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Abstract
Cognitive Diagnosis aims to quantify the profi-
ciency level of students on specific knowledge
concepts. Existing studies merely leverage ob-
served historical students-exercise interaction logs
to access proficiency levels. Despite effective-
ness, observed interactions usually exhibit a power-
law distribution, where the long tail consisting of
students with few records lacks supervision sig-
nals. This phenomenon leads to inferior diagno-
sis among few records students. In this paper, we
propose the Exercise-aware Informative Response
Sampling (EIRS) framework to address the long-
tail problem. EIRS is a general framework that
explores the partial order between observed and
unobserved responses as auxiliary ranking-based
training signals to supplement cognitive diagnosis.
Considering the abundance and complexity of un-
observed responses, we first design an Exercise-
aware Candidates Selection module, which helps
our framework produce reliable potential responses
for effective supplementary training. Then, we de-
velop an Expected Ability Change-weighted In-
formative Sampling strategy to adaptively sam-
ple informative potential responses that contribute
greatly to model training. Experiments on real-
world datasets demonstrate the supremacy of our
framework in long-tailed data.

1 Introduction
Cognitive diagnosis has been increasingly needed to assess
and improve individual development in intelligent educa-
tional applications [Liu, 2021; Zhou et al., 2021]. Given the
historical interaction logs of students, it aims to discover their
latent cognitive states (proficiency levels) on knowledge con-
cepts and reveal some exercise features such as difficulty and
discrimination [Pandey and Karypis, 2019; Wu et al., 2020;
Tong et al., 2021].

Existing cognitive diagnosis models (CDMs) mainly focus
on assessing students’ proficiency level based on historical

∗Corresponding Author.

0 2000400060008000
Sored Students

(a)

0

100

200

300

400

500

In
te

ra
ct

io
n 

Ti
m

es

IRT MIRT MF NCDM
Cognitive Diagnosis Models

(b)

0.70

0.75

0.80

0.85

AC
C

ACC(log <= 50)
ACC(log > 50)Junyi

Figure 1: (a) Sorted interaction times for students and (b) CDMs
performances comparison on different student groups.

student-exercise interaction logs like Item Response Theory
(IRT) [Lord, 1980] and NeuralCD [Wang et al., 2020]. How-
ever, in real scenarios, a large number of students interact
with very few exercises [Lu et al., 2022], which leads to the
fact that the distribution over students is quite imbalanced
and even long-tailed. In Figure 1(a), we sort 10000 students
randomly sampled from the well-known dataset Junyi (math
practicing logs, description in Section 5.1) by the number of
interaction times in a descending order. We notice a heavy
long-tailed distribution that nearly 90% students’ interaction
times are less than 50. The proposed works pay little at-
tention to this problem. They validate model’s performance
on datasets by filtering students with few interactions to en-
sure enough logs for executing diagnostic tasks, which runs
counter with the task of diagnosing each student’s knowledge
level. In Figure 1(b), we evaluate recent advanced CDMs’
performance with accuracy on different students grouped by
interaction times. It shows that all models exhibit lower ac-
curacy in students group with limited interactions compared
to students with plentiful interactions (more than 50 times).
From this observation, it is reasonable to presume that lim-
ited interactions lead to inaccurate and uncertain diagnosis
results. In other words, insufficient supervised signals result
in poor robustness of CDMs in students with few interactions.

To tackle this problem, we naturally come up with in-
corporating auxiliary training signals from non-interactive
exercises, and the relationship between student-exercise-
knowledge can be used to infer potential signals. Specifically,
a student probably performs similarly on exercises that share
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Figure 2: A simple example of distilling response signals through
student-exercise-knowledge.

the same knowledge concept. An example is shown in Fig-
ure 2, student s has a correct response to exercise e4 and an
incorrect response to exercise e3, s may have a higher pro-
ficiency level towards the knowledge concept k3 behind e4
than k1 behind e3. Thus, we may infer a partial order rela-
tionship that the probability of correctly answering e6 with
k3 is much higher than e2 with k1. The partial order rela-
tionship has great potential in constructing additional training
signals. Unfortunately, there are still many challenges in de-
signing an effective solution to exploit this relationship and
guide the training signal sample on unobserved data. On one
hand, how to identify reliable signals from the massive po-
tential partial order pairs is still an open issue. Due to the
absence of ground-truth responses, partial order pairs bring
information meanwhile noise. For example, a student’s re-
sponse to an exercise with the same knowledge concept as a
previously correctly responded one may be deemed as cor-
rect. However, the actual signal may be incorrect due to
the new exercise being significantly more difficult than the
previously responded one. On the other hand, how to ef-
fectively select informative signals is a non-trivial problem.
When exploring the partial order pairs towards possible train-
ing signals, the scale of training samples increases dramat-
ically. A common solution is randomly sampling instances
from unobserved data [Rendle et al., 2012]. However, prior
works [Rendle and Freudenthaler, 2014; Lian et al., 2020;
Qin et al., 2020] demonstrate that it makes the model con-
verge slowly, especially when the pool of instances is large.
In order to speed up convergence, we need to design an effi-
cient sampling strategy.

In this work, we propose a general framework called
Exercise-aware Informative Response Sampling (EIRS) to
overcome the long-tailed distribution problem in cognitive
diagnosis. EIRS provides reliable and informative auxiliary
training signals that can be seamlessly incorporated into ex-
isting cognitive diagnosis models. To achieve this goal, we
first explore the partial-order relationship between student-
exercise-knowledge in depth. We then design the Exercise-
aware Candidates Selection (ECS) module to ensure the re-
liability of the training signals. Two indicators that mea-
sure the difficulty or discrimination of exercises are proposed
to help identify reliable training pairs. For discriminating
informative signals, we introduce Expected Ability Change
weighted Informative Sampling strategy (EIS). EIS adap-
tively selects samples from two perspectives including con-

tribution to model training and student ability change. Exper-
iments on two real-world datasets demonstrate that the pro-
posed EIRS improves CDMs’ robustness on long-tailed data
and speeds up model convergence.

2 Related Work
2.1 Cognitive Diagnosis
The task of evaluating students’ knowledge level from his-
torical response logs has been studied since 1950s. Item
Response Theory (IRT) [Lord, 1980] is a standard statisti-
cal model cognitive diagnosis, which uses single-dimension
variables to represent the trait features and logistic func-
tion. Later, Multidimensional Item Response Theory
(MIRT) [Reckase, 2009] proposed to use multidimensional
trait features instead of single dimension. Another classic
model, Noisy “And” gate model (DINA) [De La Torre, 2009]
diagnoses the mastery state by binary variables and consider-
ates students’ slip and guessing factors. Recently, the preva-
lence of deep learning motivates a rich line of work on cog-
nitive diagnosis. Recently, some researchers introduce the
deep learning into cognitive diagnosis [Wang et al., 2020;
Ma et al., 2022; Gao et al., 2021]. Wang et al. proposed
NeuralCD framework to learn the interaction function be-
tween students and responses with neural networks. Further-
more, Gao et al. designed a multi-layer student-exercise-
concept relation map to model the interactive and structural
relations. The methods described above learn trait parameters
from entire historical response logs, which can suffer from a
long-tailed problem and worsen across students’ diagnoses
when there are insufficient supervision signals

2.2 Sampling Strategy
One key component of our framework is to sample potential
responses for the observed response anchor, which is most
relevant to sampling strategy technology applied in some
domains like natural language processing [Mikolov et al.,
2013], recommendation [Rendle and Freudenthaler, 2014;
Qin et al., 2019], etc. Static sampling strategies sample un-
observed data based on a predefined distribution, such as
uniform and popularity distribution corresponding to random
sampling [Rendle et al., 2009] and popularity-based sam-
pling [Caselles-Dupré et al., 2018; Mikolov et al., 2013] re-
spectively. However, static methods cannot adjust to model
training, suffering from low quality of samples. Adaptive
sampling was proposed later, such as DNS [Zhang et al.,
2013] which dynamically selects hard samples that are dif-
ficult for current model to discriminate. Inspired by genera-
tive adversarial learning [Goodfellow et al., 2014], some re-
searchers have studied adversarial training between the sam-
pling model (the generator) and the training model (the dis-
criminator) [Wang et al., 2018; Park and Chang, 2019]. For
example, Park [2019] proposed AdvIR to generate hard neg-
atives by adding adversarial perturbations to them. However,
since student-exercise responses depend on complex features
such as knowledge concepts, difficulty and discrimination of
exercises [Liu et al., 2021], sampling task in cognitive diag-
nosis is more challenging than sampling in other scenarios.
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3 Problem Definition
Here we give a formal definition of cognitive diagnosis.
Let S = {s1, s2, ..., sN} be the set of N students, E =
{e1, e2, ..., eM} represent the set of M exercises, and K =
{k1, k2, ..., kL} denote the set of L knowledge concepts. We
define the student-exercise interaction set of the entire space
as R = S × E. The observed interaction logs are a triplet
set RO = {(s, e, rse)|(s, e) ∈ R, rse ∈ {0, 1}} where rse
represents a student’s response to an exercise (i.e., 0 indicates
wrong answer while 1, otherwise). The number of interactive
logs is much smaller than that of |R|, that is |RO| ≪ |R|. Be-
sides, we have Q-matrix [Tatsuoka, 1995] labeled by experts,
Q = {Qij}M×L, where Qij = 1 indicates the exercise ei
relates to the knowledge concept j and Qij = 0 otherwise.

Given: Students’ interactions logs RO and Q-matrix Q.
Goal: Quantify students’ knowledge level on specific

knowledge concepts by modeling the student performance
prediction process.

4 Methodology
In this section, we introduce Exercise-aware Informative Re-
sponse Sampling (EIRS) framework which could be applied
to all existing CDMs. In the following parts, we will first in-
troduce the backbone cognitive module with the optimization
task. Then we will explain the shortcomings of the current
optimization task and show how to leverage the partial or-
der to formulate a new ranking optimization task. After that,
we will dive into the details of our proposed partial-order re-
sponse sampling strategy and the learning algorithm.

4.1 Basic Cognitive Diagnosis Model
Cognitive diagnosis model (CDM) is for assessing students’
proficiency level according to their observed responses to ex-
ercises. Generally, CDM contains two steps: (1) the embed-
ding layer to obtain the diagnostic factors of students and ex-
ercises, (2) the interactive layer to learn the interaction func-
tion among the factors and output the probability of correctly
answering the exercises. After training, we get students’ pro-
ficiency vectors from the first step as diagnostic results.

Formally, given the student set S, exercise set E,
and knowledge concept set K, through corresponding
embedding-lookup layer, we represent them as HS ∈
RN×d, HE ∈ RM×d, HK ∈ RL×d. Each row of trainable
metrics represents the representation of trait features (e.g.,
hs is the sth-row of HS that represents the student s’s profi-
ciency). For an exercise e, its difficulty hdiff

e and discrimina-
tion hdis

e are two important characteristics, we further denote
he = [hdiff

e , hdis
e ]. Here, we diagnose the cognitive state

of student s as hs and the characteristic of exercise e as he.
To verify the diagnosis, an interaction function fC is used to
predict whether the student can answer the exercise correctly:

ŷse = fC(hs, he), (1)

where ŷse is the probability of the student s correctly an-
swering the exercise e. The architecture of the embedding
layer and the interaction function fC can be arbitrary, all
existing CDMs can be chosen, such as IRT [Lord, 1980],
MIRT [Reckase, 2009], NeuralCD [Wang et al., 2020], etc.

When training the CDM, for each record in the observed re-
sponse logs set RO = {(s, e, rse)|s ∈ S, e ∈ EO, rse ∈
{0, 1}}, we calculate the loss function of basic cognitive di-
agnosis model as the cross-entropy loss between the predic-
tion score ŷse and the true label rse:

LP = −
∑

(s,e,rse)∈RO

(rse log ŷse + (1− rse) log(1− ŷse)). (2)

The model is fit to predict the observed correct responses
with value 1 and the incorrect responses with value 0. How-
ever, this can be problematic when there are not enough ob-
served interactions, particularly for long-tailed students.

4.2 Partial-Order Ranking
In fact, optimizing the backbone cognitive diagnosis model
only through traditional prediction tasks may not provide suf-
ficient training signals, resulting in inferior diagnostic perfor-
mance. Therefore, we aim to exploit the massive unobserved
data. We propose creating item pairs from unobserved in-
teractions as auxiliary training data and optimizing for cor-
rectly ranking item pairs instead of only scoring single ob-
served item in cognitive diagnosis. In this section, we give
the formulation of partial-order ranking learning.

For each student, we denote EO, EU as the interactive
and non-interactive exercises set. Thus, the interactive (non-
interactive) exercises can be divided into positives E+

O (E+
U )

and negatives E−
O (E−

U ) based on the responses or potential
responses to them, where +, - represent correct and incorrect
responses respectively. According to the monotonicity the-
ory [Rosenbaum, 1984] declaring that a learner’s proficiency
is monotonic with the probability of correctly responding to
a test item. It can be inferred that a student’s proficiency on a
correct response is higher than an incorrect one.

Formally, for any exercises e+o , e+u , e−o , e−u taken from E+
O ,

E+
U , E−

O , E−
U , respectively, we have the following partial or-

der between interactive and non-interactive exercises:

y+
so > y−

su, y
+
su > y−

so, (3)

where y+so > y−su means that CDM should give a higher score
to the observed correct response to exercise e+o than the po-
tential incorrect response to exercise e−u , y+su > y−so similarly.
Inspired by the great success of the BPR loss [Rendle et al.,
2012] in recommender systems which is defined as maximiz-
ing the difference between the predicted probability of a pos-
itive pair and a negative pair, we formulate the following con-
straint based on this theory:

LR = −
∑

s,e+o ,e−u

lnσ(y+
so − y−

su)−
∑

s,e−o ,e+u

lnσ(y+
su − y−

so). (4)

4.3 Partial-Order Response Sampling
A key concern in optimizing cognitive models by ranking-
based auxiliary training is how to construct reasonable
partial-order pairs. The pivotal step is to screen out effec-
tive exercises from a large number of non-interactive exer-
cises. If we randomly select non-interactive exercises, the
corresponding partial order pairs will bring noise and lim-
ited information to the model, which can results in inaccurate
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Figure 3: Exercise-aware Informative Sampling Framework

diagnosis and slow convergence. Therefore, we propose a
two-stage response sampling strategy to ensure the reliabil-
ity and informativeness of the auxiliary signals. As shown
in Figure 3, in the first stage, we design a novel Exercise-
aware Candidates Selection module (ECS). This module can
produce non-interactive candidates set CU by considering the
knowledge relations between exercises and the similarity of
their features to responded exercises. In the second stage,
we further design EAC-weighted informative sampling (EIS)
module, which adaptively samples informative unobserved
responses to make significant changes to current model pa-
rameters. We will describe these two modules in detail.

Exercise-Aware Candidates Selection Module
Given a large number of non-interactive logs set RU for a
particular student, ECS is to obtain a reliable candidate re-
sponses set CU from RU . We first describe how to obtain re-
liable candidate responses and then present a hypothesis test
to formally demonstrate the reliability of the selected samples
based on the student-exercise-knowledge relationship.

To evaluate the reliability level of the unobserved re-
sponses, we consider two aspects. The first is the relationship
between student-exercise-knowledge. Intuitively, if a student
is skilled at one knowledge concept such as geometry, there
is a high probability of giving correct responses to exercises
related to geometry. Therefore, we suppose that a student
performs similarly on exercises sharing the same knowledge
concept. Using the student-exercise-knowledge relations, we
can preliminarily infer reliable correct or incorrect responses
from the unobserved responses. Formally, given an interac-
tive log (s, e, rse), we define e’s similar knowledge concepts
set N(e) = {eu|eu ∈ EU ,K(e) ∩ K(eu) ̸= ∅}, where
EU ∈ E is the set of exercises that the student s has never
interacted with and K(e) returns knowledge concepts set that
e relates to. Based on the assumption that a student similarly
performs on exercises that share same knowledge concepts,
we can construct the set of unobserved response logs:

Ru = {(s, eu, rse′)|eu ∈ N(e)}, (5)

where rse′ is consistent with the student’s response in inter-
active logs (s, e, rse) with overlapping knowledge concept.

Secondly, other vital properties of exercises like diffi-
culty and discrimination have a huge impact on students’ re-
sponses. As we discussed previously in Figure 2, both e5 and
e6 have overlapping knowledge concept k3 with e4, while e5
may be too difficult for the student to answer correctly based
on his current knowledge states. We take into account the
inherent properties (e.g., difficulty and discrimination) of ex-
ercises, then calculate the similarity between exercises as the
sampling probability for each non-interactive exercise:

p(eu|s, e) =
hT
e · heu∑

ei∈N(e) h
T
e · hei

, (6)

where he = [hdiff
e , hdis

e ] represents exercise e’s characteris-
tic factor from the basic CDM. A higher probability p(eu|s, e)
score reflects a higher reliability level of the potential re-
sponse based on observed responses. In this way, we sam-
ple some unobserved logs Rsu according to the probability
and combine the unobserved logs set generated by each log

to obtain a reliable candidate logs set CU =
|RO|⋃
i=1

Ri
u. After

acquiring the reliable candidate response logs set, we can se-
lect samples from the set CU to pair with observed responses
for partial-order ranking learning.

It is worth noting that we used the key knowledge concept
of the exercise as a criterion for candidate selection. Thus we
suppose Consistency Assumption by student-exercise inter-
action and validate it on two real datasets.

Consistency Assumption. Students’ responses to similar
exercises with overlapping knowledge concept are consistent.

To validate this assumption, we conduct a hypothesis test
on two datasets ASSISTments and Junyi (data description in
Section 5.1). Specifically, we first give some important nota-
tions used in our testing without loss of generality. Student’s
response results (right or wrong) of exercises ea, eb are no-
tated with ra and rb, and Ka, Kb are the knowledge concepts
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Datasets P̄u (s) α p-value

ASSISTments 0.638 0.05 1.89-74
Junyi 0.707 0.05 1.49-60

Table 1: One-sided test on real datasets.

that ea, eb contain. Then, Pum(ra = rb|Ka ∩Kb ̸= ∅) rep-
resents the probability that student um responses to ea and eb
with overlapped knowledge are consistent. Let Pu1 , ..., PuM

be i.i.d. from the N(µ, σ2) distribution, where µ is unknown
and σ2 is known.

Generally, if our assumption is valid, the probability Pum

should be over 0.5. Therefore, we perform a one-tailed test
of significance with the null and alternative hypothesis:

H0 : µ ≤ 0.5;H1 : µ > 0.5, (7)
The mean of Pum is notated as P̄u, and α is the level of

significance. The p-value represents the probability of ob-
serving a given event under the null hypothesis. The testing
results are reported in Table 1, and we observe that the p-
values are much smaller than α on both datasets, so we re-
ject the null hypothesis and accept the alternative hypothesis.
Consequently, it can be concluded that students’ responses to
exercises with overlapping knowledge are consistent.

Expected Ability Change Weighted Informative
Sampling Module
Although we acquire reliable unobserved response candidates
set CU , the size of candidates is still large, which causes the
inefficiency problem and it is impractical to traverse over the
whole data to obtain the gradients. In that, we design the Ex-
pected Ability Change-weighted Informative Sampling strat-
egy (EIS) to speed up the convergence with informative sam-
ples. This strategy evaluates the informativeness of potential
responses from two perspectives: 1) contribution to model
training, 2) student ability change.

1) Contribution to Model Training. In partial order rank-
ing, we need to the sample potential exercises eu based on
their responses from the candidates set CU to pair with ob-
served responses to exercise eo, while it is highly possible to
sample low-quality instances. Since these responses already
have a large gap with observed response, sampling them as
potential responses hardly changes model parameters. Here,
we want to select informative instances which will signifi-
cantly change model parameters through partial order rank-
ing. Following previous work [Rendle and Freudenthaler,
2014; Lian et al., 2020], we measure a sample’s contribu-
tion to ranking task by the gradient magnitude based on the
objective function of pairwise ranking (Eq.4):

∆s,eo,eu = 1− σ(ŷso − ŷsu), eo ∈ EO, eu ∈ CU , (8)

which indicates that a response difficultly distinguished from
the opposite response (i.e. ŷso − ŷsu → 0) contributes much
to gradient (i.e. ∆s,eo,eu → 1). For example, if the current
observed response is correct, incorrect samples with higher
prediction scores make a greater contribution to the optimiza-
tion. Then we define candidates’ difficulty level by the gap of
their prediction scores in CDMs:

INFu = |ŷso − ŷsu|. (9)

A smaller INFu for eu indicates a higher difficulty for CDMs
to identify it from the known response to eo. During training,
we can reserve the top k informative samples by their INF
values to faster training process.

2) Expected Ability Change. Beside significant contri-
bution to partial ranking, we also aim to diagnose students’
knowledge states as soon as possible. Therefore, we hypothe-
size that if student feature Hs undergoes a significant change
by adding the unobserved response, the responded exercise
can be considered informative.

However, it is challenging to calculate because the re-
sponse to non-interactive exercise is unknown. Inspired by
recent works [Bi et al., 2020], we calculate each sample’s
importance by expected ability change (EAC). To formulate
this, let ∆Hsu be the ability change of the target student s,
Hs(Ro) denote the student’s current ability with observed re-
sponse Ro and Hs(Ro∪rsu) represent adding the unobserved
response rsu. As such, the EAC weight is defined as follows:

∆Hseu = Erseu∼fC(hs,heu )|Hs(Ro ∪ rseu)−Hs(Ro)|,

wu =
exp(∆Hseu)∑
u
exp(∆Hseu)

.

(10)

By considering the weight wu of response sample eu, we
reformulate the ranking loss in the following way:

LR = −
∑

s,e+o ,e−u

wu ·lnσ(y+
so−y−

su)−
∑

s,e−o ,e+u

wu ·lnσ(y+
su−y−

so),

(11)
which enables our framework to pay more attention to in-
stances that bring about a greater change to student ability.

4.4 Learning Algorithm
The observed responses can help optimize CDMs’ parameters
by the objective of the basic cognitive model. In addition,
we propose a response sampling strategy to sample reliable
and informative unobserved responses. Thus, the partial order
training signals can alleviate the long tail problem. Combin-
ing the prediction loss LP of the Basic Cognitive Diagnosis
Model and the ranking loss LR of the Partial-Order Response
Sampling Strategy, we obtain the complete loss function:

L = LP + λ · LR, (12)

Algorithm 1 Exercise-aware Informative Response Sampling
Input: Training Set RO = {(s, ei, rui)}, Q-matrix
Output: CDMs Parameters ΘC

Initialize parameters randomly;
1: while not converge do
2: Sample a mini-batch RB ∈ RO of size B.
3: for each observed response logs (s, e, re) do
4: Get candidates set CU for student s based on Eq.6
5: Select top k instances from CU based on Eq.9
6: Evaluate instances’ quality wu based on Eq.10
7: Update parameters ΘC w.r.t. Eq.12
8: end for
9: end while
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Metrics
ASSISTments Junyi

Long-tailed data Whole data Long-tailed data Whole data
AUC% ↑ ACC%↑ RMSE% ↓ AUC% ↑ ACC% ↑ RMSE%↓ AUC% ↑ ACC% ↑ RMSE%↓ AUC%↑ ACC%↑ RMSE% ↓

IRT
Origin 70.88 68.07 46.34 72.84 70.78 44.34 80.15 79.53 38.14 80.41 80.14 37.62
PopRS 73.62 70.07 45.33 75.07 71.97 43.60 80.71 79.58 38.13 80.95 80.13 37.61
EIRS 75.60 69.34 44.41 76.16 72.04 42.77 81.74 79.87 37.54 81.67 80.44 37.10

MF Origin 72.41 68.79 45.24 72.95 70.62 43.97 79.68 79.10 38.70 80.06 79.81 38.06
PopRS 75.93 71.64 44.18 75.66 72.60 43.17 80.61 79.07 38.14 80.65 79.66 37.71
EIRS 76.32 72.14 44.20 76.25 73.19 43.21 82.33 80.27 37.46 82.38 80.76 36.99

MIRT Origin 71.22 68.05 48.08 72.96 70.53 45.55 79.28 79.67 37.90 79.52 80.18 37.51
PopRS 75.25 71.82 43.95 74.11 69.47 45.63 80.76 79.44 38.23 80.87 80.07 37.73
EIRS 77.03 72.33 43.03 76.91 73.29 42.11 82.07 80.18 37.34 82.14 80.66 36.92

NeuralCD Origin 74.95 71.74 49.61 75.65 71.15 47.52 78.59 78.36 39.67 78.68 79.55 39.28
PopRS 75.16 71.10 45.21 74.43 70.25 44.73 80.14 78.60 38.47 80.44 79.49 38.59
EIRS 75.63 71.57 44.76 75.36 71.03 44.12 80.85 79.23 38.30 80.60 79.43 38.02

Table 2: Experimental results on student performance prediction.

where λ is a trade-off hyper-parameter that balances the two
losses. The learning process is shown in Algorithm 1.

Since the model is easier to learn the original signals pro-
vided by observed data, while auxiliary ranking signal is rel-
atively difficult to learn although they contain rich informa-
tion. Inspired by curriculum learning [Bengio et al., 2009],
which allows the training process to start with simpler tasks
and gradually increase the difficulty, we propose to linearly
increase λ as the epoch number t increases. In this fashion,
our framework is more stable and effective for diagnosing stu-
dents’ knowledge proficiency.

5 Experiments
In this section, we first introduce the datasets and our exper-
imental setups. Then, we conduct extensive experiments to
answer the following questions:
RQ1: Can EIRS improve performance of existing CDMs?
RQ2: Can EIRS perform well on long-tailed students with
few interactions?
RQ3: Can EIRS accelerate the convergence of CDMs?
RQ4: How does the number of samples influence the perfor-
mance of the EIRS framework?

5.1 Experimental Setup
Dataset Description. We conduct experiments on two real-
world datasets, i.e., ASSISTments1 and Junyi dataset 2. AS-
SISTments (ASSISTments 2009-2010 “skill builder”) is an
open dataset collected by the ASSISTments online tutoring
systems and Junyi is collected from the E-learning website
Junyi Academy. Most proposed works validate model’s per-
formance on datasets by filtering students with few interac-
tions to ensure enough logs to accomplish diagnosis tasks.
We keep all response logs in both datasets, excluding students
with interaction times below 5. The number 5 is to ensure that
the dataset can be split into train and test sets at an 8:2 ratio.

1https://sites.google.com/site/assistmentsdata/home/2009-2010-
assistment-data

2https://pslcdatashop.web.cmu.edu/Files?datasetId=1198

Baselines. To evaluate the performance of our EIRS frame-
work, we use four well-known CDMs as baseline meth-
ods: IRT [Lord, 1980], MF [Toscher and Jahrer, 2010],
MIRT [Reckase, 2009] and NeuralCD [Wang et al., 2020].
In multidimensional models (i.e., MIRT and NeuralCD), we
set the dimension of latent trait features of both student and
item unitedly as the number of knowledge concepts, i.e., 112
in ASSISTments and 39 in Junyi. Furthermore, we compare
popularity-based sampling (PopRS) method [Mikolov et al.,
2013] with EIRS which calculates each exercise’s popularity
based on the response rate in all students.

Experimental Setup. In our framework, we set the sam-
ple number from [1,2,3,4,5]. For the curriculum coefficient
λ, its initial value λ0 is chosen from the interval (0, 1], and
λ linearly increases from λ0 to 1 as the number of epochs
increases. We employ the Adam algorithm [Kingma and
Ba, 2015] for optimization, and all the hyper-parameters are
tuned in the validation datasets. Our code is available at
https://github.com/fannazya/EIRS.

Evaluation Metrics. Because the true knowledge profi-
ciency is unknown, to directly evaluate the performance of
a CDM is difficult. Following previous works, a reasonable
solution is to measure performance by the prediction scores
in diagnosis models as the diagnostic results can be acquired
through learners performance prediction task. Here, we eval-
uate the model based on some classification and regression
metrics such as AUC, Accuracy and RMSE.

5.2 Experimental Results
Performance Comparison (RQ1)
In order to validate the generality and effectiveness of the
EIRS framework, we incorporate it into different existing
CDMs and compare the performances both on the long-tailed
data and whole data with baseline methods. The long-tail
data extracted from test data consists of response logs of stu-
dents whose interaction times are less than 50. Table 2 shows
the results of EIRS with baselines, where ‘Origin’, ‘EIRS’
represent the baseline and baseline incorporating our frame-
work respectively. The best results are shown in bold. There
are the following findings. First, almost all the baselines’
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Figure 4: Performance comparison on long-tailed data. The hori-
zontal axis is interval of students interaction times.

results on the long-tailed data are inferior to those on the
whole data, which indicates it is difficult to diagnose with
few interaction logs. Second, both PopRS and EIRS perform
better than the Origin baseline, showing that incorporating
ranking-based training signals alleviates the long-tailed prob-
lem. Specifically, EIRS significantly outperforms both the
original model and popularity sampling method on the long-
tailed data, and has a fair contribution to improving perfor-
mance on the whole data. Some results in the long-tailed data
are even as good as those in the whole data. Hence, we are
able to conclude from these observations that our framework
is effective to alleviate the long-tail problem by adding auxil-
iary ranking-based training signals. Simultaneously, the non-
interactive exercises selected by EIRS are reliable enough to
provide proper training signals.

Performance on Long-Tailed Data (RQ2)
Our framework focuses on strengthening the robustness of
CDMs, especially in long-tailed data where students interact
with few exercises. We further divide them by interactions
times into several groups to see the detailed improvements in
different groups. The results are reported in Figure 4. We can
see that the baseline MF and IRT applied with our framework
was improved a lot, especially in students whose interaction
times are very few (from 5 to 15). Therefore, we can conclude
that EIRS’s contribution on diagnosing students knowledge
level with limited response logs is prominent.

Efficiency of Informative Sampling (RQ3)
The above experiments show the effectiveness of samples
generated by EIRS. Additionally, we compare the perfor-
mance in terms of efficiency by the convergence speed of
model training (the number at which an early stop occurs).
We can observe that there is not much difference in conver-
gence speed at the beginning. The reason for this is that
we take a curriculum learning way (Section 4.4), where ba-
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Figure 5: Convergence against training epoch on Junyi. The triangle
marker represents the epoch number at which early stopping occurs.
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Figure 6: Effects of the number of samples.

sic cognitive diagnosis is the dominant task at the beginning
of training. As the epoch number increases, the test loss
converges quickly when partial order ranking plays a vital
role. The fast convergence speed indicates that the efficacy of
EIS module to sample informative responses that bring much
change to model learning.

Effects of Sampling Number (RQ4)
The key component in EIRS is the two-stage sampling con-
sisting of ECS and EIS modules (Section 4.3) to generate re-
liable and informative exercises. To verify our sampling strat-
egy’s superiority, we compare it with popularity-based sam-
pling (PopRS). We vary the number of samples K from set
{1, 2, 3, 4, 5} to see the effects on the whole data. As shown
in Figure 6, EIRS achieves high performance when the sam-
ple number is small and consistently outperforms PopRS at
different sample numbers. Besides, our framework basically
holds steady though the number changes. These give credit
to the ECS module which generates reliable candidate logs
through knowledge relations and exercises similarity, effec-
tively avoiding data noise in unobserved data.

6 Conclusion

In this paper, we designed a general sample framework EIRS
that exploits reliable and informative non-interactive data and
can be seamlessly incorporated to existing cognitive diagno-
sis methods. Then we did experiments on two real datasets
to validate the performance. The results showed the essence
of non-interactive data and the superiority of our proposed
framework on long-tailed data. We hope this work can stimu-
late more studies in the future leading to a prolonged period.
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