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Abstract
In a delegation problem, a principal P with com-
mitment power tries to pick one out of n options.
Each option is drawn independently from a known
distribution. Instead of inspecting the options her-
self, P delegates the information acquisition to a ra-
tional and self-interested agent A. After inspection,
A proposes one of the options, and P can accept
or reject. In this paper, we study a natural online
variant of delegation, in which the agent searches
through the options in an online fashion. How can
we design algorithms for P that approximate the
utility of her best option in hindsight?
We show that P can obtain a Θ(1/n)-approxima-
tion and provide more fine-grained bounds inde-
pendent of n based on two parameters. If the ratio
of maximum and minimum utility for A is bounded
by a factor α, we obtain an Ω(log logα/ logα)-
approximation algorithm, and we show that this is
best possible. If P cannot distinguish options with
the same value for herself, we show that ratios poly-
nomial in 1/α cannot be avoided. If the utilities
of P and A for each option are related by a fac-
tor β, we obtain an Ω(1/ log β)-approximation, and
O(log log β/ log β) is best possible.

1 Introduction
The study of delegation problems is a prominent area with nu-
merous applications. There are two parties – a decision maker
(called principal) P and an agent A. n actions or options are
available to P . Each option has a utility for P and a (possibly
different) utility for A, which are drawn from a known distri-
bution D. Instead of inspecting options herself, P delegates
the search for a good option to A. A sees all realized utility
values and sends a signal to P . Based on this signal (and D),
P chooses an option. Both parties play this game in order to
maximize their respective utility from the chosen option.

Many interesting applications can be captured within this
framework. For example, consider a company that is trying
to hire an expert in a critical area. Instead of searching the
market, the company delegates the search to a head-hunting
agency that searches the market for suitable candidates. Al-

ternatively, consider an investor, who hires a financial con-
sultant to seek out suitable investment opportunities. Clearly,
principal and agent might not always have aligned prefer-
ences. While the investor might prefer investments with high
interest rates, the financial consultant prefers selling the prod-
ucts for which he gets a provision.

In applications such as searching for job candidates or
financial investments, availability of options often changes
over time, and the pair of agents needs to solve a stop-
ping problem. For example, many lucrative financial invest-
ment opportunities arise only within short notice and expire
quickly. Therefore, a consultant has to decide whether or not
to recommend an investment without exactly knowing what
future investment options might become available. Here A
faces an online search problem, in which the n options are
realized in a sequential fashion. After seeing the realization
of option i, he has to decide whether to propose the option to
P or discard it. If the option is proposed, P decides to ac-
cept or reject this option and the process ends. Otherwise, the
process continues with option i+ 1.

In the study of delegation problems, P usually has com-
mitment power, i.e., P specifies in advance her decision for
each possible signal, taking into account the subsequent best
response of A. This is reasonable in many applications (e.g.,
an investor can initially restrict the investment options she is
interested in, or the company fixes in advance the required
qualifications for the new employee). Interestingly, although
P commits and restricts herself in advance, this behavior is
usually in her favor. The induced best response of A can lead
to better utility for P than in any equilibrium, where both
parties mutually best respond. Using a revelation-principle
style argument, the communication between P and A can be
reduced to A revealing the utilities of a single option and P
deciding to accept or reject that option (for a discussion, see,
e.g. [Kleinberg and Kleinberg, 2018]).

The combination of online search and delegation has been
examined before, albeit from a purely technical angle. Klein-
berg and Kleinberg [2018] designed approximation algo-
rithms for delegation, showing that P can obtain a constant-
factor approximation to the expected utility of her best option
in hindsight. Their algorithms heavily rely on techniques and
tools developed in the domain of prophet inequalities. How-
ever, they are applied to an offline delegation problem. In-
stead, we consider the natural extension of [Kleinberg and
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Kleinberg, 2018] to online search. Interestingly, we exhibit
a notable contrast – in online delegation a constant-factor ap-
proximation might be impossible to achieve. In fact, the ap-
proximation ratio can be as low as O(1/n), and this can al-
ways be achieved. Motivated by this sharp contrast, we pro-
vide a fine-grained analysis based on two natural problem pa-
rameters: (1) the discrepancy of utility for the agent, and (2)
the misalignment of agent and principal utilities.

1.1 Model
We study online delegation between principal P and agent
A in (up to) n rounds. In every round i, an option is drawn
independently from a known distribution Di with finite sup-
port Ωi of size si. We denote the options of Di by Ωi =
{ωi1, . . . , ωi,si} and the random variable of the draw by Oi.
For every i ∈ [n] and j ∈ [si], the option ωij has probability
pij to be drawn from Di. If this option is proposed by A and
chosen by P , then A has utility aij ≥ 0 and P utility bij ≥ 0.

We assume that P has commitment power. Before the start
of the game, she commits to an action scheme φ with a value
φij ∈ [0, 1] for each option ωij . φij is the probability that P
accepts option ωij when it is proposed by A in round i. For a
deterministic scheme with all φij ∈ {0, 1}, we define the sets
Ei = {ωij | φij = 1} of acceptable options in each round i.

In contrast to P , A gets to see the n random draws from
the distributions in an online fashion. He decides after each
round whether he proposes the current option Oi to P or not.
If he decides to propose it, then P sees the option and decides
based on φ whether or not she accepts it. If P accepts, the
utility values of the option are realized; if not, both players
get utility 0. In either case, the game ends after P decides.
Both players strive to maximize their expected utility.

Initially, both players know the distribution Di for every
round i ∈ [n]. The sequence of actions then is as follows: (1)
P decides φ and communicates this to A; (2) in each round i,
A sees Oi ∼ Di and irrevocably decides to propose or discard
Oi; (3) when A decides to propose some option Oi = ωij ,
then P accepts it with probability φij , and the game ends.1
A knows the distributions and the action scheme φ of up-

coming rounds which determines his expected utility from
proposed options. Hence, A essentially faces an online stop-
ping problem that can be solved via backwards induction. We
can assume without loss of generality that all decisions (not)
to propose an option by A are deterministic: If the expected
utility from the realization in the current round is greater than
the expected utility obtained in the remaining rounds, propose
the current option (otherwise do not). To avoid technicalities,
we assume that A breaks ties in favor of P .

Our goal is to design action schemes φ with high expected
utility for P . We compare the expected utility to the one in the
non-delegated (online) problem, where P searches through
the n realized options herself. The latter is a classic stop-
ping problem, for which the expected utilities of optimal on-
line and offline search differ by at most a factor of 2 (due to

1In the full version [Braun et al., 2022], we also consider a vari-
ant with k ≥ 1 proposals. Here the game continues until P accepts
or after P has rejected k different options. Action schemes become
more complicated and must rely on the history of rejected options.

Round 1 Round 2
option ωij ω11 ω12 ω21 ω22

value-pair (aij , bij) (3,1) (3,8) (2,4) (16,4)
probability pij 0.75 0.25 0.75 0.25

Table 1: An example instance

the basic prophet inequality [Krengel and Sucheston, 1977;
Krengel and Sucheston, 1978]).

We also analyze scenarios with oblivious and semi-
oblivious proposals. In both these scenarios, A reveals only
the utility value bij for P when proposing an option (but not
his own value aij). In contrast, when P gets to see the utility
values of both agents, we term this conscious proposals. The
difference between semi-oblivious and (fully) oblivious sce-
narios lies in the prior knowledge of P . In the semi-oblivious
scenario, P is fully aware of the distributions, including all
potential utility values aij for A. In the oblivious scenario, P
initially observes the probabilities of all options along with
her utility values bij , but the values aij of A remain un-
known to P throughout. In the scenarios with restricted dis-
crepancy (in Section 3), we assume P is aware of the bound
α = maxi,j aij/mini,j aij .

Example 1. We discuss a simple example to illustrate the
definitions. We consider deterministic strategies by P and
conscious proposals. There are two rounds with the options
distributed according to Table 1. For the benchmark, we as-
sume that P can see and choose the options herself. The best
option is ω12. If this is not realized in round 1, the option
realized in round 2 is the best choice. Note that this opti-
mal choice for P can be executed even in an online scenario,
where she first sees round 1 and gets to see round 2 only af-
ter deciding about round 1. The expected utility of this best
(online) choice for P is 5.

Now in the delegated scenario, suppose P accepts option
ω22. Then A would always wait for round 2 and hope for a
realization of ω22, even if ω21 would not be accepted by P .
Hence, accepting ω22 leads to an expected utility for P of
at most 4. In contrast, the optimal decision scheme for P is
to accept only ω12 and ω21 with an expected utility of 4.25.
For the (semi-)oblivious scenario, P cannot distinguish the
options in round 2, and her expected utility is at most 4.

Clearly, P has to strike a careful balance between (1) ac-
cepting a sufficient number of high-profit options to obtain a
high expected utility overall and (2) rejecting options to mo-
tivate A to propose better options for P in earlier rounds. ♦

1.2 Contribution and Outline
In Section 2 we show that the worst-case approximation ratio
for online delegation is Θ(1/n) and this is tight. Intuitively,
A waits too long and forgoes many profitable options for P .
P can only force A to propose earlier if she refuses to accept
later options – this, however, also hurts the utility of P . The
instances require a ratio of maximum and minimum utility
values for A that is in the order of nΘ(n). We further show
that the bounds extend to more general variants in which (1)
A has a lookahead of k rounds, or (2) A can propose up to
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k options, resulting in tight approximation ratios of Θ(k/n).
Note that all impossibility results in this paper apply already
for IID instances, while all algorithmic results apply for gen-
eral instances.

In Section 3, we examine the effect of the discrepancy of
utility for A using the ratio α of maximum and minimum util-
ity values. We obtain an Ω(log logα/ logα)-approximation
of the optimal (online) search for P . This result is tight. The
algorithm limits the acceptable options of P , partitions them
into different bins, and then restricts A’s search space to the
best possible bin for P . The challenge is to design a profitable
set of options inside a bin that should be accepted by P with-
out giving A an incentive to forgo proposing many of them.
Our algorithm shows that P can obtain a good approximation
even if differences in utility of A are polynomial in n.

Additionally, we consider the more challenging oblivious
scenario in which P does not get to see the agent’s utility of
the proposed option. Our algorithm for this scenario achieves
an Ω(1/α)-approximation. This is contrasted with a set of
instances for which no action scheme can extract more than
an O(1/α)-approximation. We study the semi-oblivious sce-
nario in the full version [Braun et al., 2022]. In this scenario,
P has a priori knowledge of the prior, but still does not see
the agent’s utility for proposed options. For this setting, our
algorithm achieves an Ω(1/(

√
α logα))-approximation, and

in general O(1/
√
α) is best-possible. The results highlight

the effect of hiding A’s utilities from P (in the proposal, or
in the proposal and the prior) – the achievable approximation
ratios increase from logarithmic to polynomial ratios in α.

In Section 4, we consider the misalignment of agent and
principal utilities via a parameter β ≥ 1, which is the
smallest value such that all utilities of P and A are re-
lated by a factor in [1/β, β]. Limited misalignment also
leads to improved approximation results for P . We show
an Ω(1/ log β)-approximation of the optimal (online) search
for P . Moreover, every algorithm must have a ratio in
O(log log β/ log β). For the agent-oblivious variant, we
obtain an Ω(1/β)-approximation, whereas every algorithm
must have a ratio in O(1/

√
β).

Additional descriptions, pseudocode for our algorithms as
well as all missing proofs can be found in the full version of
this paper [Braun et al., 2022].

1.3 Related Work
Holmstrom [1977; 1984] initiated the study of delegation as
a bilevel optimization between an uninformed principal and
a privately informed agent. The principal delegates the de-
cision to the agent who himself has an interest in the choice
of decision. Since then, there have been numerous works on
various aspects of delegation. For example, [Melumad and
Shibano, 1991; Alonso and Matouschek, 2008] studied the
impact of (mis)alignment of the agent’s and the principal’s
interests on the optimal delegation sets. Armstrong and Vick-
ers [2010] studied the delegation problem over discrete sets
of random cardinality with elements drawn from some dis-
tribution. They identify sufficient conditions for the search
problem to have an optimal solution.

A similar model to ours was considered in computer sci-
ence by Kleinberg and Kleinberg [2018], where the option set
searched by the agent consists of n IID draws from a known
distribution. They show constant-factor approximations of
the optimal expected principal utility when performing the
search herself rather than delegating it to the agent. For their
analysis, they rely on tools from online stopping theory. The
key difference between their work and our paper is that – al-
beit using tools from online optimization – they study an of-
fline problem while we focus on an online version.

Bechtel and Dughmi [2021] recently extended this line of
research by combining delegation with stochastic probing.
Here a subset of elements can be observed by the agent (sub-
ject to some constraints), and several options can be chosen
(subject to a different set of constraints). Similarly, Bechtel et
al. [2022] study connections between delegation and a gener-
alized Pandora’s Box problem.

A related but different area is contract theory, which con-
siders principal-agent settings with uncertainty and monetary
transfers. An early formalization was introduced by Gross-
mann and Hart [1983]. Computational aspects of this prob-
lem are recently starting to attract interest, see, e.g., Duetting
et al. [2019; 2020] and earlier work (on a slightly different
model) [Babaioff et al., 2012; Babaioff and Winter, 2014].

The study of persuasion, another model of strategic com-
munication, has gained a lot of traction at the intersection
between economics and computation in recent years. Here,
the informed party (the “sender”) is the one with commit-
ment power, trying to influence the behavior of the unin-
formed agent (the “receiver”). Persuasion has proven to
be a popular topic in AI. Castiglioni et al. [2022] studied
Bayesian posted price auctions where buyers arrive sequen-
tially and receive signals from the revenue maximizing seller.
Moreover, signaling may be used in other settings, e.g., per-
suading voters [Castiglioni et al., 2020a; Castiglioni and
Gatti, 2021], or for reducing social cost in congestion games
with uncertain delays [Castiglioni et al., 2021a; Griesbach
et al., 2022]. Closer to our paper is the study of persua-
sion in the context of stopping problems [Hahn et al., 2020b;
Hahn et al., 2020a]. These works study persuasion problems
in a prophet inequality [Hahn et al., 2020a] as well as in a
secretary setting [Hahn et al., 2020b].

Other notable algorithmic results on persuasion prob-
lems concern optimal policies, hardness, and approxima-
tion algorithms in the general case [Dughmi and Xu, 2016]
as well as in different variations, e.g., with multiple re-
ceivers [Babichenko and Barman, 2017; Badanidiyuru et
al., 2018; Dughmi and Xu, 2017; Rubinstein, 2017; Xu,
2020], with limited communication complexity [Dughmi et
al., 2016; Gradwohl et al., 2021], or relations to online
learning [Castiglioni et al., 2020b; Castiglioni et al., 2021b;
Zu et al., 2021]

2 Impossibility
2.1 A Tight Bound
As a first simple observation, note that P can always achieve
an n-approximation with a deterministic action scheme, even
in with oblivious proposals. P accepts exactly all options in
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a single round i∗ with optimal expected utility, i.e., Ei∗ =
{ωi∗,j | j ∈ [si∗ ]} for i∗ = argmaxi∈[n] E[bij ], and Ej = ∅
otherwise. This motivates A to always propose the option
from round i∗, and P gets expected utility E[bi∗,j ]. By a
union bound, the optimal utility from searching through all
options herself is upper bounded by E [

∑
i bij ] ≤ n ·E[bi∗,j ].

Proposition 1. For online delegation there is a determin-
istic action scheme φ such that P obtains at least a 1/n-
approximation of the expected utility for optimal (online)
search.

We show a matching impossibility result, even in the IID
setting with Di = D for all rounds i ∈ [n], and when P gets
to see the full utility pair of any proposed option. There are
instances in which P suffers a deterioration in the order of
Θ(n) over the expected utility achieved by searching through
the options herself.

For the proof, consider the following class of instances.
The distribution D can be cast as an independent composi-
tion, i.e., we independently draw the utility values for P and
A. For P there are two possibilities, either utility 1 with prob-
ability 1/n, or utility 0 with probability 1−1/n. For A, there
are n possibilities with agent utility of n4ℓ, for ℓ = 1, . . . , n,
where each one has probability 1/n. In combination, we can
view D as a distribution over j = 1, . . . , 2n options. Op-
tions ωj for j = 1, . . . , n have probability 1/n2 and utilities
(bj , aj) = (1, n4j), for j = n + 1, . . . , 2n they have proba-
bility 1/n− 1/n2 and utilities (bj , aj) = (0, n4(j−n)).

Theorem 1. There is a class of instances of online delegation
in the IID setting, in which every action scheme φ obtains
at most an O(1/n)-approximation of the expected utility for
optimal (online) search.

Proof. For simplicity, we first show the result for schemes φ
with φij = 0 for all rounds i ∈ [n] and all j = n+1, . . . , 2n.
In the end of the proof we discuss why this can be assumed
for an optimal scheme.

Since all options j ∈ [n] have the same utility for P , she
wants to accept one of them as soon as it appears. If she
searches through the options herself, the probability that there
is an option of value 1 is 1 − (1 − 1/n)n ≥ 1 − 1/e. Her
expected utility is a constant. In contrast, when delegating the
search to A, the drastic utility increase motivates him to wait
for the latest round in which a better option is still acceptable
by P . As a result, A waits too long, and removing acceptable
options in later rounds does not remedy this problem for P .

More formally, interpret an optimal scheme φ as an n× n
matrix, for rounds i ∈ [n] and options j ∈ [n]. We outline
some adjustments that preserve the optimality of matrix φ.

Consider the set S of all entries with φij ≤ 1/n. For each
(i, j) ∈ S, the probability that option j is realized in round i
is 1/n2. When it gets proposed by A, then it is accepted by
P with probability at most 1/n. By a union bound, the utility
obtained from all these options is at most |S|/n2 ·1/n ≤ 1/n.

Suppose we change the scheme by decreasing φij to 0 for
each (i, j) ∈ S. Then each entry in φ is either 0 or at least
1/n. If A makes the same proposals as before, the change
decreases the utility of P by at most 1/n. Then again, in the
new scheme A can have an incentive to propose other options

in earlier rounds. Since all options with φij ̸= 0 have utility
1 for P , this only leads to an increase of utility for P . More-
over, in round 1 we increase all acceptance probabilities to
φ1j = 1 for j ∈ [n]. Then, upon arrival of such an option ωj

in round 1, the change can incentivize A to propose this op-
tion – which is clearly optimal for P , since this is an optimal
option for her. Since the change is in round 1, it introduces
no incentive to wait for A. As such, it can only increase the
utility for P . Now consider any entry φij ≥ 1/n. We observe
two properties:

1. Suppose φi′j′ ≥ 1/n for i′ < i and j′ < j. Then P
accepts realization ωj′ in round i′ with positive proba-
bility, but she will also accept the better (for A) realiza-
tion ωj in a later round i with positive probability. A
will not propose ωj′ in round i′ but wait for round i,
since the expected utility in the later round i is at least
n4j · 1/n2 · φij ≥ n4j−3 > n4(j−1) ≥ n4j′ · φi′j′ , the
utility in round i′. As such, w.l.o.g. we set φi′j′ = 0 for
all i′ < i and j′ < j.

2. Suppose φi′j < φij for i′ < i. By property 1., all re-
alizations ωj′ with j′ < j are not accepted in rounds
1, . . . , i− 1. Hence, setting φi′j = φij does not change
the incentives for A w.r.t. other options, and thus only
(weakly) increases the expected utility of P . By the
same arguments, we set φij′ = max{φij′ , φij} for all
inferior options j′ < j in the same round i.

We apply the adjustments implied by the two properties
repeatedly, starting for the entries φin in the n-th column for
option ωn, then in column n−1, etc. By 1., every positive en-
try φij ≥ 1/n leads to entries of 0 in all “dominated” entries
φi′j′ with i′ < i and j′ < j. As a consequence, the remain-
ing positive entries form a Manhattan path in the matrix φ.
The path starts at φ1n, ends at φn1, and for each φij ≥ 1/n
it continues either at φi+1,j ≥ 1/n or φi,j−1 ≥ 1/n. See
Table 2 for an example.

We can upper bound the expected utility of P by assuming
that all 2n − 1 entries on the Manhattan path are 1 (i.e., φ
is deterministic) and A proposes an acceptable option when-
ever possible. The probability that this happens is at most
(2n − 1)/n2 = O(1/n) by a union bound. This is an upper
bound on the expected utility of P and proves the theorem for
schemes with φij = 0 for all i ∈ [n] and j ≥ n+ 1.

Finally, suppose φij > 0 for some j ≥ n + 1. Clearly,
option ωj adds no value to the expected utility of P . More-
over, the fact that ωj has positive probability to be accepted
in round i can only motivate A to refrain from proposing in-
ferior options in earlier rounds. As such, setting φij = 0 only
(weakly) increases the utility of P .

The lower bound in Theorem 1 remains robust in sev-
eral extensions of the model. In the full version of this
paper [Braun et al., 2022], we discuss two generalizations
(when A has a lookahead of k rounds, and when A is al-
lowed to make k proposals). For both scenarios, we show the
following lower bounds (along with simple algorithms pro-
viding matching upper bounds).
Corollary 1. Consider online delegation in the IID setting
with either (1) lookahead k, or (2) k proposals. For each
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Rnd. ω1 ω2 ω3 ω4

1 0.3 0.2 0.6 0.9
2 0.4 0.3 0.8 1
3 0.2 0.4 0.6 0.2
4 0.5 0.1 0.7 0

→

Rnd. ω1 ω2 ω3 ω4

1 0.3 0 0.6 0.9
2 0.4 0.3 0.8 1
3 0 0.4 0.6 0
4 0.5 0 0.7 0

→

Rnd. ω1 ω2 ω3 ω4

1 0 0 0 1
2 0 0 1 1
3 0 0 0.7 0
4 0.7 0.7 0.7 0

Table 2: Adjustments from the proof of Theorem 1 for an example scheme φ for n = 4. Left: Entries φij < 1/n (bold) get set to 0. The
expected utility for P decreases by at most 1/n. Middle: Italic entries show options that never get proposed due to options with bold entries
(cf. property 1.). Italic entries can be set to 0. Right: Bold entries have been raised according to property 2. A Manhattan path of 2n − 1
entries evolves.

scenario, there are classes of instances such that every action
scheme φ obtains at most an O(k/n)-approximation of the
expected utility for optimal (offline) search.

3 Discrepancy of Agent Utilities
3.1 Conscious Proposals
The lower bound instances in Theorem 1 have agent utilities
between 1 and nO(n). Is such a drastic discrepancy necessary
to show a substantial lower bound? Can we obtain better ap-
proximation results for instances with a smaller ratio of the
maximum and minimum utility values for A?

Here, we restrict to aij > 0 for all options and study the
cases with aij = 0 in the full version [Braun et al., 2022].
Let α = max{aij | i ∈ [n], j ∈ [si]}/min{aij | i ∈ [n], j ∈
[si]}. W.l.o.g. we scale all utility values to aij ∈ [1, α], where
both boundaries α and 1 are attained by at least one option.
Then A has α-bounded utilities.

We show how to compute a good action scheme with re-
spect to parameter α. Intuitively, we partition the best options
for P that add up a total probability mass of roughly 1/2 into
O(logα/ log logα) many bins. Each bin is constructed in a
way such that A is incentivized to propose the first option
he encounters from that particular bin, assuming that P only
accepts options from that bin. The algorithm determines the
best bin for P and deterministically restricts the acceptable
options to the ones from this bin.

Let us discuss the algorithm in more detail (pseudocode
can be found in the full version of this paper [Braun et
al., 2022]). As a first step, the algorithm uses a procedure
RestrictOptions(D1, . . . ,Dn,m) with parameter m = 1/2
as subroutine. The procedure considers all options in de-
scending order of principal utility until a total probability
mass m is reached. Starting out with Q̂ = ∅, options are
added to Q̂ = {(i, j) | bij ≥ bi′,j′ ∀(i′, j′) /∈ Q̂} as
long as

∑
(i,j)∈Q̂ pij < m. The first option (i∗, j∗) that

would reach or surpass the combined mass of m (i.e., such
that

∑
(i,j)∈Q̂∪{(i∗,j∗)} pij ≥ m) is considered separately.

The procedure RestrictOptions then returns either Q = Q̂
or Q = {(i∗, j∗)}, whichever set provides a better expected
utility for P . As a consequence,

∑
(i,j)∈Q pij · bij ≥ m/2 ·

Eωij∼Di
[maxi∈[n] bij ]. Lemma 1 summarizes the claim. The

proof can be found in the full version [Braun et al., 2022].
Lemma 1. The subroutine RestrictOptions(D1, . . . ,Dn,m)
with distributions D1, . . . ,Dn and a parameter 0 < m ≤ 1

as input identifies Q, the best set of options for P , such that∑
(i,j)∈Q

pij · bij ≥ m/2 · Eωij∼Di [max
i∈[n]

bij ]

and either (1) the combined mass
∑

(i,j)∈Q pij < m or (2)
all options in Q arrive in the same round.

If the set Q returned by RestrictOptions only spans a single
round i, the agent will always be incentivized to propose an
acceptable option in round i. For this scenario, the algorithm
only creates a single bin B1. Otherwise, it continues with the
second and third step described in the following.

In the second step of the algorithm, the options identified
by RestrictOptions are classified by their utility for A. The
algorithm divides Q into c = ⌈log2 α⌉ classes depending
on the agent utility such that the lowest and highest agent
utilities in any given class differ by at most a factor of 2.
More precisely, classes C1, . . . , Cc are constructed such that
Ck = {(i, j) ∈ Q | aij ∈ [2k−1, 2k)} for k = 1, . . . , c − 1
and Cc = {(i, j) ∈ Q | aij ∈ [2c−1, 2c]}.

For the third step, subsequent classes (by their agent util-
ity value) are combined into bins such that (1) the bins are
as big as possible and (2) A optimizes his own expected
utility by proposing the first option he encounters from any
bin – assuming that only options from this bin are allowed.
Classes are either added to a bin completely or not at all.
Let s be the index of the class with the highest agent utili-
ties currently considered, i.e., the first class to be added to
the current bin Bb. We consider the classes by decreasing
agent utility values, i.e., with indices k = s, s−1, . . . . While
2k−1 ≥ 2s ·

∑
(i,j)∈Bb∪Ck

pij , a rational A will always pro-
pose the first option available from the current bin if that is
the only allowed bin as it has a higher utility than what A can
expect from later rounds. Hence, the class currently under
consideration can be added to the current bin.

Finally, having constructed all bins, the algorithm simply
chooses the best one for P .

Lemma 2 shows that our algorithm achieves an approxi-
mation ratio which is linear in the number of bins opened.
The subsequent Lemma 3 bounds the number of bins opened,
showing that it is in the order of O(logα/ log logα). To-
gether, the lemmas prove Theorem 2, our main result of the
section.

Lemma 2. Let ℓ be the number of bins opened by the algo-
rithm. Then the scheme computed by the algorithm obtains
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at least an 1/(8ℓ)-approximation of the expected utility of the
best option for P in hindsight.

Proof. We know that Q satisfies 4 ·
∑

(i,j)∈Q pij · bij ≥
Eωij∼Di

[maxi∈[n] bij ] = OPT by Lemma 1.
Now consider the construction of the bins. Suppose we

split Q into ℓ bins B1, B2, . . . , Bℓ. We pick the best one Bb∗

from the ℓ bins B1, . . . , Bℓ, so∑
(i,j)∈Bb∗

pijbij ≥
1

ℓ

∑
(i,j)∈Q

pijbij ≥
1

4ℓ
·OPT .

The action scheme restricts attention to Bb∗ and accepts
each proposed option ωij from the bin with probability 1. Let
k− = min{k | Ck ⊆ Bb∗} be the class of smallest index in
Bb∗ , and k+ the one with largest index, respectively. Now
suppose the agent learns in round i that an option ωij with
(i, j) ∈ Bb∗ arrives in this round. We claim that A will then
decide to propose this option. This is obvious if all options in
Bb∗ are only realized in round i. Otherwise, the agent might
want to wait for an option in a later round. If A proposes, then
his utility is aij . Otherwise, if he waits for another option
from Bb∗ in a later round, then a union bound shows that the
expected utility is at most∑

(i′,j′)∈Bb∗

i′>i

pi′j′ · ai′j′ ≤
∑

(i′,j′)∈Bb∗

i′>i

pi′j′ · 2k
+

< 2k
+

·
∑

(i′,j′)∈Bb∗

pi′j′ ≤ 2k
−−1 ≤ aij ,

where the second-to-last inequality is a consequence from the
construction of the bin. Hence, the first option from the bin
that is realized also gets proposed by A and accepted by P .

Now for each option (i, j) ∈ Bb∗ , the probability that this
option is proposed and accepted is the combination of two
independent events: (1) no other option from Bb∗ was re-
alized in any of the rounds i′ < i, (2) option ωij is real-
ized in round i. The probability for event (2) is pij . For
event (1), we define mi =

∑
(i,j)∈Bb∗

pij . With probabil-
ity
∏

i′<i(1−mi′), no option from Bb∗ is realized in rounds
i′ < i. Note that

∑n
i=1 mi ≤ 1/2. The term

∏n
i=1(1−mi) is

minimized for m1 = 1/2 and mi′ = 0 for 1 < i′ < i. Thus∏n
i=1(1 − mi) ≥ 1/2, i.e., the probability of event (1) is at

least 1/2.
Overall, by linearity of expectation, the expected utility of

P when using φ is at least∑
(i,j)∈Bb∗

1

2
· pij · bij ≥

1

2ℓ
·
∑

(i,j)∈Q

pij · bij ≥
1

8ℓ
·OPT .

Lemma 3. Let ℓ be the number of bins opened by the algo-
rithm. It holds that ℓ = O(logα/ log logα).

Proof. Consider a bin B and its mass pB =
∑

(i,j)∈B pij .
We want to argue that at most O(c/ log c) bins are opened.
To do so, we first condition on having ℓ open bins and strive
to lower bound the number of classes in these ℓ bins.

Consider a bin B starting at Cs. The algorithm adds classes
to B until 2k−1 < 2spB . Thus, s− k+1 > log2(1/pB), i.e.,
the number of classes in Bi is lower bounded by log2(1/pB).

Now consider two bins Bi and Bi+1 and condition on
q = pBi

+ pBi+1
. Together the bins contain at least

log2(1/pBi
) + log2(1/(q− pBi

)) classes. Taking the deriva-
tive for pBi

, we see that this lower bound is minimized when
pBi

= q/2 = pBi+1
. Applying this balancing step repeatedly,

the lower bound on the number of classes in all bins is mini-
mized when pBi = pBj for all bins Bi, Bj . Thus, when open-
ing ℓ bins, we obtain the smallest lower bound on the number
of classes in these bins by setting pBi = 1/ℓ ·

∑
(i,j)∈Q pij <

1/(2ℓ) for all bins Bi. Conversely, when opening ℓ bins, we
need to have at least ℓ log2(2ℓ) classes in these bins.

Now, since we need to put c classes into the bins, we
need to ensure that for the number ℓ of open bins we have
ℓ(log2 ℓ + 1) ≤ c, since otherwise the ℓ bins would require
more than c classes in total. This implies that c = Ω(ℓ log2 ℓ)
and, hence, ℓ = O(c/ log c) = O(logα/ log logα).

Theorem 2. If the agent has α-bounded utilities, there
is a deterministic action scheme such that P obtains an
Ω(log logα/ logα)-approximation of the expected utility for
optimal (online) search.

Observe that the approximation ratio of this algorithm is
tight in general. Consider the instances in Theorem 1 with
α = nO(n). The theorem shows that every scheme can obtain
at most a ratio of O(1/n) = O(log logα/ logα).

3.2 Oblivious Proposals
In the previous section, we considered algorithms for P when
she learns the utility pair for the proposed option. In this
section, we show that (fully) oblivious proposals can be a
substantial drawback for P . Obviously, the lower bound in
Theorem 1 remains intact even for oblivious proposals, when
P does not learn the utility value of the proposed option for
A. For oblivious proposals and α-bounded agent utilities, we
can significantly strengthen the lower bound. In contrast to
the logarithmic approximation guarantee above, we provide a
linear lower bound in α for oblivious proposals.

Theorem 3. There is a class of instances of online dele-
gation with α-bounded utilities for the agent and oblivious
proposals, in which every action scheme φ obtains at most
an O(1/α)-approximation of the expected utility for optimal
(online) search.

Proof. Consider the following class of instances. In Di, there
are two options with the following probabilities and utilities:
ωi1 with pi1 = 1− 1/n and (bi1, ai1) = (0, 1), as well as ωi2

with pi2 = 1/n and (bi2, ai2) = (1, xi), where xi ∈ {1, α}
and α ∈ [1, n]. In the first rounds i = 1, . . . , i∗ − 1 we
have xi = 1, then xi = α for rounds i = i∗, . . . , n. The
expected utility when P performs (undelegated) online search
is 1− (1− 1/n)n ≥ 1− 1/e.

P wants that A proposes any profitable option ωi2 as soon
as possible. As in the proof of Theorem 1, we can assume
that all φi1 = 0 in an optimal scheme – this option has no
value for P and can only raise the incentive to wait for A.
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Due to oblivious proposals, P has to choose φ without be-
ing aware of the value of i∗. For our impossibility result, we
adjust i∗ to the scheme φ chosen by P: Set i∗ ∈ {1, . . . , n} to
the largest number such that

∑n
i=i∗ φi2 ≥ e · n/α, or i∗ = 1

if no such number exists.
First, suppose that i∗ = 1. Then, even if we force A to

propose every option ωi2 as soon as it arises, a union bound
shows that the expected utility of P is upper bounded by∑n

i=1
1
n · φi2 ≤ e

α + 1
n . Hence, P obtains only an O(1/α)-

approximation, for any α ∈ [1, n].
Now suppose that i∗ > 1. Consider an optimal scheme

φ for P . If ωi2 arises in round i, A decides if it is more
profitable to propose i or wait for a later round. Indeed, we
show that A never proposes ωi2 in any round i < i∗. Consider
the expected utility from proposing the first option ωk2 arising
in rounds k = i∗, . . . , n. This is

α ·

(
n∑

k=i∗

1

n

(
1− 1

n

)k−i∗

φk2

)

= α · 1
n
·

n∑
k=i∗

(
1− 1

n

)k−i∗

φk2

>
α

n
· 1
e
·

n∑
k=i∗

φk2 ≥ α

en
· en
α

= 1 ≥ φi2 ,

i.e., strictly larger than the expected utility φi2 from propos-
ing ωi2 in round i < i∗. Hence, A only proposes in rounds
k = i∗, . . . , n. Even if A would be able to propose every op-
tion ωk2 in rounds k = i∗, . . . , n, a union bound implies that
the expected utility of P from these rounds is upper bounded
by
∑n

k=i∗
1
n · φk2 ≤ e

α + 1
n . For any α ∈ [1, n], P obtains

an O(1/α)-approximation.

Theorem 4. If the agent has α-bounded utilities and makes
oblivious proposals, there is a deterministic action scheme
such that P obtains an Ω(1/α)-approximation of the ex-
pected utility for optimal (online) search.

For the scheme, P simply sets φij = 1 for
all (i, j) ∈ Q, where Q is the set returned by
RestrictOptions(D1, . . . ,Dn, 1/(2α)). The key insight is that
by bounding the combined mass of acceptable options by
1/(2α), A is incentivized to propose the first acceptable op-
tion he encounters. Pseudocode as well as the proof of Theo-
rem 4 can be found in the full version [Braun et al., 2022].

4 Misalignment of Principal and Agent Utility
In this section, we consider performance guarantees based
on the amount of misalignment of principal and agent util-
ity. For most of the section, we assume that all utility values
are strictly positive. Consider the smallest β ≥ 1 such that

1

β
· aij
ai′j′

≤ bij
bi′j′

≤ β · aij
ai′j′

for any two options ωij and ωi′j′ in the instance. Then the
preference of P between any pair ωij , ωi′j′ of options is
shared by A – up to a factor of at most β. We term this β-
bounded utilities. Alternatively, consider γ ≥ 1 as a bound

on the utility ratio 1/γ · aij ≤ bij ≤ γ · aij for every single
ωij . Then the utilities are γ2-bounded in the sense defined
above, and we obtain asymptotically the same bounds.

Suppose we choose an arbitrary realization ωi′j′ . Divide
all utility values of P for all realizations by bi′j′ , and all util-
ity values of A by ai′j′ . Note that this adjustment neither
affects the incentives of the players nor the approximation
ratios of our algorithms. Considering ωij with the adjusted
utilities, we see that 1/β · bij/aij ≤ 1 ≤ β · bij/aij , and thus
1/β ≤ bij/aij ≤ β for all ωi′j′ . This condition turns out to
be convenient for our analysis.

Our main idea is to use O(log β) clusters Ck to group all
the options that have a utility ratio between 2k and 2k+1, i.e.,

Ck = {ωij ∈ Ω | 2k ≤ bij/aij < 2k+1}
for k = ⌊log 1/β⌋, . . . , ⌈log β⌉. Our deterministic scheme
restricts the acceptable options to a single cluster Ck∗ . Note
that here P is assumed to see aij upon a proposal. The prin-
cipal determines the cluster k∗, such that the best response by
A (i.e., his optimal online algorithm applied with the options
from that cluster) delivers the largest expected utility for P .
Theorem 5. If principal and agent have β-bounded utilities,
there is a deterministic action scheme such that P obtains an
Ω(1/ log β)-approximation of the expected utility for optimal
(online) search.

Proof. Consider any cluster Ck. We denote by b(A, k) and
a(A, k) the expected utility for P and A when P uses Ck
to determine φ. Now consider a hypothetical algorithm for P
that observes all realizations and chooses the best option from
Ck for P if possible. If there is no such option, it obtains a
utility of 0. Let b(P, k) and a(P, k) be the expected utility of
the hypothetical algorithm for P and A, respectively. Clearly,
b(P, k) ≥ b(A, k) and a(A, k) ≥ a(P, k), but also, by defi-
nition of Ck,

b(A, k) ≥ a(A, k) · 2k ≥ a(P, k) · 2k ≥ b(P, k)/2 .

Now consider the best option for P in hindsight. The best-
option-algorithm for cluster Ck picks the best option in hind-
sight if it comes from cluster Ck. Otherwise, it returns a value
of 0. Let b∗k be the expected utility of this algorithm for P , and
let OPT be the expected utility of the best option in hindsight
for P . Then

OPT =

⌈log β⌉∑
k=⌊log 1/β⌋

b∗k ≤
⌈log β⌉∑

k=⌊log 1/β⌋

b(P, k)

≤
⌈log β⌉∑

k=⌊log 1/β⌋

b(A, k) · 2 .

Hence, since the scheme chooses the cluster k∗ that max-
imizes b(A, k∗), we obtain an Ω(1/ log β)-approximation.
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