
A Fast Algorithm for Consistency Checking Partially Ordered Time

Leif Eriksson and Victor Lagerkvist∗

Department of Computer and Information Science, Linköping University, Linköping, Sweden
{leif.eriksson, victor.lagerkvist}@liu.se

Abstract
Partially ordered models of time occur naturally
in applications where agents/processes cannot per-
fectly communicate with each other, and can be
traced back to the seminal work of Lamport. In
this paper we consider the problem of deciding if a
(likely incomplete) description of a system of events
is consistent, the network consistency problem for
the point algebra of partially ordered time (POT).
While the classical complexity of this problem has
been fully settled, comparably little is known of the
fine-grained complexity of POT except that it can
be solved in O∗((0.368n)n) time by enumerating
ordered partitions. We construct a much faster al-
gorithm with a run-time bounded by O∗((0.26n)n).
This is achieved by a sophisticated enumeration of
structures similar to total orders, which are then
greedily expanded towards a solution. While similar
ideas have been explored earlier for related problems
it turns out that the analysis for POT is non-trivial
and requires significant new ideas.

1 Introduction
Qualitative reasoning is an important formalism in artificial
intelligence where the objective is to reason about continu-
ous properties given certain relations between the unknown
entities. Two important subfields are temporal reasoning,
e.g., the point algebra for partially ordered time (POT),
Allen’s interval algebra (ALLEN), and the point algebra for
branching time, and spatial reasoning, e.g., the region con-
nection calculus (RCC), the cardinal direction calculus, and
the rectangle algebra. There are numerous applications of
all of these formalisms in AI, e.g., in knowledge representa-
tion [Forbus, 2019], linguistics [Allen, 1984; Song and Co-
hen, 1988], and planning [Allen, 1991; Allen et al., 2014;
Nogueira et al., 1996; Song and Cohen, 1996]. For a broad
overview with further applications and references we refer to
the survey by Dylla et al. [2017].

In this paper we are interested in constructing fast (but
superpolynomial) algorithms for NP-hard temporal reason-
ing problems, with a particular focus on the POT problem.

∗Partially supported by the Swedish research council (VR) under
grant 2019-03690.

T1 T2

T3

{<}

{||}

{<,>}

Figure 1: A scenario with tree tasks T1, T2, T3 where T1 precedes
T3, T1 and T2 are incomparable, and where either T2 precedes T3,
or T3 precedes T2.

Here, the basic task is to check whether a given set of events
and a set of possible relationships between them is consis-
tent in the sense that there exists some partial ordering of the
events which does not contradict any of the given relation-
ships. Thus, this model of time is suitable in applications
where we are working with agents/processes who cannot per-
fectly communicate with each other and where a global, totally
ordered model of time is not possible, e.g., in distributed
or concurrent systems [Anger, 1989; Anger et al., 1999;
Lamport, 1986]. There are many possible formulations of
the basic computational problem and we consider the setup
where the possible basic relations among two points in time
are less than (<), greater than (>), incomparable to (||) and
equivalent to (=), i.e., the basic operations of the well-known
point algebra [Ladkin and Maddux, 1994]. To make it possi-
ble to encode complex relationship between events we follow
Broxwall & Jonsson [2003] and allow disjunctions of the basic
relations. Crucially, disjunctions make it possible to model
incomplete relationships between tasks, e.g., we are given two
tasks, where one of them started the other but we lack the
knowldge of which one was first. See Figure 1 for a visualiza-
tion of a constraint network with three tasks (where {<,>}
means that < or > is true). This network is satisfiable since
the tasks can be ordered as T1 < T3, T2 < T3 where T1 and
T2 are incomparable. Let us also remark that all of the afore-
mentioned problems can be formulated as infinite-domain
constraint satisfaction problems (CSPs) over ω-categorical
constraint languages [Bodirsky and Jonsson, 2017]. In this
framework one first fixes a set of binary basic relations B and
then consider CSP(B∨=) where B∨= =

⋃
R∈B R is the union

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1911

of the basic relations. For example, the POT problem can
then be formulated as a CSP problem where the basic relations
are formed over the random partial order (cf. Chapter 2 in
Bodirsky [2021]).

1.1 Related Work
Significant attention has been devoted to finding maximally
tractable subclasses of these problems, typically accomplished
by local consistency methods, and for e.g. RCC-5, RCC-8,
ALLEN, and POT, all maximal, tractable classes have been
identified [Dylla et al., 2017]. If one extends to arbitrary
first-order reducts of the basic relations the satisfiability prob-
lem of POT has a complexity dichotomy by Kompatscher
& Pham [2017], while the corresponding problem for RCC
is generally undecidable. But, naturally, we cannot be con-
tent with merely understanding the tractable fragments, since
their expressive power is too restrictive to be able to model
real-world problems. Hence, we need methods for solving
NP-hard reasoning tasks as fast as possible. To expand our
understanding of the NP-hard cases we would thus like to
(1) construct algorithms faster than exhaustive search, and (2)
prove that certain types of speedups are not possible, subject
to stronger complexity theoretical assumptions than P ̸= NP.
Complexity questions like these, especially for a precise com-
plexity parameter such as the number of variables, n, typically
fall under the scope of fine-grained complexity. Thus, given
a reasonable set of basic relations B, how fast can we expect
to solve CSP(B∨=) (which might be NP-hard even if CSP(B)
is tractable)? Here, let us first remark that any CSP(B∨=)
problem is solvable by an exhaustive backtracking algorithm
in 2O(n2) time, under mild assumptions on the set of basic
relations B (e.g., that CSP(B) is solvable in polynomial time).
However, for several prominent problems in qualitative rea-
soning, including POT, it is possible to argue that the 2O(n2)

bound is too naive to be used as a baseline for improvement.
Instead, these problems can be solved in 2O(n logn) time by
enumerating ordered partitions [Jonsson and Lagerkvist, 2017;
Jonsson et al., 2021], pushing down the running time to
O∗((2n)2n) for ALLEN, O∗((0.531n)n) for RCC-8 and
O∗((0.368n)n) for RCC-5 and POT1. Thus, these problems
can be solved by enumerating objects similar to assignments
in finite-domain CSPs, and the question is then whether it is
possible to solve the problem faster than exhaustively enumer-
ating all orderings, similar to how it is a major open question
whether CNF-SAT is solvable in O∗(cn) time for some c < 2.
This is indeed known to be possible for certain reasoning
problems, e.g., ALLEN, which recently has been solved in
O∗((1.0615n)n) time [Eriksson and Lagerkvist, 2021], and if
the problem is restricted to intervals of length one then it can
even be solved in 2O(n log log n) time [Dabrowski et al., 2020],
and if no point occurs inside more than k intervals then it can
be solved in O∗(kn) time [Eriksson and Lagerkvist, 2022].
A faster f(k)n time algorithm, for some function f , is also
known for the special case of POT where a solution with effec-
tive width of at most k is asked for [Eriksson and Lagerkvist,
2022]. However, despite these improvements, we are still far
away from an unconditional single-exponential O∗(cn) time

1The notation O∗(·) suppresses polynomial factors.

algorithm and even further away from the best-known lower
bounds which only rule out subexponential algorithms running
in 2o(n) time under the exponential-time hypothesis [Jonsson
et al., 2021]. Hence, cutting-edge research suggests that quali-
tative reasoning problems in many cases admit significantly
improved algorithms even though general single-exponential
running times seem to be out of reach with existing methods.

1.2 Our Contribution
In this paper we advance this frontier by describing a novel and
significantly improved algorithm for the POT problem with
a running time of O∗((0.26n)n), which is much faster than
the previously known baseline of O∗((0.368n)n). Hence, our
algorithm is not only a showcase that an improved algorithm is
possible for POT but significantly beats the naive upper bound
based on enumerating ordered partitions. We achieve this as
follows: after introducing the necessary technical background
(in Section 2) we start our work on POT in Section 3. We
analyze the structures of potential solutions and use greedy
choices to find a structure that is suitable for enumeration
and which yields a significant improvement over enumerating
ordered partitions. The basic idea is to group variables into
pairs and then order these pairs relative to each other instead
of all variables individually, and ordering the variables in
each pair can thereafter be done greedily. Hence, the basic
idea is not that complex, but actually proving soundness and
completeness of our approach is non-trivial and requires novel
techniques. Finally, we conclude our results in Section 4 and
present a discussion over how these algorithms and the ideas
behind them might be open to further improvements and what
other problems these ideas may be applicable to. Notably,
can the algorithm be adapted to solve RCC-5 or RCC-8, and
how far can we push the upper bound with this algorithmic
technique?

2 Preliminaries
Given a set of finitary relations Γ defined on a (potentially
infinite) set D of values, we define the constraint satisfaction
problem over Γ (CSP(Γ)) as follows.

CSP(Γ)
Instance: A tuple (V,C), where V is a set of variables
and C a set of constraints of the form R(v1, . . . , vt), where
t is the arity of R ∈ Γ and v1, . . . , vt ∈ V .
Question: Is there a function f : V → D such that
(f(v1), . . . , f(vt)) ∈ R for every R(v1, . . . , vt) ∈ C?

The set Γ is referred to as a constraint language and the
function f is sometimes called a satisfying assignment of an
instance, I , or simply a model of I . We write ||I|| for the
number of bits required to represent an instance I of CSP(Γ).

Definition 1. We define the following orders:

1. A pair (S,≤) is a partial order if ≤ is reflexive (∀x ∈ S
then x ≤ x), antisymmetric (∀x, y ∈ S, if x ≤ y and
y ≤ x then x = y), and transitive (if x ≤ y and y ≤ z
then x ≤ z).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1912

2. A pair (S,<) is a strict partial order if < is irreflexive,
asymmetric (∀x, y ∈ S, if x < y then y < x does not
hold), and transitive.

3. A pair (S,≤) is a total order if ≤ is reflexive, antisymmet-
ric, transitive and strongly connected (∀x, y ∈ S then
x ≤ y or y ≤ x).

If ⊙ ∈ {<,>, ||,=} and P = (S,≤P) is a partial (or total)
order then we write ⊙P for the relation induced by P : x <P y
if x ≤P y and y ≤P x does not hold, conversely for >P , ||P
if neither x ≤P y nor y ≤P x, and x =P y if x ≤P y and
y ≤P x. We now define the main problem of the paper.

PARTIALLY ORDERED TIME

Instance: A set of variables V and a set of binary con-
straints C where c ⊆ {<,>, ||,=} for each c(x, y) ∈ C.
Question: Is there a partial order P = (S,≤) with
|S| ≤ |V | and a function f : V → S such that for every
constraint c(x, y) ∈ C, f(x)⊙P f(y) for some ⊙ ∈ c?

Alternatively one can also use the random partial order P ,
i.e., the (unique) countable partial order which is universal
(contains an isomorphic copy of every finite partial order) and
is homogeneous (any isomorphism between finite substruc-
tures can be extended to an automorphism of P). Then, the
POT problem can equivalently well be defined as CSP(RP)
where RP is the closure of {<P , >P , ||P ,=P } under union
(cf. [Bodirsky, 2021]).

3 Partially Ordered Time
Our approach to beat the naive O∗((0.368n)n) algorithm for
POT involves exploring a carefully selected group of partial
orders. The algorithm, in particular, organizes variables into
pairs where we only have to consider a relative ordering with
n
2 other variables. This scheme leads to a runtime that is
dominated by n!/2

n
2 . Demonstrating the correctness of this

strategy is a nontrivial task, and the analysis itself is arguably
as interesting as the precise bound we attain.

3.1 Definitions
We start by introducing the concepts necessary for the sound-
ness and completeness proofs of the main algorithm.

Definition 2. If P = (S,≤P) and P ′ = (S′,≤P ′) P are two
partial orders then P is a stub of P ′ if S ⊆ S′ and ≤P ⊆≤P ′ .

We chose to represent our instances as (multi-)relational
networks rather than as sets of constraints. This will give
us more flexibility when adding additional restrictions to our
instances, since it allows us to limit ourselves to sets of partial
orders under some restrictions.

Definition 3. For an arbitrary POT instance I = (V,C) we
define two different variants of relational networks:

1. A function f : V 2 −→ {<,>, ||,=} is a relational net-
work (over V), if for every constraint c(x, y) ∈ C then
f(x, y) ∈ c(x, y). We also say that f is a relational
network for I .

2. A function f : V 2 −→ P({<,>, ||,=}) is a multi rela-
tional network if for every constraint c(x, y) ∈ C then

f(x, y) ⊆ c(x, y). We also say that f is a (multi) rela-
tional network for I .

If I is a ’yes’-instance, i.e. there exists a partial order
(S,≤P) such that for all c(x, y) ∈ C then x ⊙P y with
⊙ ∈ c(x, y), we say that f is a consistent (multi) relational
network.

We will occasionally view (multi) relational networks as
sets of constraints in the obvious way. For example, if f is
a multi relational network of an instance I = (V,C), then
f ∪ {x{<,>}y} is equivalent to the multi relational network
for the instance (V,C ∪ {x{<,>}y}).
Definition 4. Consider the set of all multi relational networks
over a fixed set V .

1. For two distinct multi relational networks f and f ′ over
V we write f ⪯ f ′ if f(x, y) ⊆ f ′(x, y) for all x, y ∈ V .

2. We write f ≺ f ′ for the corresponding irreflexive order.

3. A multi relational network f is said to be maximally
general if it is a maximal element in ⪯, i.e., there does
not exist f ′ such that f ≺ f ′.

A solution for a POT instance I with relational network f
can now be represented by a relational network g ⪯ f . This
will be convenient since it eliminates the need to refer to fixed
values in the context of a solution.

We also need a local consistency definition for our multi
relational networks.
Definition 5. A multi relational network f over V is (locally)
consistent over s ⊆ V if f(x, y) =

⋃
gi(x, y), x, y ∈ s where

{g1, . . . , gn} is the set of all consistent relational networks
gi ⪯ f over s.

Next, we define the central concept of composing a partial
order with a multi relational network, roughly meaning that the
partial order is used to simplify the multi relational network
as much as possible.
Definition 6. Given a POT instance I = (V,C) with multi
relational network f and a partial order P = (V,≤P), we
define the POT instance

P ◦ f =


f(x, y) \ {>}, if x <P y,

f(x, y) \ {<}, if y <P x,

f(x, y) ∩ {=}, if y =P x,

f(x, y), if y||Px.

Note that P ◦f may have cases where f(x, y) = ∅, meaning
that there is no partial order P ′ = (V,≤P ′) satisfying I for
which P is a stub.
Lemma 7. Let I = (V,C) be a POT instance with multi rela-
tional network f . If there exists a partial order P = (V,≤P)
such that P ◦ f is a ’yes’-instance then I is a ’yes’-instance.

Proof. By Definition 6, (P ◦ f) ⪯ f and hence we have that
(P ◦ f)(x, y) ⊆ c(x, y) for all c(x, y) ∈ C. So, if there is an
assignment satisfying P ◦ f , the same assignment must also
satisfy I .

We are now ready to present the limited set of partial orders
that we are interested in enumerating.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1913

Definition 8. A total ordering of pairs (TOP) is a partial order
P = (V,≤P) such that for every x ∈ V there is at most one
y ∈ V \ {x} such that x||P y. We say that (x, y) is a pair in P
if x||P y.

We will use the notation (a1, b1) <P . . . <P (ai, bi) for
writing (part of) a TOP P . Here (aj , bj) are our pairs for
j ∈ {1, . . . , i}. Note that we do not make a difference between
(aj , bj) and (bj , aj).

Now we are ready to start applying TOPs on multi relational
networks, see what important structures can occur and, most
importantly, investigate why this is beneficial and determine
for which cases the output is still difficult to solve.
Definition 9. Given a TOP P and a multi relational network
f of a POT instance, a link in P ◦ f is a non-empty sequence
of pairs (a1, b1) <P . . . <P (an, bn) such that

1. (P ◦ f)(ai, bi) \ {=} = {<,>},
2. (P ◦ f)(ai, aj) \ {=} = {<}, 1 ≤ i < j ≤ n,
3. (P ◦ f)(bi, bj) \ {=} = {<}, 1 ≤ i < j ≤ n, and
4. || ∈ (P ◦ f)(ai, bj), i ̸= j.

Two links overlap if they share any pairs.
Note that a single link does not need to contain more than

a single pair. Also, two links sharing the same pairs, e.g.
(a, b) and (b, a), are technically the same link. This is just
two different representations, or directions, of the same link,
which will be relevant for the following important concept.
Definition 10. Given a TOP P and multi relational network
f for some POT instance, a chain in P ◦ f is two variables
x <P y with (P ◦ f)(x, y) \ {=} = {||} and a non-empty
sequence of m links

(a1,1, b1,1) <P . . . <P (a1,n1 , b1,n1) <P . . . <P

(am,1, bm,1) <P . . . <P (am,nm
, bm,nm

)

such that
1. either x = b1,1 or (P ◦ f)(x, b1,1) ⊆ {<,=},
2. either y = am,n′ or (P ◦ f)(am,n′ , y) ⊆ {<,=},
3. P ◦ f(ai,ni

, bi+1,1) \ {=} = {<},
4. (P ◦ f)(ai,i′ , aj,j′) \ {=} = {<, ||}, i < j,

i′ ∈ {1, . . . , ni}, j′ ∈ {1, . . . , nj} and
5. (P ◦ f)(bi,i′ , bj,j′) \ {=} = {<, ||}, i < j,

i′ ∈ {1, . . . , ni}, j′ ∈ {1, . . . , nj}.
We say that a chain is broken if (P ◦ f)(ai,i′ , bi,i′) = {<} for
all i′ for some i. The length of a chain is the number of links
m in the chain. We say that x is the head of the chain and y
the tail.

While we here differ between (a, b) and (b, a) in contrast to
how we did for TOPs, it should be clear by the context when
it is of importance or not, i.e. when we are speaking of chains
and when we are only discussing (parts of) a TOP.
Example 11. Take the TOP
(a1, b1) <P (a2, b2) <P (a3, b3) <P (a4, b4) <P (a5, b5).
Let f(b1, b3) = {<}, f(a2, a3) = {<}, f(b2, b3) = {<},
f(a3, b4) = {<}, f(b3, b5) = {<}, f(a1, a4) = {||},
f(a2, a5) = {||} and for every i ∈ {1, . . . , 5},

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

{<,>} {<,>} {<,>} {<,>} {<,>}

{<}

{<}

{<}

{||} {||}

{<} {<}

Figure 2: Graphic representation of two chains overlapping in one
link (a3, b3), as described in Example 11. Variables/pairs to the left
are ordered before those to the right in our TOP and hence we assume
either a <- or a ||-relation going from left to right.

f(ai, bi) = {<,>}. We now have five links: (a1, b1),
(a2, b2) <P (a3, b3), (b3, a3), (b4, a4) and (b5, a5). We
also have two chains: (a1, b1) <P (b3, a3) <P (b4, a4) and
(a2, b2) <P (a3, b3) <P (b5, a5). Here (a2, b2) <P (a3, b3)
and (b3, a3) contain the same pair in a3, b3, but their
directions differ, and hence these links overlap in the opposite
directions.

This example is also visualized in Figure 2.

Before we prove that T ◦ f is solvable in polynomial time
for any total order T we introduce the following comparability
property of partial orders.

Definition 12. Given two relational networks f and g over the
same variable set V , f is ||-larger than g if, for any variables
x, y ∈ V :

1. if g(x, y) = {||} then f(x, y) = {||},

2. if g(x, y) = {<} then f(x, y) ∈ {<, ||},

3. if g(x, y) = {>} then f(x, y) ∈ {>, ||},

4. if g(x, y) = {=} then f(x, y) ∈ {<,>, ||,=},

and there exists x, y ∈ V such that g(x, y) ̸= f(x, y).
Furthermore, we say that f is ||-maximal if there does not

exist any g which is ||-larger than f .

3.2 The Algorithm
We begin by showing how to solve T ◦ f in polynomial time
for a total order T .

Lemma 13. Let I = (V,C) be a POT instance with multi
relational network f and let T = (V,<T) be a total order.
Then T ◦ f is solvable in polynomial time.

Proof. Solving T ◦ f can be done by enforcing consis-
tency for each triple x, y, z ∈ V , e.g., if f(x, y) = {<} and
f(y, z) = {<} then f(x, z) = {<}. We repeat this until no
more changes occur. If any f(x, y) = ∅ then T ◦ f must be
a ’no’-instance, otherwise it is a ’yes’-instance. Soundness
for this approach follows naturally. To see that this approach
is complete take the ||-maximal relational network g which
can give T when topologically sorted. Since I given T is a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1914

’yes’-instance, g must exist. After the first round of local con-
sistency propagation the following must be true for all triples
x <T y <T z for our f :

1. if = ∈ f(x, z) then = ∈ f(x, y) and = ∈ f(y, z), or
|| ∈ f(x, y) and || ∈ f(y, z),

2. if < ∈ f(x, z) then f(x, y) = f(y, z) cannot equal =,
and

3. if || ∈ f(x, z) then || ∈ f(x, y) or || = f(y, z).

Similarly, g(x, y) ∈ f(x, y). By then removing =-relations
from any |f(x, y)| > 1 the relations g(x, y) ∈ f(x, y) must
still be true and hence the network is still a ’yes’-instance.
Again, we enforce consistency for triples until no changes
occur. For any triple x <T y <T z, where g(x, y), g(x, z)
and g(y, z) are not equal to {=}, it then still holds that if
|| ∈ f(x, z) then || ∈ f(x, y) or || ∈ f(y, z). Hence, for every
|| ∈ f(x, y) we can assume f(x, y) = {||} and still have a
’yes’-instance. In fact, f = g since g is ||-maximal. Hence, if
I is a ’yes’-instance and if there is any relational network for
I that topologically sorts to T , we will answer ’yes’.

For the complexity, we only need to propagate complexity
for variable triples, and each propagation cycle must remove
at least one relation from f , else no change is made. As
there are at most four possible atomic relations between each
variable pair, the number of cycles is polynomially bounded
by O(|V |2). Hence, this approach can be done in polynomial
time.

Why it is actually interesting to solve T ◦ f in polynomial
time is shown by the following lemma.

Lemma 14. If a POT instance I with multi relational network
f is a ’yes’-instance then there is a total order T such that
T ◦ f is a ’yes’-instance.

Proof. We remind the reader that we can represent a solu-
tion for I with a relation network. Take any relational net-
work g satisfying I and the partial ordering P described
by this relational network. Topologically sort P to a to-
tal order T . From the definition of T ◦ f we know that
T ◦ f(x, y) = f(x, y) \ {>} if x <T y. As x ̸<T y if
g(x, y) = {>}, g must be consistent with T ◦ f and hence g
is also satisfies T ◦ f , proving the lemma.

As a sanity check for making sure that an instance does
not have small subinstances that are ’no’-instanses, i.e. the
instance is localy consistent, we prove the following lemma.
Recall that ||f || is the number of bits needed to represent f .

Lemma 15. For any multi relational network f , integer k > 0
and a set of variables s ⊆ V with |s| ≤ k, a maximally
general multi relational network f ′ ⪯ f which is locally
consistent with s can be computed in h(k) · ||f ||O(1) time for
some computable function h(k).

Proof. Let {g1, . . . , gm} be the set of all consistent relational
networks g ⪯ f over s. For each s, there are roughly 16|s|

2

potential gis as we have four different relations that can either
be allowed, or not allowed, between each pair of variables
in s. Each potential gi can be compared to f to check for
consistency in ||f ||O(1) time as ||gi|| ≤ ||f ||. Now, for each

pair x, y ∈ s let f ′(x, y) =
⋃
gi(x, y) and for all pairs where

either x ̸∈ s or y ̸∈ s let f ′(x, y) = f(x, y). Since |s| ≤ k the
number of possible 16|s|

2

and the complexity of construct-
ing f ′ is bounded by h(k) for some computable function
h : N → N. Clearly, f ′ ⪯ f , and since we enumerated all
possible relations between all pairs in s, f ′ must also be the
largest such multi relational network.

Now, we are ready to introduce the first of the two main
gadgets necessary for our later proofs. For a partial order
P = (V,≤) and distinct x, y ∈ V we write P x<y for
(V,≤ ∪{(x, y)}). While this operation may technically pro-
duce structures that are not partial orders (e.g., x <P y <P x),
we in the forthcoming definitions will only use it on pairs in
TOPs where the result is always guaranteed to be a partial
order.
Definition 16. For a TOP P = (V,≤) and a multi relational
network f over V we describe a partial function Rpar defined
according to the following rules.

1. Rpar(P, f) = (P, f) if P is a total order,

2. Rpar(P, f) = R(P x<y, f) if there exists distinct
x, y ∈ V with x||P y and < ̸∈ (P ◦ f)(x, y),

3. Rpar(P, f) = R(P ai<bi) if there exists a link
(a1, b1) < · · · < (ak, bk) such that there is no other
link (c1, d1) < · · · < (ck′ , dk′) for which ai = di′ and
bi = ci′ for any i and i′,

4. Rpar(P, f) = Rpar(P, f
′) if there exists a, b, c, d ∈ V

and a maximally general multi relational network f ′ ̸= f ,
f ′ ⪯ f and locally consistent with {a, b, c, d}.

It is easy to see that if Rpar(P, f) = (T, f) is defined then
it returns a total order T such that P is a stub of T . We then
consider the following extension of Rpar which is guaranteed
to be totally defined due to the second rule.
Definition 17. For a TOP P = (V,≤) and a multi relational
network f over V we describe a total function Rtot defined
according to the following rules.

1. Rtot(P, f) = Rpar(P, f) if Rpar(P, f) is defined, and

2. Rtot(P, f) = Rtot(P
x<y, f) if there exists x, y ∈ V

where {<,>} ⊆ (P ◦ f)(x, y).
Note that Rtot will always return a total order, since other-

wise the second rule could be applied. However, the function
is not sound and can given a ’yes’-instance P ◦ f return a
’no’-instance T ◦ f . Even so, this function will be the one we
later use for solving POT instances.

As a second extension of Rpar, we introduce the total func-
tion Rcorr. This function will computationally be more expen-
sive than Rtot, but with the trade-off that it in the second step
makes sure extending the given TOP with x < y is actually a
reasonable choice that does not get the function stuck with a
’no’-instance. Thus, if extending the partial order by x < y
would yield a ’no’-instance, Rcorr (in contrast to Rtot) simply
stops and returns (P, f).
Definition 18. For a TOP P = (V,≤) and a multi relational
network f over V we describe a total function Rcorr defined
according to the following rules.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1915

1. Rcorr(P, f) = Rpar(P, f) if Rpar(P, f) is defined.

2. Rcorr(P, f) = Rcorr(P
x<y, f) if there exists

x, y ∈ V with {<,>} ⊆ (P ◦ f)(x, y) and where
P ◦ (f ∪ {x{<, ||,=}y}) is a ’yes’-instances, and

3. Rcorr((P, f)) = (P, f) otherwise.

Note that Rcorr differs from Rtot in the sense that if Rcorr

(via the second rule) is given a ’yes’-instance it also guarantees
that the output is a ’yes’-instance. The precise relation between
Rtot and Rcorr will be of much interest to us. In fact, we will
show that if f is a ’yes’-instance, then there must exist a TOP
such that Rtot = Rcorr. We begin with the following lemma.

Lemma 19. For an arbitrary POT instance with multi re-
lational network f and some arbitrary TOP P = (V,≤P),
Rtot(P, f) can be computed in poly(||I||) time and space.

Proof. Step 1 and 2 of Rpar and step 2 of Rtot are quite clearly
polynomial. Since there are |V |4 sets of four variables, step 4
of Rpar is polynomial by Lemma 15. Last, step 3 of Rpar is
polynomial since there are at most |V |/2 pairs, and finding if
they are part of some chain (and in which directions) can be
done in polynomial time. Hence, all steps of Rtot are doable
in polynomial time.

Using Rtot(P, f) = (T, f ′) we are now left with
T ◦ f ′, which we can solve in polynomial time according
to Lemma 13, and if this approach returns true then I must
be a ’yes’-instance (via Lemma 7).

Returning to the relationship between Rtot and Rcorr

we are now ready to describe the property needed for
Rtot(P, f) ̸= Rcorr(P, f) to occur.

Lemma 20. Let P = (V,≤P) be a TOP and f a multi rela-
tional network over V such that P ◦f is a ’yes’-instance. Then
Rtot(P, f) ̸= Rcorr(P, f) only if P ◦ f contains a non-empty
set S of chains of length at least two and such that every link
of every chain in the set overlaps with some other link in the
opposite direction.

Proof. Assume Rtot ̸= Rcorr and S = ∅. The only step where
Rtot and Rcorr differ in output is in step 2. Further, assume
we have a topological sorting T of some solution for P ◦ f .
Whenever Rtot reaches step 2 and for a pair x||P y chooses
x{<,=, ||}y, without knowing if this is a good choice or not,
we have four different cases that could theoretically occur and
are worth considering.

1. If x = y or x||y in our solution for P ◦f , then x <T y and
y <T x are both valid and will yield the same solution.

2. If x < y in our solution, but y < x in some other, but
otherwise identical solution, then x <T y and y <T x
are both valid and yield ’yes’-instances.

3. If x < y in our solution and there is no solution with
y < x but which is otherwise identical, then there must
be two variables u, v such that x ≤ u, v ≤ y and u||v.
This describes a link and a chain. Then, either this chain
has length one, in which point Step 4 of Rpar will be
applicable as local consistency over {x, y, u, v} would
not allow the case of y < x, or this chain has length
longer than two, but contains a link not overlapping with

any other link in the opposite direction. Since there is
here a link that does not overlap with any other in the
opposite direction, step 3 of Rpar would be applicable
and we would set x < y or y < x depending on which
one breaks the chain.

4. There are chains of length two or more, but no chain
contains any link that does not overlap with some other
link in the opposite direction. This matches the definition
of chains in S, and hence S is non-empty.

In the first two of these cases Rtot and Rcorr behave iden-
tically, and hence yield the same output. For the third one,
neither Rtot nor Rcorr reaches their respective step 2, and
hence they behave identically. For the fourth case, S is non-
empty. So neither of these four cases satisfies our assumption.
But our four cases are exhaustive: they cover all relations be-
tween x and y in solutions for T ◦ f and all cases for all these
relations. So the initial assumptions must be false, meaning
that either Rtot = Rcorr or S ̸= ∅, completing the proof.

Before we introduce the final piece of the puzzle, we
give two short definitions: one for a sub-class of TOPs
that are easier to enumerate and one for our notation for
Rtot(P, f) = Rcorr(P, f).

Definition 21. A proper total ordering of pairs (PTOP) is a
TOP P = (V,≤P) such that for every x ∈ V either there is
exactly one y ∈ V \ {x} such that x||P y or y <P x for all
y ∈ V \ {x}.

Definition 22. If for some arbitrary TOP P = (V,≤P) and
relational network f over V , Rtot(P, f) = Rcorr(P, f) we
say that P is reducible for f .

And now, finally, we can show, and prove, why Rtot, Rcorr,
reducibility and (P)TOPs are interesting for multi relational
networks for POT instances.

Lemma 23. For every ’yes’-instance I of POT with multi
relational network f , there is a PTOP reducible for f .

Proof. Since I is a ’yes’-instance we have a relational network
g satisfying I , and by Lemma 14 we know there is a total order
T such that T ◦ f is also satisfied by g.

We start the process of finding a TOP reducible for f by
generating (from T) an arbitrary PTOP P such that P is an
stub of T . If P is reducible for f , then return P . Otherwise if
P is not reducible for f we assume that Rcorr(P, f) = (P, f).
Since Rcorr can remove chains of length one by local consis-
tency over quads, we know by Lemma 20 that P ◦ f contains
chains longer than two, and such that their links overlap with
others in the opposite direction. I.e., we have a link

(a1,1, b1,1) <P . . . <P (a1,n, b1,n)

and a second link

(u1,1, v1,1) <P . . . <P (u1,m, v1,m)

such that there is some a1,i = v2,i′ and b1,i = u2,i′ . Further-
more, we also have a link

(a2,1, b2,1) <P . . . <P (a2,n′ , b2,n′)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1916

that is part of the same chain as

(a1,1, b1,1) <P . . . <P (a1,n, b1,n)

and some link

(u2,1, v2,1) <P . . . <P (u2,m′ , v2,m′)

that is part of the same chain as

(u1,1, v1,1) <P . . . <P (u1,m, v1,m).

From all such overlaps, take the overlapping pair with the
lowest index in P and call it (x, y). Without loss of gen-
erality, assume that g(x, y) = < in our relational network
g satisfying both I and T ◦ f . Take the variable y <T z
such that g(x, z) = g(z, y) = ||, and such that there is no
other variable z′ <T z fulfilling the same conditions. To
see that such a variable z actually exists, take the tail x′ and
y′ of the chains overlapping in opposite directions in (x, y).
Since the chain which includes x and x′ must be broken,
and similarly for y and y′, we must have that g(x, x′) = ||
and g(y, y′) = ||. Assume that g(y, x′) =<. But since
g(x, y) = g(y, x′) =< then g(x, x′) =< while we assumed
g(x, x′) = ||, so we have a contradiction. Hence, we have
g(x, x′) = g(x′, y) = || and so at least one variable with this
property exists and so does our z. In T there is now a sequence
x <T y <T x1 <T . . . <T xj <T z. Since z is incomparable
to both x and y in g and as z is the least indexed such vari-
able in this sequence, then for all xi in the sequence we have
g(z, xi) = ||. Hence, if we construct a new total order T ′

such that x <T ′ z <T ′ y <T ′ x1 <T ′ . . . <T ′ xj but which
is otherwise identical to T , then g also satisfies T ′ ◦ f . If we
now also construct a new arbitrary TOP P ′ from T ′ our two
original links are no longer links for any chains. We repeat
this process until the resulting TOP P ′ is reducible for f .

The question is now if the above construction of a reducible
PTOP for f halts. To answer this we make the following
observation: for each recursion we choose some index i in
P such that the pair at i in P ◦ f is changed from a link to a
non-link in P ′ ◦ f , without making any new links out of pairs
of index less than i that have previously been chosen. Hence
the number of pairs at index i or less that cannot become links
by choosing a new index j > i has increased by one. Call
the pairs at these indexes selected protected. Note that a pair
at index i loses its protected status and can become a link
again if j < i is chosen, but then the same logic applies to
j instead: the number of protected pairs at index j or less
has increased. So, in each iteration, either i decreases or the
number of protected pairs indexes less than i increases. Hence,
the function must reach a point where no pair can be selected
and P is reducible for f .

One may ask what happens to chains in P ◦ f that are
satisfied by equality in the solution and are hence technically
never broken. For all of the links in these chains, the local
consistency check in Step 4 of Rpar will keep the equality
relation, while Step 2 in Rtot will always produce a ’yes’-
instance given a ’yes’-instance when working on the pairs in
these links. Hence, these are a non-issue and will be satisfied
by our greedy approach (as long the variables are equal in
some solution).

We now have everything we need to present the main result
for this section:
Theorem 24. Any arbitrary POT instance I = (V,C) with
|V | = n is solvable in O∗(n!/2

n
2) ⊆ O∗((0.2601n)n) time

and poly(||I||) space.

Proof. By Lemma 7 we know that if we find any partial order
P such that P ◦ f is a ’yes’-instance, then I must be a ’yes’-
instance. From Lemma 23 we know there exists a PTOP P
such that P ◦ f is a ’yes’-instance if I is and such that we
can solve P ◦ f in polynomial time by applying Lemma 13 to
the output of Rtot(P, f), and by Lemma 19 Rtot(P, f) can be
calculated in polynomial time. There are n!/2

n
2 such PTOPs,

and we can, in a polynomial factor on n, enumerate over all
PTOPs over V until we find our P . If no ’yes’-instance P ◦ f
is found in this way then I must be a ’no’-instance, again
by Lemma 23, and we can safely answer ’no’. Via Stirling’s
approximation of n! we obtain O∗((0.2601n)n).

With Theorem 24 in place, we have now seen the entire
chain of reasoning of how enumerating PTOPs is enough to
solve any POT instance. While providing a new state of the
art.

4 Conclusion and Discussion
In this paper we used structural properties on potential solu-
tions for POT instances to achieve a new and significantly
improved upper bound. These results, and the techniques used,
raise new questions.

A major open question is whether our algorithm for POT
can be adapted to other qualitative reasoning tasks such as
RCC-5 or RCC-8. The issue here seems to be that the con-
straints partially overlapping and disjoint are harder to handle
than just incomparability. Combined, however, these rela-
tions behaves identical to incomparability, so the idea is by no
means far-fetched. Partially overlapping enforces a form of
upwards transitivity in that every set containing a set A must
also be at least partially overlapping with some set B if A
and B are partially overlapping. Similarly, disjoint enforces a
form of downwards transitivity in that every set contained in
C must be disjoint to D if C is disjoint to D. Effectively this
introduces some different forms of chains than for POT that
require some novel ideas to handle. As a first step, finding a
method to handle these chains faster than 2n for n links would
be enough to improve the current state-of-the-art.

It is also natural to ask if it is possible to avoid enumerating
certain orderings of pairs and thus push down the runtime
even further. For example, can we find certain orderings of
pairs that will never satisfy our instances? And can we do
this fast enough, and often enough, that it yields a significant
improvement to the overall runtime? Another promising idea
is to partition variables into triples instead of pairs, or quads
that are later further restricted to pairs in an intelligent manner.
This requires non-trivial changes to our algorithm but does not
seem impossible. If this approach can be pushed further, it
would likely hit a limit of O∗(

√
cn

n
) where the local consis-

tency checks would start bottlenecking. Even so, this would be
the first o(n)n complexity result for POT and a major advance
in solving NP-hard qualitative reasoning problems.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1917

Acknowledgements
We thank the anonymous reviewers for several insightful com-
ments. The first author is partially supported by the National
Graduate School in Computer Science (CUGS), Sweden. The
second author is partially supported by the Swedish Research
Council (VR) under grant 2019-03690.

References
[Allen et al., 2014] James F. Allen, Henry A. Kautz,

Richard N. Pelavin, and Josh D. Tenenberg. Reasoning
About Plans. Elsevier Science, 2014.

[Allen, 1984] James F. Allen. Towards a general theory of
action and time. Artificial Intelligence, 23(2):123–154,
1984.

[Allen, 1991] James F. Allen. Planning as temporal reason-
ing. In James F. Allen, Richard Fikes, and Erik Sandewall,
editors, Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning
(KR-1991). Cambridge, MA, USA, April 22-25, 1991, pages
3–14. Morgan Kaufmann, 1991.

[Anger et al., 1999] Frank D. Anger, Debasis Mitra, and
Rita V. Rodrı́guez. Satisfiability in nonlinear time: Al-
gorithms and complexity. In Proceedings of the 12th In-
ternational Florida Artificial Intelligence Research Society
Conference (FLAIRS-1999), pages 406–411, 1999.

[Anger, 1989] Frank D. Anger. On lamport’s interprocessor
communication model. ACM Transactions on Program-
ming Languages and Systems, 11(3):404–417, 7 1989.

[Bodirsky and Jonsson, 2017] Manuel Bodirsky and Peter
Jonsson. A model-theoretic view on qualitative constraint
reasoning. Journal of Artificial Intelligence Research
(JAIR), 58:339–385, 2017.

[Bodirsky, 2021] Manuel Bodirsky. Complexity of Infinite-
Domain Constraint Satisfaction. Cambridge University
Press, 2021. Preprint available from https://www.math.tu-
dresden.de/∼bodirsky/Book.pdf.

[Broxvall and Jonsson, 2003] Mathias Broxvall and Peter
Jonsson. Point algebras for temporal reasoning: Algorithms
and complexity. Artificial Intelligence, 149(2):179–220,
2003.

[Dabrowski et al., 2020] Konrad K. Dabrowski, Peter Jons-
son, Sebastian Ordyniak, and George Osipov. Fine-grained
complexity of temporal problems. In Proceedings of the
17th International Conference on Principles of Knowledge
Representation and Reasoning (KR-2020), pages 284–293,
2020.

[Dylla et al., 2017] Frank Dylla, Jae H. Lee, Till
Mossakowski, Thomas Schneider, André V. Delden,
Jasper V. D. Ven, and Diedrich Wolter. A survey of
qualitative spatial and temporal calculi: Algebraic and
computational properties. ACM Computing Surveys
(CSUR), 50(1):7:1–7:39, April 2017.

[Eriksson and Lagerkvist, 2021] Leif Eriksson and Victor
Lagerkvist. Improved algorithms for Allen’s interval alge-
bra: a dynamic programming approach. In Proceedings

of the 30th International Joint Conference on Artificial
Intelligence (IJCAI-2021), pages 1873–1879, 2021.

[Eriksson and Lagerkvist, 2022] Leif Eriksson and Victor
Lagerkvist. A multivariate complexity analysis of qualita-
tive reasoning problems. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 1804–1810. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2022. Main
Track.

[Forbus, 2019] K.D. Forbus. Qualitative Representations:
How People Reason and Learn about the Continuous World.
MIT Press, 2019.

[Jonsson and Lagerkvist, 2017] Peter Jonsson and Victor
Lagerkvist. An initial study of time complexity in infinite-
domain constraint satisfaction. Artificial Intelligence,
245:115–133, 2017.

[Jonsson et al., 2021] Peter Jonsson, Victor Lagerkvist, and
George Osipov. Acyclic orders, partition schemes and csps:
Unified hardness proofs and improved algorithms. Artificial
Intelligence, 296:103505, 2021.

[Kompatscher and Pham, 2017] Michael Kompatscher and
Van T. Pham. A complexity dichotomy for poset constraint
satisfaction. In Proceedings of the 34th Symposium on
Theoretical Aspects of Computer Science, (STACS-2017),
volume 66 of LIPIcs, pages 47:1–47:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[Ladkin and Maddux, 1994] Peter B. Ladkin and Roger D.
Maddux. On binary constraint problems. Journal of the
ACM, 41(3):435–469, 1994.

[Lamport, 1986] Leslie Lamport. The mutual exclusion prob-
lem: Part i—a theory of interprocess communication. J.
ACM, 33(2):313–326, 4 1986.

[Nogueira et al., 1996] José Helano Matos Nogueira, Anto-
nio L. Furtado, and José de Jesús Pérez Alcázar. A hybrid
formal theory of plan recognition and its implementation.
In Proceedings of the 13th Brazilian Symposium on Arti-
ficial Intelligence, (SBIA-1996), volume 1159 of Lecture
Notes in Computer Science, pages 31–40. Springer, 1996.

[Song and Cohen, 1988] Fei Song and Robin Cohen. The
interpretation of temporal relations in narrative. In Pro-
ceedings of the 7th National Conference on Artificial Intel-
ligence (AAAI-1998), pages 745–750, 01 1988.

[Song and Cohen, 1996] Fei Song and Robin Cohen. A
strengthened algorithm for temporal reasoning about plans.
Computational Intelligence, 12:331–356, 1996.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1918

