ELMOS is higher than
B1, B2 and B3 under both 1-shot and 5-shot tasks, which il-
lustrates that different order statistics complement each other.
Combing them can bring more useful information for classi-
fication, resulting in higher classification performance.

For each individual in the ensemble learning, the opti-
mization is cooperatively accomplished by the Classification-
Based (CB) loss and Similarity-Based (SB) loss [Scott et al.,
2021]. Hence, we conducted ablation experiments to analyze
the contribution of each loss on three benchmark datasets:
miniImageNet, CIFAR-FS and CUB. Subsequently, we pre-
trained the model respectively with CB and SB loss alone and
their combination, resulting in three methods denoted as CB,
SB and CB&SB. The test accuracies under different methods
are shown in Figure 3. The test results show that the accuracy
of CB&SB is higher than CB and SB, which implies that both
CB and SB losses play important roles in our method.

4.4 Comparison with the Most Related Method
Our method is most related to EASY [Bendou et al., 2022],
which is also a FSC ensemble learning method in context of
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Method Backbone Venue miniImageNet tiredImageNet CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Meta-learning
DeepEMD[Zhang et al., 2020a] ResNet12 CVPR’20 65.91±0.82 82.41± 0.56 71.16±0.87 86.03±0.58 - -
CC+rot [Gidaris et al., 2019] ResNet12 CVPR’20 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36 76.09±0.30 87.83±0.21
BML [Zhou et al., 2021] ResNet12 ICCV’21 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34 73.45±0.47 88.04±0.33
RENet [Kang et al., 2021] ResNet12 ICCV’21 67.60±0.44 82.58±0.30 71.61±0.51 85.28±0.35 74.51±0.46 86.60±0.32
MeTAL[Baik et al., 2021] ResNet12 CVPR’21 66.61±0.28 81.43±0.25 70.29±0.40 86.17±0.35 - -
IEPT [Zhang et al., 2020b] ResNet12 ICLR’21 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34 - -
DAN [Xu et al., 2021a] ResNet12 CVPR’21 67.76±0.46 82.71±0.31 71.89±0.52 85.96±0.35 - -
APP2S [Ma et al., 2022b] ResNet12 AAAI’22 66.25±0.20 83.42±0.15 72.00±0.22 86.23±0.15 73.12 ±0.22 85.69±0.16
DeepBDC [Xie et al., 2022] ResNet12 CVPR’22 67.34±0.43 84.46±0.28 72.34±0.49 87.31±0.32 - -
MFS [Afrasiyabi et al., 2022] ResNet12 CVPR’22 68.32±0.62 82.71±0.46 73.63±0.88 87.59±0.57 - -
TPMN[Wu et al., 2021] ResNet12 CVPR’22 67.64±0.63 83.44±0.43 72.24± 0.70 86.55 ± 0.63 - -
HGNN [Yu et al., 2022] ResNet12 AAAI’22 67.02±0.20 83.00±0.13 72.05±0.23 86.49±0.15 - -
MTR[Bouniot et al., 2022] ResNet12 ECCV’22 62.69± 0.20 80.95±0.14 68.44 ±0.23 84.20 ±0.16 - -
Transfer-learning
Neg-Cosine [Liu et al., 2020] WRN28 ECCV’20 61.72±0.81 81.79±0.55 - – -
RFS [Tian et al., 2020] WRN28 ECCV’20 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49 - -
CBM [Wang et al., 2020] ResNet12 MM’20 64.77±0.46 80.50±0.33 71.27±0.50 85.81±0.34 - -
SKD [Rajasegaran et al., 2020] ResNet12 Arxiv’21 67.04±0.85 83.54±0.54 72.03±0.91 86.50±0.58 76.9±0.9 88.9±0.6
IE [Sung et al., 2021] ResNet12 CVPR’21 67.28±0.80 84.78±0.33 72.21±0.90 87.08±0.58 77.87±0.85 89.74±0.57
PAL [Ma et al., 2019] ResNet12 ICCV’21 69.37±0.64 84.40±0.44 72.25±0.72 86.95±0.47 77.1±0.7 88.0±0.5
CCF[Xu et al., 2021b] ResNet12 CVPR’22 68.88±0.43 84.59±0.30 - - - -
ELMOS (ours) ResNet12 - 70.30±0.45 86.17±0.26 73.84±0.49 87.98±0.31 78.18±0.41 89.87±0.31

Table 3: Comparison of results against state-of-the-art methods on miniImageNet, tiredImageNet, and CIFAR-FS dataset. ’-’ means the
results were not provided by the authors. The top three results are marked in red, blue and green, respectively.

Method CIFAR-FS CUB
1-shot 5-shot 1-shot 5-shot

EASY 75.24±0.20 88.38±0.14 77.97±0.20 91.59±0.10
ELMOS 78.18±0.41 89.87±0.31 85.21±0.38 95.02±0.16

Table 4: Comparison of results with the most related method under
5-way 1-shot and 5-shot tasks on CIFAR-FS and CUB.

transfer learning. The comparison of results between them
on CIFAR-FS and CUB datasets is shown in Table 4. From
the results, we can see that our method beats EASY by a very
large margin under both 1-shot and 5-shot tasks. Please note
that our method is more efficient that EASY, because EASY
needs to pre-train multiple individual networks, which spends
much more pre-training time than our method.

4.5 Comparison with State-of-the-Art Methods
We compare the performance of our method with several
state-of-the-art methods. As shown in Table 2 and Table 3,
we can see the performance of our method ranks at the top
under both 1-shot and 5-shot tasks on CUB. Specifically, our
method exceeds the second-best model DeepBDC by 1.2%
and 1.0% respectively in 1-shot and 5-shot settings. From
Table 3, we can see that our method beats state-of-the-art
methods under both 5-way 1-shot and 5-way 5-shot tasks on
the dataset of miniImageNet, tiredImagegNet, and CIFAR-
FS. Specifically, on miniImageNet, PAL and IE behave the
second best respectively in 1-shot and 5-shot settings. Our
method beats them by 0.93% and 1.39%. On tiredImageNet,
our method outperforms the second-best MFS by 0.21% and
0.39% respectively in 1-shot and 5-shot settings. On CIFAR-

FS, our method achieves 0.31% and 0.13% improvement over
IE for 1-shot and 5-shot respectively. In brief, our method
consistently outperforms the state-of-the-art FSC methods
under both 5-way 1-shot and 5-way 5-shot tasks on multiple
datasets.

5 Conclusion

This paper analyzes the underlying work mechanism of en-
semble learning in FSC. A theorem is provided to illustrate
that the true error on the novel classes can be reduced with
ensemble learning on the base set, given the domain diver-
gence between the base and the novel classes. Multi-order
statistics on image features are further introduced to produce
learning individuals to get an effective ensemble learning de-
sign. Comprehensive experiments on multiple benchmarks
have illustrated that different-order statistics can generate di-
verse learning individuals due to their complementarity.
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Matching feature sets for few-shot image classification. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9014–9024, New
Orleans, USA, June 2022. IEEE.

[Agarwal et al., 2021] Rishabh Agarwal, Levi Melnick,
Nicholas Frosst, Xuezhou Zhang, , Rich Caruana, and Ge-
offrey E Hinton. Neural additive models: Interpretable
machine learning with neural nets. In Proceedings of
34th Annual Conference on Neural Information Process-
ing Systems, pages 4078–4088, 4699–4711, December
2021. Neural Information Processing Systems Foundation.

[Baik et al., 2021] Sungyong Baik, Janghoon Choi, Heewon
Kim, Dohee Cho, Jaesik Min, and Kyoung Mu Lee.
Meta-learning with task-adaptive loss function for few-
shot learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
9465–9474, Nashville, USA, June 2021. IEEE.

[Bendou et al., 2022] Yassir Bendou, Yuqing Hu, Raphael
Lafargue, Giulia Lioi, Stéphane Pateux, and Vincent
Gripon. Easy-ensemble augmented-shot-y-shaped learn-
ing: State-of-the-art few-shot classification with simple
components. Journal of Imaging, 8(7):179, 2022.

[Bertinetto et al., 2019] Luca Bertinetto, Joao F Henriques,
Philip HS Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In Proceedings of 7th
International Conference on Learning Representations,
New Orleans, USA, May 2019. International Conference
on Learning Representations.

[Bouniot et al., 2022] Quentin Bouniot, Ievgen Redko, Ro-
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