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Abstract
Action recognition has long been a fundamental
and intriguing problem in artificial intelligence.
The task is challenging due to the high dimension-
ality nature of an action, as well as the subtle mo-
tion details to be considered. Current state-of-the-
art approaches typically learn from articulated mo-
tion sequences in the straightforward 3D Euclidean
space. However, the vanilla Euclidean space is not
efficient for modeling important motion character-
istics such as the joint-wise angular acceleration,
which reveals the driving force behind the motion.
Moreover, current methods typically attend to each
channel equally and lack theoretical constrains on
extracting task-relevant features from the input.

In this paper, we seek to tackle these challenges
from three aspects: (1) We propose to incorpo-
rate an acceleration representation, explicitly mod-
eling the higher-order variations in motion. (2) We
introduce a novel Stream-GCN network equipped
with multi-stream components and channel atten-
tion, where different representations (i.e., streams)
supplement each other towards a more precise ac-
tion recognition while attention capitalizes on those
important channels. (3) We explore feature-level
supervision for maximizing the extraction of task-
relevant information and formulate this into a mu-
tual information loss. Empirically, our approach
sets the new state-of-the-art performance on three
benchmark datasets, NTU RGB+D, NTU RGB+D
120, and NW-UCLA.

1 Introduction
Having a mental representation of what actions other hu-
mans are performing is crucial for us to adjust our behaviors

* Corresponding author
https://github.com/ActionR-Group/Stream-GCN

Figure 1: The illustration of similar actions and their features at dif-
ferent orders. Left: Showcase two videos of similar actions, “drink-
ing water” and “brushing teeth”, the key frames are video clips that
are decisive for identifying the action. Right: Take the hand joint as
an example, the curves indicate trajectories of motion characteristics
for various orders on z-dimension.

and plan our course of actions [Liu et al., 2021; Hao et al.,
2022a]. Similarly, the capacity for machines to model and
recognize human actions is very much coveted. Now, action
recognition spawns a wide spectrum of applications including
public space surveillance [Wang et al., 2016], human-robot
interaction [Hao et al., 2022b], violence detection [Singh
et al., 2018], and autonomous driving [Lu et al., 2018;
Hao et al., 2022b]. As such, action recognition has attracted
extensive attention in the past decade [Shi et al., 2019b;
Chen et al., 2020b; Chen et al., 2020a].

Fundamentally, action recognition amounts to learning a
mapping from a pose sequence to an action class label. The
task is inherently challenging due to the high dimensional-
ity of the input pose sequence and the subtle motion details
which differentiate different actions. In this paper, we fo-
calize action recognition with 3D articulated pose sequences
as inputs, given that 3D articulated pose can now be con-
veniently acquired through commodity motion capture sys-
tems or extracted from videos via off-the-shelf pose estima-
tion methods like [Wang et al., 2014].

Earlier approaches for action recognition [Liu et al., 2016]
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cast the human body as a set of 3D joint coordinates, which
in fact treat different joints as independent entities and fail to
capture connections between joints [Liu et al., 2019b]. Re-
cently, GCN (Graph Convolutional Network) based methods
have become popular solutions as the human skeleton inher-
ently possesses a tree-like graph structure. A first class of
work puts the efforts in selecting and enriching features to
better represent motion [Shi et al., 2019a; Shi et al., 2019b],
facilitating action recognition from the input feature perspec-
tive. For instance, [Shi et al., 2019b] advocates incorporat-
ing the lengths and directions of bones as second-order in-
put features, which are informative for action recognition.
[Shi et al., 2019a] adds frame-wise bone and joint velocities
as additional motion features to enhance the body represen-
tation. Another line of work resorts to devising sophisti-
cated adjacency matrices, seeking to pursue better modeling
of joint dependencies. For example, [Liu et al., 2020] intro-
duces a multi-scale aggregation scheme, leveraging distance
adjacency matrices to measure the degree of dependency be-
tween two arbitrary skeleton joints. [Li et al., 2019] presents
a method to adaptively learn the non-physical dependencies
among joints by an encoder-decoder structure, which auto-
matically infers the link strengths between joints.

Upon investigating and experimenting on the released code
of state-of-the-art methods [Chen et al., 2021a; Yan et al.,
2018; Chen et al., 2021b], we empirically observe that:
First, current approaches typically revolve around employ-
ing lower-order features such as joint coordinates or veloc-
ities in the Euclidean space. Despite their simplicity, these
features might not be favourable for describing subtle motion
details such as joint angular acceleration and motion trends.
Figure 1 illustrates two similar actions, “drinking water” and
“brushing teeth”. It is evident to see that the joint coordi-
nates of the two actions are very close to each other, while
the velocity features of the two actions are also very simi-
lar. However, the joint angular accelerations of the two ac-
tions are quite different. Second, most existing approaches
attend to each channel equally, dissevering the fact that dif-
ferent channels contribute unequally in recognizing an action.
For instance, in identifying the action “drinking water”, ver-
tical movements (z-dimension) of the hand joint play a more
vital role than horizontal movements (xy-dimensions). Ap-
parently, it is not a good idea to assign equal weight to each
dimension. Third, current approaches typically employ the
conventional CE (Cross-Entropy) loss to supervise the learn-
ing of motion information, lacking an effective constraint on
guaranteeing that task-relevant features are extracted.

In this paper, we embrace three key designs to tackle the
challenges. Technically, (1) We consider incorporating angu-
lar accelerations as complementary information and extract
them within the framework of rigid body kinematics. These
higher-order acceleration features provide an additional in-
put stream, on top of the original Euclidean space motion
features, potentially improving the completeness and robust-
ness of the model. (2) We introduce a novel GCN network
equipped with multiple input streams and channel-wise atten-
tion, where different input streams are assembled while atten-
tion weights capitalize on those important channels. (3) We
further engage an information-theoretic objective between the

extracted deep features and action labels. Maximizing this
mutual information objective drives our model to fully mine
task-relevant information while reducing task-irrelevant nui-
sances.

Thereafter, we conduct extensive experiments on three
large benchmark datasets including NTU RGB+D, NTU
RGB+D 120, and NW-UCLA. Empirically, our approach
consistently and significantly outperforms state-of-the-art
methods. Interestingly, we observe that existing methods in-
deed have difficulties in distinguishing between similar ac-
tions.

To summarize, our key contributions are as follows: 1)
A new motion representation is proposed, which enriches
the lower-order motion representations with higher-order mo-
tion representations. 2) A multi-stream graph convolution
network is presented to comprehensively extract knowledge
from multiple representations. Within the framework, the dis-
tinct weights of different channels are considered. To explic-
itly supervise the knowledge extraction from the input mo-
tion sequence, we theoretically analyzed the mutual informa-
tion between the extracted deep feature and the label, arriv-
ing at a loss that maximizes the task-relevant information. 3)
Our method achieves the new state-of-the-art performance on
three benchmark datasets and overall provides interesting in-
sights. The implementations are released, hoping to facilitate
future research.

2 Method
Broadly, a human skeleton can be cast as a set of joints and
bones. We refer to the set of joints as a set of nodes V =
{vi}ni=1. Further, we model the set of bones, each of which
connects a pair of joints, as a set of edges E = {ei}n×n

i=1 .
Thus, we conveniently depict a human skeleton pose as a
graph G = (V, E), where n = |V| and E ⊂ V × V .
Problem. Presented with an observed 3D skeleton motion
sequence S = ⟨G1,G2, · · · ,Gm⟩, where Gi is the skeleton
pose of the human in the ith frame, we are interested in pre-
dicting its action class label y ∈ R. Put differently, we seek
to learn the non-linear mapping from a motion sequence S to
its action class label y.
Method overview. Overall, our method consists of three
key components: a) motion representations engaging both
lower-order and higher-order motion features, b) a novel
Stream-GCN network that is equipped with channel-wise at-
tention, and is able to integrate higher-order and lower-order
representations, and c) a mutual information objective that
effectuates feature-level supervision for maximizing the ex-
traction of task-relevant information. Specifically, we first
leverage multiple motion representations to frame the motion
context. Then, the motion sequences are fed into the proposed
Stream-GCN network to predict the action label. Within the
network, we introduce a mutual information objective to su-
pervise the prediction. We would like to highlight that our ap-
proach has an edge in engaging acceleration to capture sub-
tle motion details, while our network games in maximizing
the extraction of task-relevant information and getting rid of
task-irrelevant nuisances. In what follows, we elaborate on
the three key components in detail.
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2.1 Motion Representation
To represent human motion, there have been efforts to out-
line a pose as 3D coordinates of all skeletal joints [Liu et al.,
2019b]. The 3D joint coordinates offer an intuitive and direct
way to precisely sketch the motion. Unfortunately, such a
representation regards different joints as independent entities
and is unfavourable for describing higher-order subtle motion
details such as bone rotation trends [Shi et al., 2019a].

Motivated by this, we incorporate both higher-order and
lower-order motion representations. For lower-order repre-
sentations, we include joint coordinates, bone lengths, joint
velocity, and bone velocity. For higher-order representations,
we engage in joint and bone angular acceleration representa-
tions. These different representations (i.e., streams) supple-
ment each other towards a more complete and precise motion
characterization. Below, we formulate the joint (or bone) an-
gular acceleration representation.

The articulate human skeleton can be considered as rigid
bodies (i.e. bones) connected by joints. The motion of a joint
in relation to its neighbouring joints can therefore be char-
acterized in the framework of rigid body kinematics. Within
this framework, the angular acceleration of a joint has a sig-
nificant role. Since the acceleration of an object depends di-
rectly on the force acting on it, the acceleration change actu-
ally characterizes the changes of forces exerted upon joints,
which serve as the driven source for motion. Take drinking
water as an example, conventional methods merely consider
the position displacement of the raised arm. They omit the
acceleration change of the arm in the process of lifting the
hand, moving upwards with a constant speed, and decelerat-
ing when approaching the mouth.

Instantaneous angle. We denote vpi as the coordinate of the
i-th joint at the p-th frame. Supposing we are to calculate the
acceleration feature of vpi . We set δpi = vpi − vpi−1 as an axis
vector from joint vpi−1 to joint vpi . Upon this, we define the
instantaneous absolute angle as follows [Aslanov and Ledkov,
2012]:

θpi =

convected︷︸︸︷
θpi−1 + θ̃pi︸︷︷︸

relative

= θpi−1 + arccos(
δp+1
i · δpi

|δp+1
i | · |δpi |

),

(1)
where θpi−1 is the instantaneous convected rotation angle of
joint vpi−1 w.r.t. the fixed coordinate system, and θ̃pi is the
instantaneous relative rotation angle as opposed to joint vpi−1.

Instantaneous angular velocity. Further, we obtain the in-
stantaneous angular velocity ωp

i of joint vpi by differentiating
Equation (1) w.r.t. t:

ωp
i =

dθpi
dt

=

dθp
i−1/dt︷︸︸︷
ωp
i−1 + ω̃p

i︸︷︷︸
dθ̃p

i /dt

. (2)

Instantaneous angular acceleration. To facilitate under-
standing, we visualize instantaneous angle θpi and instan-
taneous angular velocity ωp

i .Subsequently, we acquire the

angular acceleration from the instantaneous angular veloc-
ity. Mathematically, we formulate the angular acceleration
of joint vpi as εpi . Naively, we could obtain the acceleration
by differentiating Equation (2) w.r.t. t, yielding:

εpi =
dωp

i

dt
= εpi−1︸︷︷︸

dωp
i−1/dt

+

dω̃p
i /dt︷ ︸︸ ︷

ε̃pi + ωp
i−1 × ωp

i , (3)

where εpi measures the angular acceleration of joint vpi . It is
evident to see that the derivation of the above process also
applies to computing the angular acceleration of bones.

2.2 Stream-GCN with Multi-stream
Representation Fusion and Channel Attention

Up to this point, we have presented how to obtain higher-
order motion representations. Next, we introduce our Stream-
GCN (GCN with multi-stream representation fusion and
channel attention) network that extracts cues from higher-
order and lower-order motion representations to recognize an
action. The overall architecture of the network is shown in
Figure 2. The network absorbs six input streams: four lower-
order motion representations (joint coordinates, bone lengths,
joint velocity, and bone velocity) and two higher-order mo-
tion representations (joint and bone angular accelerations).
Each input stream is processed by a Stream-GCN network to
predict an action class distribution. Their class distributions
are then ensembled to give the final class distribution.
Stream-GCN network architecture. Typically, the opera-
tion of a GCN layer is given by:

Xr+1 = σ(ÂXrMr), (4)

where Xr ∈ Rn×lr and Xr+1 ∈ Rn×lr are the features of
rth and r+1th layers, respectively. n is the number of nodes
in the graph, which translates to the number of joints in this
task. lr is the length of joint features at the rth layer. σ(·)
is an activation function, e.g., ReLU. Matrix Mr ∈ Rlr×lr+1

is a network parameter (transformation matrix). Filter ma-
trix Â is computed based on Â = D̃−1/2ÃD̃−1/2, where
Ã = A + I and adjacency matrix A ∈ Rn×n characterizes
the connections between joints. In the adjacency matrix A,
Ai,j = 1 if there exist a bone connects the ith and jth joints,
and Ai,j = 0 otherwise. D̃ ∈ Rn×n is a degree matrix and
D̃i,i =

∑
j Ãi,j .

Conventional methods such as [Shi et al., 2019a; Chen et
al., 2021a] directly adopt equal channel weights for all joints
and bones in each frame. This scheme fails to attend to the
distinct roles of different channels in recognizing an action.
Motivated by this, we propose a cross-channel attention mod-
ule to adaptively assign weights to different channels. For-
mally, in our settings, the input feature is X ∈ Rn×c×m,
where c is the number of channels and m is the number of
frames in the given motion sequence. Put differently, the ini-
tial feature length (at the 0th layer) l0 = c×m.

Different from Equation (4), upon the rth layer, we apply
one layer graph convolution as below:

Xr+1 = σ
(
Âτ(Xr)Mr

)
, (5)
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Figure 2: The overall pipeline of our Stream-GCN Network. The goal is to identify the action class by virtue of the motion sequence. For
clarity of illustration, we only show one-layer spatial and temporal modeling in this figure. We first absorb input streams from the lower-order
and high-order representations. For each stream, the spatial modeling conducts a channel attention module that consists of a set of pooling
and convolution operations, yielding the features with channel weights. The temporal modeling adopts multi-scale convolutions, capturing
long-range temporal dependencies within a motion sequence. For multi-stream fusion, each stream predicts an action class distribution, which
is ensembled to approach the final class distribution.

where τ(·) is a cross-channel attention function that boosts
the synergy of different channels. More specifically, to com-
pute the weights of different channels, τ(·) consists of a set of
pooling, convolution, and subtraction operations, formulated
in Equations (6)–(9).

Formally, we first apply linear transformation L, which is a
1×1 convolution, to Xr, transforming Xr from Rn×cr×m to
Rn×c′r×m. In favor of better aggregating spatial features, we
apply a global pooling operation Ψ(·) in the temporal domain
on features Xr to sketch its spatial features:

X̃r = Ψ
(
L(Xr)

)
, (6)

where X̃r ∈ Rn×c′r is a set of joint spatial features, namely
X̃r = {x̃r

1, x̃
r
2, . . . , x̃

r
n} and x̃r

i ∈ Rc′r .
Next, we explore to capture the channel interaction across

joint spatial features. As shown in Figure 2, given a pair of
joints (vi, vj) and their corresponding joint spatial features
(x̃r

i , x̃
r
j ). We design a correlation modeling function Z(·) that

aggregates channel-wise features between vi and vj [Chen et
al., 2021a]:

Z(x̃r
i , x̃

r
j) = x̃r

i − x̃r
j . (7)

To better exploit the contribution of each channel, we lever-
age a global pooling operation Φ(·) on Z(x̃r

i , x̃
r
j) to obtain a

channel feature Φ(Z(x̃r
i , x̃

r
j)) ∈ Rc′r . Thereafter, we em-

ploy attention mechanism [Wang et al., 2019] on the channel
feature to quantify the contributions of different channels in

action recognition:

ϑ

(
F
(
Φ
(
Z(x̃r

i , x̃
r
j)
)
, k
))

, (8)

where ϑ is an activation function, and F is a 1D convolution
with kernel size of k. In summary, cross-channel attention
function τ(·) has the form:

τ(Xr) = Xrϑ

(
F
(
Φ
(
Z(x̃r

i , x̃
r
j)
)
, k
))

. (9)

To model the action in the temporal domain, we design a
multi-scale temporal modeling that follows [Liu et al., 2020].
As shown in Figure 2, the module consists of six parallel tem-
poral convolutional branches. Each branch starts with a 1× 1
convolution to aggregate features between different channels.
The first four branches contain a 3 × 1 temporal convolu-
tion with four different dilations to obtain multi-scale tempo-
ral fields. The Maxpool of the fifth branch is applied to em-
phasize the most significant feature information among con-
secutive frames. The last 1 × 1 convolution is added to the
residual-preserving gradient during backpropagation.

2.3 Mutual Information Objective
We can certainly train the Stream-GCN with CE loss, as is
done in most previous methods [Ye et al., 2020]. Given our
systematic examination of extracting motion features for ac-
tion recognition, it would be fruitful to investigate whether
introducing a novel supervision method at the feature level
would facilitate the task.
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Let Z denote the extracted deep features from input X .
Inspired by [Liu et al., 2022; Tian et al., 2021], we try to
enforce the correlation between extracted deep features Z and
action label Y , seeking to maximize the extraction of task-
relevant information and get rid of task-irrelevant nuisances.

Mutual information (MI). MI measures the amount of in-
formation shared between two random variables. Formally,
MI between Z and Y quantifies the statistical dependency of
encoding variables Z and action label Y :

I(Y ;Z) = Ep(Y,Z)[log
p(Y, Z)

p(Y )p(Z)
], (10)

where p(Y, Z) is the probability distribution between Z and
Y , while p(Z) and p(Y ) are their marginals [Liu et al., 2022].

Mutual information loss. In order to ensure that the maxi-
mum amount of information about Y is extracted to the deep
feature Z, while reducing the information that is not relevant
to Y in Z, our primary objective can be formulated as:

IB(Y,Z) = max I(Y ;Z|X). (11)

Due to the notorious difficulty of the conditional MI com-
putations especially in neural networks [Tian et al., 2021],
we perform a simplification. We factorize Equation (11) as
follows:

IB(Y,Z) =

relevancy︷ ︸︸ ︷
I(Y ;Z) − [I(Z;X)]︸ ︷︷ ︸

compression

+

redundancy︷ ︸︸ ︷
[I(Z;Y |X)] . (12)

The first term forces features to be informative about the label
Y . The second term compresses Z to be concise. The third
term constraints Z to include task-relevant information in X .
These MI terms are depicted in Figure 3 and can be estimated
by existing MI estimators [Tian et al., 2021]. In our exper-
iments, we employ the Variational Information Bottleneck
(VIB) [Alemi et al., 2016] and Variational Self-Distillation
(VSD) [Tian et al., 2021] to estimate each MI term.

3 Experiments
In this section, we conduct extensive experiments to empiri-
cally evaluate our method on three benchmark action recog-
nition datasets. Broadly, we intend to answer the following
research questions:

• RQ1: How does the proposed method compare against
the state-of-the-art approaches for skeleton-based action
recognition?

• RQ2: How much do different components of Stream-
GCN contribute to its performance?

• RQ3: What interesting insights and findings can we ob-
tain from the empirical results?

Next, we first present the experimental settings, followed by
answering the above research questions one by one.

Figure 3: Our mutual information maximizes I(Y ;Z), compresses
I(Z;X), and preserves I(Z;Y |X). H(·) denotes entropy. The
visualization is inspired by [Tian et al., 2021].

3.1 Experimental Settings
Datasets. We adopt three widely used action recognition
datasets, namely NTU-RGB+D, NTU-RGB+D 120, and
Northwestern-UCLA, to evaluate the proposed method.

NTU-RGB+D. NTU-RGB+D [Shahroudy et al., 2016]
is tailored for the skeleton-based action recognition task. It
contains 56,880 video samples from 60 action classes per-
formed by 40 volunteers. Each sample contains one ac-
tion and is guaranteed to have a maximum of two subjects,
which is captured by three Microsoft Kinect v2 cameras. This
dataset provides two sub-benchmarks: (1) Cross-Subject (X-
Sub): data for 20 subjects is used as the training data, while
the rest is used as test data. (2) Cross-View (X-View) divides
the training and test sets according to different camera views.

NTU-RGB+D 120. NTU-RGB+D 120 [Liu et al., 2019a]
is the current largest human action recognition dataset, which
extends NTU-RGB+D with an additional 60 action classes
and 57,600 video samples. It contains a total of 114,480 sam-
ples from 120 action classes, which are executed by 106 vol-
unteers and captured by three Kinect cameras. Within the
dataset, two benchmarks are maintained: (1) Cross-Subject
(X-Sub), which categorizes 53 subjects into the training class
and the other 53 subjects into the test class. (2) Cross-Setup
(X-Set), which arranges data items with even IDs into the
training group and odd IDs into the test group.

Northwestern-UCLA. The Northwestern-UCLA dataset
contains 1,494 video samples in 10 classes [Wang et al.,
2014]. These videos were collected by filming ten actors
with three Kinect cameras. We follow the evaluation proto-
col mentioned in [Wang et al., 2014], where videos collected
by the first two cameras serve as the training samples and the
rest serve as test samples.

Implementation details. We conduct experiments on a
computer equipped with an Intel Xeon E5 CPU at 2.1GHz,
three NVIDIA GeForce GTX 1080 Ti GPUs, and the RAM
of 64GB. We leverage PyTorch 1.1 to implement our model.
We apply pre-processing method of [Zhang et al., 2020] to
the data in NTU-RGB+D and NTU-RGB+D 120. Moreover,
we initialize the data in Northwestern-UCLA according to the
approach of [Cheng et al., 2020b]. We apply stochastic gradi-
ent descent (SGD) with 0.9 Nesterov momentum to train the
Stream-GCN model. For NTU-RGB+D and NTU-RGB+D
120 datasets, the number of training epochs is set to 65 with
the first 5 epochs being warm-up epochs, which help stabilize
the training process. For NTU-RGB+D and NTU-RGB+D
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Methods X-Sub(%) X-Set(%)

ST-LSTM [Liu et al., 2016] 55.7 57.9

2s-AGCN [Shi et al., 2019b] 82.9 84.9
4s Shift-GCN [Cheng et al., 2020b] 85.9 87.6
DC-GCN+ADG [Cheng et al., 2020a] 86.5 88.1
MS-GCN [Liu et al., 2020] 86.9 88.4
Dynamic GCN [Ye et al., 2020] 87.3 88.6
MST-GCN [Feng et al., 2021] 87.5 88.8
Ta-CNN [Xu et al., 2022] 85.4 86.8
EfficientGCN-B4 [Song et al., 2022] 88.3 89.1

Stream-GCN(Joint stream) 85.8 86.7
Stream-GCN(Bone stream) 86.5 88.3
Stream-GCN(4 streams) 89.2 90.4
Stream-GCN(6 streams) 89.7 91.0

Table 1: Comparisons of the Top-1 accuracy(%) with the state-of-
the-art methods on the NTU RGB+D 120 dataset.

Methods X-Sub(%) X-View(%)

IndRNN [Liu et al., 2016] 81.8 88.0

2s-AGCN [Shi et al., 2019b] 88.5 95.1
SGN [Zhang et al., 2020] 89.0 94.5
AGC-LSTM [Si et al., 2019] 89.2 95.0
DGNN [Shi et al., 2019a] 89.9 96.1
4s Shift-GCN [Cheng et al., 2020b] 90.7 96.5
DC-GCN+ADG [Cheng et al., 2020a] 90.8 96.6
Dynamic GCN [Ye et al., 2020] 91.5 96.0
MS-GCN [Liu et al., 2020] 91.5 96.2
MST-GCN [Feng et al., 2021] 91.5 96.6
Ta-CNN [Xu et al., 2022] 90.4 94.8
EfficientGCN-B4 [Song et al., 2022] 91.7 95.7

Stream-GCN 92.9 96.9

Table 2: Comparisons of the Top-1 accuracy(%) with the state-of-
the-art methods on the NTU RGB+D dataset.

120 datasets, the initial learning rate is set to 0.1 and decays
by 0.1 every 35 epochs, the batch size is selected as 64. For
the Northwestern-UCLA dataset, the initial learning rate is
set to 0.01 and decays by 0.0001 every 50 epochs, the batch
size is set to 16.

3.2 Comparison with Existing Methods (RQ1)
We first empirically compare the proposed model with the
state-of-the-art methods. The experimental results are sum-
marized in Tables 1–3. Table 1 and Table 2 present results on
NTU RGB+D 120 and NTU RGB+D datasets, while Table 3
illustrates results on the Northwestern-UCLA dataset. From
the tables, we have the following observations. (a) The pro-
posed method consistently outperforms state-of-the-art ap-
proaches on all three benchmark datasets. For instance, on
the NTU120 RGB+D dataset, state-of-the-art method [Song
et al., 2022] achieves a 88.3% action recognition accuracy. In
contrast, Stream-GCN obtains a 89.7% accuracy. (b) Gen-
erally, GCN based approaches (such as [Shi et al., 2019a;
Shi et al., 2019b; Liu et al., 2020]) perform better than RNN
based methods (such as [Liu et al., 2016]). The empir-
ical evidence suggests that GCN models are more suitable
for action recognition tasks as they may conveniently model
the graph structure of the human body. (c) Another find-
ing is that multi-stream models usually outperform single-
stream ones. For example, on the NTU RGB+D 120 dataset,
multi-stream models [Cheng et al., 2020b; Song et al., 2022;

Methods Top-1(%)

Lie Group [Veeriah et al., 2015] 74.2
Ensemble TS-LSTM [Lee et al., 2017] 89.2

4s Shift-GCN [Cheng et al., 2020b] 94.6
DC-GCN+ADG [Cheng et al., 2020a] 95.3
Ta-CNN [Xu et al., 2022] 96.1

Stream-GCN 96.8

Table 3: Comparisons of the Top-1 accuracy(%) with the state-of-
the-art methods on the Northwestern-UCLA dataset.

Ensemble Methods Acceleration Streams Acc(%)
Joint Bone

4 Streams 89.2
5 Streams ! 89.4
5 Streams ! 89.3
6 Streams ! ! 89.7

Table 4: Study on removing acceleration streams.

Ye et al., 2020] achieve much better results than single stream
methods [Zhang et al., 2020; Si et al., 2019]. This reveals the
importance of incorporating different representations to ap-
proach more precise action recognition.

3.3 Ablation Study (RQ2)
We perform ablation experiments to examine the influence of
each component in our method (i.e., Motion Representation,
Cross-channel attention Module, and MI Loss). All the ab-
lation studies are conducted on the NTU-RGB+D 120 cross-
subject benchmark dataset. We also investigate the impact of
modifying the parameter settings of the cross-channel atten-
tion module.
Motion representation. To verify the impact of the pro-
posed acceleration representations in modeling higher-order
motion features. We tried removing the joint angular accel-
eration stream and bone angular acceleration stream respec-
tively. Specifically, we first tried removing all acceleration
streams. Then, we studied removing only the acceleration
stream of the joint. Finally, we also tried removing only
the acceleration stream of bone. The quantitative results are
demonstrated in Table 4, empirical results reveal that using
the high-order representation indeed boosts the action recog-
nition accuracy.
Cross-channel attention module. Next, we are interested
in the effect of removing the cross-channel attention module.
The empirical results are demonstrated in Table 5. Remark-
ably, the result in the second line of Table 5 shows that when
the cross-channel attention module is removed, the accuracy
is decreased (89.7% vs 89.4%).
Mutual information loss. We validate the effect of the MI
Loss in Section 2.3. As illustrated in the third and the fourth
lines of Table 5, the 0.4% accuracy improvement provides
empirical evidence that our proposed MI loss is effective.
This reveals that the additional feature-level supervision fa-
cilitates the extraction of task-specific information.
Parameter settings. By default, we use cross-channel at-
tention to assign different weights to different channels in
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Attention Module Mutual Information Params Acc(%)

1.21M 88.9
! 1.23M 89.4

! 1.64M 89.3
! ! 1.65M 89.7

Table 5: The impact of each component.

Methods ϑ
Kernel size

K = 1 K = 3 K = 5 K = 7 K = 9

Stream-GCN Sig(·) 85.8 84.0 84.3 84.0 79.9
Stream-GCN + Mask Sig(·) 84.4 84.1 84.4 84.3 83.9

Stream-GCN ReLU(·) 84.1 84.1 84.2 84.0 84.2
Stream-GCN + Mask ReLU(·) 84.0 83.9 84.3 84.0 84.3

Stream-GCN Tanh(·) 83.7 84.3 84.0 84.1 84.0
Stream-GCN + Mask Tanh(·) 83.9 84.4 84.2 83.9 83.9

Table 6: Accuracy (%) with different parameter settings on the
cross-channel attention module.

recognizing an action. We explore the hyper-parameter set-
tings in the cross-channel attention module with joint stream
(i.e., joint coordinates). The key hyper-parameters include the
activation function ϑ, the kernel size of the 1D convolution,
and the mask on the adjacency matrix. As shown in Table 6,
we observe that Stream-GCN obtains the best performance
when ϑ is a Sigmoid function, the kernel size K = 1, and the
adjacency matrix is without a mask.

3.4 Discussions (RQ3)
Visualize results. We visualize the learned attention maps
of different layers (layer 1, layer 5, and layer 9) for the
“drinking water” action in Figure 4. From the figure, we see
that different layers of the learned attention map contain dis-
tinct semantics. Specifically, in the lower layers, it seems
that the model focuses on the relations between hands, shoul-
ders, and wrists. This is intuitive since the model will ini-
tially focus on the body parts (joints) where the movement
takes place. In the intermediate layers, the arm is more con-
cerned by the model, with attention to the other parts grad-
ually diminishing. This demonstrates that the model is ana-
lyzing what exactly the arm is doing. In the higher layers,
the information is highly aggregated. Meanwhile, the model
will combine other joints that are helpful to identify the mo-
tion. As an example, for recognizing the action of “drinking
water”, the correlation between the hands and the head is de-
tected and leveraged by the model. Experiments on three dif-
ferent benchmark datasets suggest that incorporating higher-
order motion sequences achieves higher accuracy. Interest-
ingly, a point that attracts our attention is: we empirically
observe that as the number of action classes goes higher, al-
though incorporating high-order representation still improves
the accuracy, the advantage of incorporating high-order rep-
resentation decreases. We plan to dive deeper into this phe-
nomenon and come up with new solutions.

4 Related Work
Earlier skeleton-based action recognition methods model the
motion sequences with convolutional neural networks or re-
current neural networks [Si et al., 2018]. As these conven-

Figure 4: Examples of the learned attention maps at different lay-
ers for the drinking water action. The numbers denote different
joints, e.g., “number 4” denotes “head” and “number 8” denotes
“left hand”. The brighter area indicates that the weight of the cor-
relation matrix is larger there, which means the correlation strength
between the joints is stronger.

tional methods have inherent difficulties in capturing the con-
nections between joints, they tend to suffer from unsatisfac-
tory results. Recent efforts have embraced GCNs to model
the human motion sequences as spatio-temporal graphs [Bian
et al., 2021]. [Yan et al., 2018] is a pioneering work in this
line of efforts, proposing a ST-GCN model to characterize
the skeleton motion as a GCN. [Shi et al., 2019b] proposes
an adaptive graph convolution network based on ST-GCN,
incorporating skeletal bone features as an additional input
stream and adopting self-attention to learn the graph parame-
ters. [Shi et al., 2019a] introduces frame-wise bone and joint
velocities as additional input streams for action recognition.

Existing methods tend to have difficulties in discriminating
between similar actions. Meanwhile, to our best knowledge,
the higher-order motion features and mutual information are
rarely explored in skeleton-based action recognition [Tan et
al., 2021; Chen et al., 2022]. This inspires us to seek methods
to facilitate the model recognizing the action class precisely.

5 Conclusion
In this paper, we have proposed a motion representation
derived from rigid body kinematics. The new representation
captures the higher-order motion features, complementing
conventional motion representations. We also present a
Stream-GCN network equipped with multiple input streams
and channel-wise attention, where different streams are
ensembled while attention weights capitalize on those im-
portant channels. Finally, we introduce a mutual information
objective for theoretic supervision on extracted features.
Extensive experiments show that our method consistently
surpasses state-of-the-art methods on three different bench-
mark datasets. Our code is released to facilitate researchers.
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