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Abstract
Typically, trajectories considered anomalous are
the ones deviating from usual (e.g., traffic-dictated)
driving patterns. However, this closed-set context
fails to recognize the unknown anomalous trajec-
tories, resulting in an insufficient self-motivated
learning paradigm. In this study, we investigate the
novel Anomalous Trajectory Recognition problem
in an Open-world scenario (ATRO) and introduce a
novel probabilistic Metric learning model, namely
ATROM, to address it. Specifically, ATROM can
detect the presence of unknown anomalous be-
havior in addition to identifying known behavior.
It has a Mutual Interaction Distillation that uses
contrastive metric learning to explore the interac-
tive semantics regarding the diverse behavioral in-
tents and a Probabilistic Trajectory Embedding that
forces the trajectories with distinct behaviors to fol-
low different Gaussian priors. More importantly,
ATROM offers a probabilistic metric rule to dis-
criminate between known and unknown behavioral
patterns by taking advantage of the approximation
of multiple priors. Experimental results on two
large-scale trajectory datasets demonstrate the su-
periority of ATROM in addressing both known and
unknown anomalous patterns.

1 Introduction
The popularization of GPS-integrated devices and the com-
prehensive utilization of satellite sensor systems enabled a
generation of a large number of location traces, yielding
collections of diverse time-varying trajectories. Numerous
researchers and practitioners endeavor to discover valuable
knowledge from these trajectories and exploit it in specific
applications like, for example, using diverse mobility pat-
terns to provide accurate individual services. Broadly, iden-
tifying anomalous trajectories naturally becomes the primary
concern in many downstream applications as it brings multi-
ple benefits regarding the accuracy of certain services, e.g.,
promoting trajectory quality, governing valuable moving ob-
jects, discovering taxi driving fraud, etc. [Chen et al., 2018;
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Liu et al., 2020; Han et al., 2022; Kieu et al., 2022].
Most of the endeavors primarily seek to detect the anomaly

in the sense that a particular trajectory deviates from the
normal trajectories of a specific travel need, such as from a
source S and a destination D [Belhadi et al., 2020; Zhang et
al., 2020; Wang et al., 2021]. Towards that, most traditional
studies identify anomalies by following heuristic-based and
learning-based paradigms, where the former mainly relies on
density or distance measurements to find outliers, while the
latter aims at employing machine learning (including deep
learning) methods to obtain promising discriminative mod-
els [Meng et al., 2019; Oh and Iyengar, 2019]. Heuristic-
based approaches, such as iBAT [Zhang et al., 2011] and
TRAOD [Lee et al., 2008], using multiple hand-crafted fea-
tures, usually fail to discover the diverse patterns from nor-
mal trajectories – which in turn results in the degradation of
specifying the anomalies. Due to the tremendous achieve-
ments in deep learning, recent studies turn to investigate
the complex spatial-temporal dependent patterns underlying
enormous trajectories’ volumes for anomalous trajectory de-
tection/recognition. For instance, using recurrent neural net-
work (RNN) to tackle the diverse sequential information of
trajectories [Song et al., 2018] or devising an end-to-end
framework with prior assumptions [Kieu et al., 2022].
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Figure 1: Examples of anomalous trajectories.

Despite significant breakthroughs achieved by the recent
learning-based paradigms, existing approaches actually focus
on tackling anomalous trajectory recognition in a closed-set
scenario. They have achieved a promising performance in
identifying the known anomalies, however, they cannot rec-
ognize any unknown anomaly that has never appeared in the
learning systems. Fig. 1 illustrates the concerns. T1 is a tra-
jectory from the source S1 to the destination D1. We consider
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that it is an anomaly since it is significantly longer than the
majority of daily routes. Thus, we call this case the detour
anomaly. The second case is navigation anomaly. The tra-
jectory (e.g., T2) sometimes deviates from the normal routes
due to the influence of satellite signal interference and other
factors. These two cases are the protagonists of the anoma-
lies encountered in the system. However, there could be an
unseen anomalous pattern that has not yet been reported in
the recognition database. For example, due to traffic acci-
dents or road construction, there may be options for drivers
to switch roads while driving (e.g., T3), and this case may not
be recorded in the existing database. Therefore, the learning
system is likely to determine that this is a normal route. The
reason is that the existing learning system is conditioned on
the closed set (or incomplete knowledge of the world) and it
cannot recognize unknown anomalies that occur in the future.

This is what motivates us to study a new interesting
Anomalous Trajectory Recognition problem in an Open-
world scenario (ATRO), rather than traditional anomalous tra-
jectory detection (ATD). However, ATRO is a challenging
task due to the facts that: (1) as a trajectory is a collection
containing massive GPS points, multiple behavioral intents
behind trajectories are unexplored, such as the correlations
between an (S,D) pair and its associated points and the inter-
actions between these points; (2) prior arts using probabilistic
generative models, e.g., variational autoencoder (VAE) [Liu
et al., 2020; Kieu et al., 2022], enable relieving the uncer-
tainty underlying the limited recorded trajectories and boost
the generation ability regarding the trajectory representation
learning. However, they either approximate the trajectory dis-
tribution following a simple prior or fail to explore the diverse
behavioral patterns, especially for unknown ones. In this
sense, ATRO differs from traditional closed-set learning tasks
as it needs to not only recognize patterns of known anomalies
but also detect the unknown anomalous behavior.

To bridge the above gaps, we address the ATRO problem
with probabilistic Metric learning (ATROM). In ATROM,
we design two main procedures: – Mutual Interaction Distil-
lation with intent distillation to contrastively capture the cor-
relations between SD pairs and their associated GPS points
at the grid level in addition to the mutual interaction between
these GPS points; and Probabilistic Trajectory Embedding
following Variational Bayes (VB) to correlate the behavioral
patterns with massive trajectories. Unlike prior probabilistic
models, we design a probabilistic metric rule to approximate
the behaviors of trajectories with varying Gaussian assump-
tions, where we use KL divergence to measure the distance
between the latent representation of a given trajectory and its
possible patterns. In addition, we provide the natural rejec-
tion rule using probabilistic distance to detect whether there
exists an unknown pattern from unseen trajectories. We sum-
marize our contributions as follows:

• To the best of our knowledge, this is the first work that ad-
dresses anomalous trajectory recognition in an open-world
scenario, i.e., ATRO. The main difference from prior arts
is that ATRO aims to not only identify known patterns of
anomalies but also discover possible unknown anomalies.

• We introduce a probabilistic metric learning approach,

ATROM, to solve the ATRO problem. ATROM primarily
takes the advantages of variational Bayes to explore the be-
havioral patterns of trajectories guided by the probabilistic
metric rule. Also, it is the first attempt that considers the
multiple interactive information underlying massive trajec-
tories to improve the knowledge distillation.

• We conducted experiments on two large-scale taxi datasets,
demonstrating the superiority of ATROM over several
state-of-the-art baselines.

2 Preliminaries
Definition 1 (Raw Trajectory). A raw trajectory T = {p1 →
p2 · · · → pn} is a chronological sequence of GPS points.
Each point pi contains a geographical coordinate (e.g., lon-
gitude pi.lo and latitude pi.la) and a timestamp pi.t.

Following recent representative studies [Li et al., 2018;
Liu et al., 2020; Han et al., 2022], we partition the geograph-
ical space into a grid of equal regions and map each GPS
point into a region to relieve the modeling overhead prob-
lem. Given a city, we divide it into multiple non-overlapping
regions by setting fixed physical dimensions. Assume that
there are mc × nc equal-sized regions.
Definition 2 (Mapped Trajectory). For a given raw trajec-
tory T , its corresponding mapped trajectory tr is obtained by
mapping each pi into the corresponding regions in which it is
located. Assuming an enumeration (i.e., tokens) for the cells
of the grid, tr can be represented as a sequence of region
tokens, i.e., tr = {r1 → r2 · · · → rτ}, (τ ≤ n).

Herein, we treat the source and the destination of a
mapped trajectory tr as Str = r1 and Dtr = rτ . In an open
set scenario, we formalize the problem as follows:
Open Anomalous Trajectory Recognition. Given a
source S and destination D pair (S,D) and the set of tra-
jectories D between them, we assume that the trajectory pat-
terns reported in the recognition system only have K known
categories, i.e., {c1, c2, · · · , cK} where c1 refers to normal.
The goal of open anomalous trajectory recognition is to (i)
identify patterns of anomalous trajectories from D contain-
ing massive normal trajectories, and (ii) also detect whether
there is an unknown/unseen anomalous pattern of trajectories
not reported in the existing system, i.e., cK+1.

3 Methodology
As shown in Fig. 2, ATROM mainly has two procedures: (I)
Mutual Interaction Distillation is to distill two interactive
semantics for the regions through which a large number of
trajectories pass, resulting in a dense but semantic represen-
tation for each region. (II) Probabilistic Trajectory Em-
bedding follows the rule of Variational Bayes and contains
three key components: Inference Net, Contrastive Net, and
Generative Net. Firstly, Inference Net takes the role of en-
coding each trajectory into a low-dimensional space, along
with considering the prior dependencies between regions and
the temporal information. Next, Contrastive Net attempts to
force the trajectories with distinct patterns to follow different
Gaussian priors. Finally, Generative Net enables the recon-
struction of an input trajectory.
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Figure 2: The framework of ATROM.

3.1 Mutual Interaction Distillation (MID)
Exploring the mutual interactions between different regions
traveled by massive trajectories is a crucial prerequisite for
downstream sequential information learning. Recent studies,
e.g., [Liu et al., 2020], usually concentrate on the capture of
global dependencies of a specific trajectory based on random
initialization of regions while ignoring context-aware learn-
ing at the regional level, which prevents the correlations be-
tween the various regions from being captured. We conjec-
ture that there is a strong correlation between each region (or
GPS point) and its corresponding (S,D) pair in a given tra-
jectory, as each visited region in the trajectory may assume
an important role to indicate if it is normal or anomalous.
Furthermore, the fact that each trajectory traversed multiple
regions indicates that these regions have possibly significant
interactions reflecting behavioral patterns. Thus, we need to
distill these two significant aspects underlying trajectories.

Trajectory Compression. Given an original trajectory set
D, we first transform it to a mapped trajectory set Dtr (cf.
Definition 2). Consider an SD pair (S,D) from Dtr. We
search for a trajectory subset D(S,D)

tr ⊆ Dtr, where each tr ∈
D(S,D)

tr has the same SD pair. To efficiently enhance the
learning of interactive semantics, we remove the consecutive
repeated traveled regions of each trajectory in D(S,D)

tr , and
formulate a compressed trajectory subset PD(S,D)

tr .

SD-centric Distillation. To distill interactions between
each (S,D) and its associated regions, we adopt contrastive
metric learning to obtain the SD-centric embedding for each
region. Metric learning with contrastive loss [Sohn, 2016] is
capable of maximizing the closeness between a given (S,D)
and its relative (positive) region while minimizing the cor-
relation between a given (S,D) and its irrelevant (nega-
tive) region. Hence, we can treat all the traveled regions
regarding (S,D) as the positive samples and the remain-
ing regions from trajectories of other SD pairs’ as nega-
tive samples. Given a trajectory set PD(S,D)

tr , we first sam-
ple a region sequence tr = {r1, r2, · · · , rN} with source
Str = r1 and destination Dtr = rN . First, a trainable ma-
trix V 1 ∈ Rncmc×d is set as the initial region embeddings,

where each v1(ri) ∈ V 1 is a unique representation of region
ri and d refers to the embedding size. Then, we extend re-
cent contrastive loss setting [Gutmann and Hyvärinen, 2010;
Oord et al., 2018] and introduce a sum operation to tackle the
(S,D) pair and correspondingly formulate an ‘anchor’ aSD,
i.e., aSD = v1(Str) + v1(Dtr). Thus, the objective of SD-
centric distillation is to maximize:

J (aSD) = Er∈tr\(S,D)[s (v1(r),aSD) (1)

− log
J−1∑
j=1

exp
(
s
(
v1

(
r′j
)
,aSD

))
],

where ‘\’ denotes the set-difference operation and s refers to
the similarity measure. This study uses the cosine function.
r′j is a negative sample and J denotes the sample number.

Region-centric Distillation. Another important interactive
semantics is the adjacent proximity among traveled regions,
as each trajectory is formed by sequentially passing these re-
gions. Thus, we focus on the distillation of region-centric
semantics by exploring the mutual interactions among the
traveled regions. Given a regions ri in the trajectory tr as-
sociated with SD pair (S,D), we treat A(ri) = {ri−1, ri+1}
as the ‘anchor’, the ri as the ‘positive’ sample, and the trav-
eled region that does not appear in PD(S,D)

tr as the ‘negative’
sample denoted as r′j . Similar to SD-centric distillation, we
define the objective of region-centric distillation as:

J (r|(S,D)) = Er∈tr\(S,D)[s (v2(r),A(v2(r))) (2)

− log
J−1∑
j=1

exp
(
s
(
v2

(
r′j
)
,A(v2(r))

))
],

where A(v2(ri)) = v2(ri−1) + v2(ri+1) when r = ri.

3.2 Probabilistic Trajectory Embedding (PTE)
Recalling recent studies [Kingma et al., 2014; Guo et al.,
2021; Wang and Lan, 2021] on VAEs, we aim to estimate a
conditional density p(tr|c) by maximizing the evidence lower
bound (ELBO), which can be specified as:

log p(tr|c) ≥−DKL [q(z | tr)∥p(z | c)]
+ Eq(z|tr) [log p(tr | z, c)] , (3)

where DKL refers to Kullback–Leibler divergence. In our
context, Inference Net is to parameterize a posterior q(z | tr),
yielding latent variables with low dimensions for a given set
of trajectories. Generative Net is a likelihood function p(tr |
z, c) that takes the role of reconstructing the input tr over the
latent variable z conditioned on pattern category c. In sum,
the first term in Eq. (3) is the distribution divergence between
the posterior distribution q(z | tr) and a prior distribution
p(z|c). The second term is the reconstruction loss where the
generated trajectory is conditioned on z and c. In contrast to
the standard divergence metrics [Kingma and Welling, 2013;
Kingma et al., 2014], we devise a Contrastive Net to mea-
sure the distribution distance between q(z | tr) and p(z | c),
where we set p(z | c) to follow multiple Gaussian assump-
tions over pattern category c.
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Inference Net. As each tr is a sequence of traveled regions,
the Inference Net aims to encode them in a continuous la-
tent space, where the underlying temporal dynamics should
be considered as well. For each traveled region ri in a given
trajectory tr = {r1, r2, · · · , rτ}, we first transform it into a
dense representation by using the embedding results from the
MID. Specifically, we fuse the SD-centric and region-centric
semantics into a unified representation as the embedding of
each region. For instance, the embedding of region ri can be
obtained by:

v(ri) = [v1(ri);v2(ri)]Wr + br, (4)

where [·; ·] refers to the concatenation operation. As such, tr
can be represented as {v(r1),v(r2), · · · ,v(rτ )}. Next, we
follow earlier works [Liu et al., 2020] and use a recurrent
neural network to receive the variable-length trajectories in
order to address the underlying sequential dependencies. The
hidden representation of each v(ri) is obtained by:

hi = fϕ(v(ri),hi−1), (5)

where v(ri) is the dense representation of ri and hi−1 is the
hidden state of previous token ri−1. Herein, fϕ – denoting
the recurrent neural cell with parameter set ϕ – can be the
widely used LSTM (long short-term memory [Hochreiter and
Schmidhuber, 1997]) or GRU (gated recurrent unit [Chung et
al., 2014]). In this study, we select the GRU as our recursive
function since it is simpler and discards the complicated gate
operations. In the end, we can receive a set of hidden states
regarding trajectory tr, i.e., {h1,h2, · · · ,hτ}. Taking into
account the contribution of all hidden states, we obtain the
trajectory representation as follows:

h̄ =
1

τ

τ∑
1

hi. (6)

To consider the uncertainties behind diverse trajectories,
we use a posterior distribution to model the latent variable
ztr over h̄, which can be summarized as follows:

ztr ∼ N (µtr,σ
2
tr ⊙ ϵ), (7)

µtr = g1(h̄),σtr = g2(h̄), (8)

where g∗(·) is the one-layer Multilayer Perceptron (MLP)
function, ϵ ∼ N (0, I), and ⊙ is the element-wise product.
Contrastive Net. As each given trajectory tr implicitly cor-
responds to a pattern category (e.g., normal), we assume each
pattern category to be a Gaussian distribution, i.e., Ck =
N (µ̃k, σ̃k) where µ̃k and σ̃k are trainable vectors. We em-
ploy contrastive loss to estimate the probability of the real
pattern category of a given trajectory. Thus, we have:

ĉk =
exp−dis(ztr,Ck)∑K
j=1 exp

−dis(ztr,Cj)
, 1 ≤ k ≤ K. (9)

dis is the distance measure function. Here, we choose the
DKL to measure the distance between the latent variable and
possible category of a given trajectory and we define the dis-
tance between ztr and Ck as:

dis (ztr,Ck) = DKL [ztr∥Ck] . (10)

Generative Net. Following the rule of VAE [Kingma and
Welling, 2013], our Generative Net operating in a recurrent
generation process aims to reconstruct an input trajectory
conditioned on its latent variable and possible pattern cate-
gory. Specifically, given a predicted r̃i−1 and its possible pat-
tern category representation ĉ, we have:

r̃i = argmax(h̃
r

i Wr + br), (11)

h̃i = fθ([v(r̃i−1); ĉ], h̃i−1). (12)
Notably, we use the latent variable ztr to generate the initial
hidden state of Generative Net, defined as follows:

h̃0 = ReLU(ztrWd + bd). (13)
In this manner, the Generative Net will finally produce a tra-
jectory t̃r = {r̃1, r̃2, · · · , r̃τ}.

3.3 Training and Recognition
Training. By following the merit of metric learning with
contrastive loss [Sohn, 2016], one of the key objectives is to
minimize the distance between the latent variable ztr over tr
and its associated category representation, e.g., Cc, where c
is the real category. Hence, the first objective is to minimize:

LKL(ztr, c) = dis (ztr,Cc) . (14)
Meanwhile, we also need to maximize the distance between
ztr and other category representations Ck ̸=c. Thus, the sec-
ond objective is to minimize:

Ldis(tr, c) =
1

K − 1

K∑
k ̸=c

[lk − dis (ztr,Ck)] , (15)

where lk is a margin loss [Lin and Xu, 2019] that enforces
all Ck ̸=c away from Cc. In addition, we need to minimize
the reconstruction loss (e.g., Lrec(tr, t̃r)) to ensure the latent
variables can capture useful information from massive trajec-
tories. We summarize that our final objective is to minimize:
L(tr, c) = LKL(ztr, c) + Ldis(tr, c) + Lrec(tr, t̃r). (16)

Recognition. After the model reaches its optimum,
ATROM can well undertake the role of identifying the behav-
ioral patterns of a set of given trajectories, where the patterns
have been seen in the training process. To enable ATROM to
detect the presence of an unknown anomalous pattern under-
lying the unseen trajectories, we devise a probabilistic met-
ric rule inspired by [Lu et al., 2022] to discriminate between
known and unknown patterns by:

ĉ =

{
K + 1, if maxk {−dis (ztr,Ck)} < β
argmax

k
{−dis (ztr,Ck)} , otherwise. (17)

where β is the natural rejection threshold to determine if the
pattern behind a given trajectory is an unseen anomaly (never
appeared in the training set). Note that directly defining a
threshold can introduce serious uncertainty into the recogni-
tion process. Instead, we dynamically determine the value of
β by ranking the maximum probability of category distribu-
tion of each trajectory predicted by ATROM on the training
set. We consider that the given trajectory will be detected as
an unknown anomaly if its maximum value in its predicted
category distribution is quite small. Therefore, we use 9-th
decile [Peck et al., 2015; Rana et al., 2012] of the ranked list
as the value of threshold β, indicating that most trajectories
collected in the future usually fall into known patterns.
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4 Evaluation
4.1 Experimental Setup
Datasets & Preprocessing. We conduct our experiments
on two real-world taxi trajectory datasets. The first taxi
dataset [Liu et al., 2020] is collected from 442 taxis operating
in the city of Porto during Jan 07 2013 to Jun 30 2014. Each
taxi is equipped with a GPS device that can report its geospa-
tial location every 15 seconds. We follow previous studies [Li
et al., 2018; Liu et al., 2020] and also partition the geograph-
ical space into a grid of 100m ×100m cells. Then, we re-
move the SD pairs with less than 25 trajectories to obtain rich
trajectories to indicate the normal routes/paths. The second
dataset is collected from DiDi Chuxing1, containing a large
number of taxi traces generated from the city of Chengdu in
Aug 2014. We partition the geographical space into a grid of
300m ×300m cells and remove the SD pairs with less than 40
trajectories. Table 1 summarizes the statistics of the prepro-
cessed datasets, where ‘#’ and ‘Avg’ denote the total number
of (e.g., Trajectories) and the average length, respectively.

Dataset #Points #Trajectories #(S,D) Avg
Porto 11,635,104 262,574 4,567 44.31

Chengdu 24,266,393 414,414 11,860 58.56

Table 1: Trajectory Datasets after preprocessing.

Ground Truth. Following prior works [Zheng et al., 2017;
Zhang et al., 2011; Liu et al., 2020], we manually label the
anomalous trajectories and treat the labeled trajectories as the
ground truth for the fair evaluation. [Liu et al., 2020] gener-
ates two different types of anomalous trajectories, i.e., detour
anomalies and route-switching anomalies. We also generate
the trajectories with GPS errors as anomalies, namely, navi-
gation anomalies. For the training and testing setups, we use
90% of the trajectories as the training set and the rest as the
testing set. In addition, we randomly inject two of the above
anomalies into 70% trajectories in the training set and treat
the rest of the training set as the normal routes. We inject the
last type of anomaly that never appears in training set into the
testing set and regard it as the unknown behavioral category.
Baselines. We compare ATROM with several state-of-the-
art methods covering recently popular anomalous trajec-
tory detection and trajectory learning methods, including:
SAE [Malhotra et al., 2016] is a conventional sequence-to-
sequence model with RNNs, we use the GRU cell as the ba-
sic kernel for fair comparison; ATD-RNN [Song et al., 2018]
attempts to characterize the trajectory by learning the trajec-
tory embeddings, whereafter it discovers anomalous trajecto-
ries in a supervised learning manner; VSAE [Liu et al., 2020]
is a sequence-to-sequence model based on variational infer-
ence, where trajectories are encoded into a latent space with
multivariate Gaussian assumptions; GM-VSAE [Liu et al.,
2020] is a variational sequence AutoEncoder, where a Gaus-
sian mixture model is jointly deployed to model the prob-
ability distribution of trajectories; MainTUL [Chen et al.,
2022] uses RNNs to explore the sequential patterns of given

1http://outreach.didichuxing.com/research/opendata/

trajectories while a time-aware self-attentive module is able
to learn long-term temporal dependencies; VQRAEs [Kieu
et al., 2022] employs quasi-recurrent neural networks for
anomaly detection in time series data. Since these methods
are conditional on closed-set scenarios and fail to detect un-
seen anomalies, we use our recognition method defined in
Eq. (17) for unseen anomaly detection and fair comparison.
Evaluation Protocols. We select three common metrics for
evaluations: F1-score, Precision-Recall AUC (PR-AUC), and
AUROC (Area Under ROC Curve). Specifically, PR-AUC
and F1-score are frequently used in anomalous trajectory de-
tection [Liu et al., 2020]. AUROC is commonly reported in
out of distribution (OOD) tasks [Sun et al., 2020].
Implementation Detail. We implemented ATROM and all
the baselines in Python using the PyTorch library, accelerated
by the NVIDIA Tesla A100. In the implementation, we set d
to 128, J is 10, the size of hidden state is 256, and the learning
rate is initialized as 0.001. We use Adam as the optimization
algorithm. For reproducibility, the source codes are available
at https://github.com/ypeggy/ATROM.

4.2 Overall Performance
Table 2 reports the overall performance of all the methods,
where the best is shown in bold and the second best is
underlined. We respectively select each anomalous pattern as
the unknown for alleviating the behavior bias – i.e., Unseen:
Navigation indicates that such an anomalous pattern does not
appear in the training set.

Among the baselines, we observe that ATD-RNN and Mi-
anTUL perform well, which demonstrates that considering
the sequential dynamics via trajectory embedding can boost
the capture of behavioral intents underlying diverse trajec-
tories. Traditional variational-based methods such as VSAE
and GM-VSAE do not perform well on ATRO problem and
possible reason is that they can facilitate generative capabili-
ties regarding trajectory modeling, while failing to enrich the
diversity between large-scale trajectories and their possible
behavioral patterns. We find that ATROM consistently out-
performs all baselines while it slightly underperforms SAE
regarding F1-score. For instance, ATROM yields 6.02% F1-
score, 12.5% AUROC, and 5.84% PR-AUC improvements
compared to the best-performing baseline on Porto, where the
pattern of detour anomaly is unknown. We consider that there
are two reasons for the superiority of ATROM: (1) ATROM
enables the distillation of the multiple task-oriented inter-
active semantics underlying massive trajectories, which not
only explore the correlation between a specific travel need
and its possible regions to travel but also consider the ad-
jacent proximity that uncovers diverse interactions between
traveled regions. (2) ATROM based on probabilistic metric
learning is capable of forcing the trajectories with distinct be-
haviors to follow different priors, resulting in the advantage
of disentangling trajectories into different latent spaces.

4.3 Ablation Study
Interactive Semantics. We design three variants of MID
in ATROM to investigate the contribution of interactive se-
mantics, including: ATROM w/o M removes the MID proce-
dure and uses a token embedding method [Liu et al., 2020]
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Dataset Method Unseen: Navigation Unseen: Detour Unseen: Route-switching
F1-score AUROC PR-AUC F1-score AUROC PR-AUC F1-score AUROC PR-AUC

SAE 0.721 0.702 0.877 0.663 0.666 0.858 0.706 0.726 0.890

Porto

ATD-RNN 0.717 0.704 0.884 0.681 0.678 0.856 0.741 0.755 0.904
VSAE 0.243 0.503 0.750 0.309 0.499 0.750 0.242 0.504 0.753
GM-VSAE 0.202 0.493 0.747 0.129 0.497 0.752 0.406 0.525 0.763
MainTUL 0.709 0.721 0.888 0.667 0.651 0.849 0.709 0.736 0.896
VQRAEs 0.367 0.468 0.744 0.317 0.466 0.750 0.421 0.577 0.797
ATROM 0.768 0.801 0.911 0.722 0.763 0.906 0.757 0.779 0.912
SAE 0.638 0.634 0.840 0.639 0.616 0.848 0.127 0.490 0.870

Chengdu

ATD-RNN 0.618 0.653 0.865 0.597 0.623 0.845 0.672 0.666 0.873
VSAE 0.243 0.503 0.750 0.309 0.499 0.750 0.242 0.504 0.753
GM-VSAE 0.216 0.503 0.750 0.434 0.640 0.863 0.139 0.517 0.758
MainTUL 0.598 0.561 0.797 0.596 0.603 0.839 0.566 0.555 0.826
VQRAEs 0.394 0.468 0.741 0.312 0.381 0.718 0.465 0.612 0.833
ATROM 0.785 0.828 0.931 0.604 0.673 0.879 0.753 0.749 0.892

Table 2: Performance comparison on two large-scale taxi datasets.

to represent each unique region traveled by the trajectories;
ATROM w/o S removes the SD-centric semantics in MID; and
ATROM w/o R removes the region-centric semantics in MID.
We choose Navigation anomaly as an unknown pattern. As
shown in Fig 3, we find that ATROM w/o M performs poorly,
even the worst on Porto, demonstrating that considering the
multiple interactive semantics does help in promoting the per-
formance of ATROM. Besides, removing each component re-
sults in performance degradation, indicating that both seman-
tics contribute positively to performance improvement.
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Figure 3: The contribution analysis of interactive semantics.
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Figure 4: The contribution analysis of trajectory learning.

Trajectory Learning. To explore the impact of trajectory
embedding in ATROM, we replace our PTE with the embed-
ding in SAE, GM-VASE, and VQRAEs, respectively. And
we formulate three variants, namely, ATROM-V, ATROM-G,
and ATROM-Q. As Fig. 4 shows, we find that ATROM still
performs best compared to these variants, suggesting that our
embedding method derived from variational Bayes can effec-
tively bridge the gap between behavioral patterns and massive
trajectories with probabilistic metric learning.
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Figure 5: Comparison among distinct unknown recognition ways.

Unknown Recognition. To show the benefit of the un-
known recognition rule based on divergence measure in
ATROM, we choose four benchmark OOD detection meth-
ods for comparison: Softmax [Yoshihashi et al., 2019] is a
standard confidence-based method that provides the score of
a predicted result. Openmax [Bendale and Boult, 2016] is
an extension of the Softmax function. CROSR [Yoshihashi
et al., 2019] uses latent representations for input reconstruc-
tion and enables robust unknown detection. C2AE [Oza and
Patel, 2019] uses the Extreme Value Theory (EVT) [Coles
et al., 2001] to discover the threshold for identifying
known/unknown class instances. As shown in Fig. 5, we also
set the Navigation anomaly as an unknown pattern. We can
clearly observe that Openmax, CROSR (a variant of Open-
max) and ours show better performance in terms of unknown
anomaly detection. Importantly, ATROM performs more ro-
bustly than other methods and achieves the best PR-AUC.

ATROM

Normal

ADT-RNN

Detour Route Switching Unseen: Navigation

Figure 6: Visualization of trajectory embeddings in Porto.
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Interpretability Analysis. We analyze whether ATROM
can learn intuitive observations from an interpretable perspec-
tive. We use the t-SNE toolkit to visualize the distribution of
trajectory embeddings from the testing set. As Fig. 6 shows,
we compare the embedding results obtained by ATROM’s
PTE with ADT-RNN, which performs well on most metrics
among the baselines. We can observe that ATROM enables
the disentanglement of different behavioral patterns underly-
ing trajectories. More importantly, ATROM enables the tra-
jectories with an unknown pattern (marked in green) away
from the trajectories with the normal pattern while closer to
the anomalous patterns, which is what we expect.

In addition, we investigate the interpretability of two inter-
active semantics obtained by ATROM. To this end, we ran-
domly select two different SD pairs from Chengdu dataset
and also use the t-SNE toolkit to visualize the distribution of
these two pairs’ associated regions. As Fig. 7(a) shows, we
can find that the associated regions of different SD pairs are
well separated while well clustered within the same SD pair,
which suggests that the MID designed in ATROM is able to
refine the interactions between SD pairs and their associated
regions. Second, we use k-means algorithm to cluster the
region-centric embeddings and mark different colors for dis-
tinct clusters to investigate whether ATROM can successfully
incorporate the adjacent proximity among traveled regions.
As shown in Fig. 7(b), we can find that the consecutive re-
gions in a randomly sampled trajectory are marked with the
same color, which indicates that ATROM is capable of distill-
ing the region-centric semantics.

SD pair 1

SD pair 2

(a) SD-centric. (b) Region-centric.

Figure 7: Visualization of interactive semantics in Chengdu.

5 Related Work
Traditional Anomalous Trajectory Detection. The ma-
jority of recent studies [Meng et al., 2019; Wang et al.,
2021], fall into two main categories of anomaly detection
techniques: (1) The heuristic (statistical)-based and learning-
based mainly aim at discovering the popular or common
routes from normal trajectories, referring to them as the
representative trajectories. The distance or density metrics
are then used to produce a deviation score between them
and a target trajectory. A variety of distance metrics can
be used, e.g., Euclidean Distance, Hausdorff Distance, Dy-
namic Time Warping, etc. [Laxhammar and Falkman, 2013;
Meng et al., 2019]. [Liu et al., 2013] proposed a density-
based trajectory outlier detection method, which takes ac-
count of the distribution of neighborhood objects. As anoma-
lous trajectories are few and different, an isolation-based

method, namely iBAT, was devised in [Zhang et al., 2011]
to discover the outlier trajectories. Most heuristic-based so-
lutions heavily rely on statistical distance measurement on
trajectories while ignoring the potential transitional depen-
dencies among the locations. (2) The learning-based scheme
provides a new perspective employing machine learning to
the feature context from intricate trajectories [Schmidl et al.,
2022]. A k-nearest neighbor (kNN) method for identifying
the group outlier trajectories was presented in [Djenouri et
al., 2021]. A novel time-series detection method based on
one-class support vector machines was introduced in [Ma and
Perkins, 2003]. However, traditional learning-based methods
are mostly based on simple feature extraction and cannot han-
dle well complex semantic dynamics or interactions.

Deep Trajectory Anomaly Detection. Recent deep learn-
ing works have explored the rich context of underlying tra-
jectories via representation learning and have achieved re-
markable gains for trajectory-based applications, including
anomalous trajectory detection [Liu et al., 2020; Li et al.,
2018]. A supervised learning method based on recurrent neu-
ral networks to explore the temporal dynamics behind the
varying trajectories was introduced in [Song et al., 2018].
An LSTM-based autoencoder to learn the normal traffic pat-
tern as well as the latent features was devised in [Said El-
sayed et al., 2020], where the OC-SVM algorithm is com-
bined to enhance the performance of anomaly detection.
Due to the inherent uncertainty and diversity of trajecto-
ries, recent studies use deep generative models to capture
the latent variability from complex and varying trajecto-
ries [Li et al., 2018; Liu et al., 2020; Han et al., 2022;
Huang et al., 2022]. Most of them employ the seq2seq-based
method with variational Bayes [Kingma and Welling, 2013;
Wang et al., 2019] to encode the trajectories into a low-
dimensional space – e.g., GM-VSAE jointly uses a Gaussian
Mixture model to learn the diversity underlying massive tra-
jectories. DeepTEA, which considers complex traffic con-
ditions, leverages the variational autoencoder to handle the
time-dependent anomalies from a huge volume of trajecto-
ries [Han et al., 2022]. However, existing methods with deep
generative models are constrained by the closed-set context
and fail to recognize unknown anomalies that may occur in
the future. In contrast, ATROM uses probabilistic metric
learning, which enables the handling of incomplete knowl-
edge of the world and has the ability to detect whether there
exists an unknown pattern from unseen trajectories.

6 Conclusion
We presented ATRO, a novel anomalous trajectory recogni-
tion problem in an open-world scenario, which has not been
formally addressed in prior works. Correspondingly, we in-
troduced a novel probabilistic metric learning model called
ATROM which, unlike traditional anomalous trajectory de-
tection methods, considers the multiple interactive seman-
tics underlying massive trajectories datasets and correlates
the (known and unknown) behavior with possible anomalous
trajectories with the probabilistic metric rule. As part of our
future work, we will investigate how to detect more unseen
anomalous patterns with incomplete knowledge.
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