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Abstract
For the fundamental problem of fairly dividing a
set of indivisible items among agents, envy-freeness
up to any item (EFX) and maximin fairness (MMS)
are arguably the most compelling fairness concepts
proposed until now. Unfortunately, despite signif-
icant efforts over the past few years, whether EFX
allocations always exist is still an enigmatic open
problem, let alone their efficient computation. Fur-
thermore, today we know that MMS allocations are
not always guaranteed to exist. These facts weaken
the usefulness of both EFX and MMS, albeit their
appealing conceptual characteristics.
We propose two alternative fairness concepts—
called epistemic EFX (EEFX) and minimum EFX
share fairness (MXS)—inspired by EFX and
MMS. For both, we explore their relationships
to well-studied fairness notions and, more impor-
tantly, prove that EEFX and MXS allocations al-
ways exist and can be computed efficiently for ad-
ditive valuations. Our results justify that the new
fairness concepts can be excellent alternatives to
EFX and MMS.

1 Introduction
Fair division is a popular research area, with origins in an-
tiquity and important applications [Brams and Taylor, 1996;
Moulin, 2004]. In a setting that has received much attention
in the last fifteen years, a set of indivisible items is to be dis-
tributed fairly among agents. But what does “fairly” mean?
There is no single answer here and different ways of inter-
preting “fairly” have been considered in the literature.

The first interpretation is comparative. To evaluate an al-
location as fair, each agent compares the bundle of items al-
located to her with bundles of the remaining items. The well-
known notion of envy-freeness [Foley, 1966] is a represen-
tative fairness concept defined this way, according to which
an allocation is fair if each agent prefers the bundle allocated
to her to the bundle allocated to any other agent. Typically,
agents have valuation functions that allow them to evaluate or
compare bundles of items.

The second interpretation is in absolute terms. In this
category, each agent defines a threshold based on her view

of the allocation instance and evaluates as fair those allo-
cations in which she gets a bundle of value that exceeds
this threshold. Proportionality [Dubins and Spanier, 1961;
Steinhaus, 1948] is the representative fairness concept here.
Each agent’s threshold is simply her total value for all items
divided by the number of agents. Then, an allocation is pro-
portional if each agent gets a bundle of items for which her
value exceeds her proportionality threshold.

Unfortunately, a seemingly attractive fairness concept may
not be useful in the setting of indivisible items we consider.
Even though it is undeniably hard to argue that an envy-free
allocation is unfair, envy-freeness has at least two drawbacks.
First, it may not be feasible to achieve. Consider the prob-
lem faced by a library where three computer science books
(the items) are to be given to two CS students (the agents).
Whichever student gets less than two books will be envious
of the other. Second, finding an envy-free allocation may
be a computationally challenging problem. It is not hard to
see that deciding whether an envy-free allocation among two
agents with identical valuations for the items exists is at least
as hard as deciding the paradigmatic NP-hard PARTITION
problem; e.g., see [Bouveret and Lemaı̂tre, 2016]. Propor-
tionality suffers from the same infeasibility and high compu-
tational complexity drawbacks as well.

Several relaxations of envy-freeness proposed in the litera-
ture aim to circumvent this issue. The first one, envy-freeness
up to some item (EF1), introduced by Budish [2011], re-
quires that each agent prefers her own bundle to the bundle
of any other agent, after removing some item from the latter.
EF1 addresses the two above-mentioned issues in an ideal
way. EF1 allocations always exist and can be computed effi-
ciently [Lipton et al., 2004]. Unfortunately, it seems that EF1
has moved way too far and has lost the fairness properties of
envy-freeness. For example, assume that the two students in
our example have a high value for one of the three books.
Then, the allocation that gives one low-value book to one of
them is EF1. This student is indifferent to the bundle of the
other student after removing the high-value book from it.

Intuitively, it is clear that a more fair allocation would
give the two low-value books to one of the students and
the high-value book to the other. This is what motivates
the definition of envy-freeness up to any item (EFX), intro-
duced by Caragiannis et al. [2019b]. An allocation is EFX
if each agent prefers her own bundle to the bundle of any
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other agent, after removing any item from the latter. From
the fairness point of view, EFX is almost as appealing as
envy-freeness. However, despite significant efforts by re-
searchers in the last five years [Plaut and Roughgarden, 2020;
Caragiannis et al., 2019a; Chaudhury et al., 2020; Amana-
tidis et al., 2021; Chaudhury et al., 2021; Mahara, 2021;
Berger et al., 2022], it is still unknown whether EFX is al-
ways feasible for instances with more than three agents. Fur-
thermore, even for the case of three agents where the exis-
tence of EFX allocations is guaranteed, the computational
complexity of the known methods is immense [Chaudhury et
al., 2020; Mahara, 2021].

Among the relaxations of proportionality, the one that has
received the lion’s share of attention uses the so-called max-
imin fair share (MMS), i.e., the maximum value an agent
can attain in any allocation where she is assigned her least
preferred bundle, as threshold. Surprisingly, Kurokawa et
al. [2016] proved that MMS allocations may not always exist.
Since then, research has focused on computing allocations
that approximate MMS; e.g., see [Kurokawa et al., 2018;
Amanatidis et al., 2017; Barman and Krishnamurthy, 2020;
Ghodsi et al., 2018; Garg and Taki, 2020; Feige et al.,
2021]. These MMS-approximations are less appealing as
fairness concepts. An excellent recent survey by Amanatidis
et al. [2022] discusses the above fairness concepts and many
more.

1.1 Our Conceptual and Technical Contribution
The discussion above suggests that the Holy Grail of research
in fair division with indivisible items is to define a concept
that is (1) intuitively, as close to fairness as envy-freeness and
proportionality, (2) always feasible, and (3) efficiently com-
putable. In this paper, we present two such concepts, inspired
by EFX and MMS. Our first one, called epistemic envy-
freeness up to any item (EEFX), is comparative and adapts
the concepts of epistemic envy-freeness defined by Aziz et
al.. An allocation is EEFX if, for every agent, it is possi-
ble to shuffle the items in the remaining bundles so that she
becomes “EFX-satisfied”. An example follows.
Example 1. Consider a fair division instance with three
agents 1, 2, and 3, and eight items a, b, ..., h, with the val-
uations depicted in the next table. Each row has the values
of an agent for the items. The circles indicate the allocation
({a, d, e}, {b, c, f, g}, {h}).

a b c d e f g h

40 2 2 15 15 2 2 2

4 10 10 2 2 25 25 2

20 4 4 7 7 10 4 24

This allocation is EEFX. Agents 1 and 2 are not envious of
any other agent. For agent 3, by reshuffling the items a, ..., g
in the bundles of agents 1 and 2, we can get the alloca-
tion ({a, b, c}, {d, e, f, g}, {h}), in which agent 3 is EFX-
satisfied (note that the definition of EEFX requires that the
reshuffling does not affect the bundle of agent 3). Her value

of 24 for her bundle {h} is at least as high as her value for
bundle {a, b, c} after removing her least-valued item b and
for bundle {d, e, f, g} after removing her least-valued item g.

EEFX is particularly relevant in environments (with pri-
vacy restrictions or of very large scale) in which each agent
knows the allocation instance (i.e., she is aware of all items
and her valuations for them, as well as of the number of
agents) but her knowledge of the allocation is limited to the
contents of her bundle. Then, the agent is as optimistic as
possible in the evaluation of her bundle; she compares it
with each bundle in the allocation of the remaining items
that would be best possible for her. In contrast to EEFX,
the concepts of envy-freeness, EF1, and EFX are knowledge-
sensitive according to the definitions of Aziz et al. [2018].

Our second fairness concept interprets fairness in abso-
lute terms by defining the minimum EFX share (MXS) as
a threshold for each agent. The minimum EFX share of an
agent is the minimum value she has among all allocations in
which she is EFX-satisfied.

Example 2. We compute the minimum EFX share of
agent 2 in Example 1 and show that it is equal to
25. Notice that the agent is EFX-satisfied in allocation
({a, g}, {f}, {b, c, d, e, h}). Indeed, her value is 25, which
is also her value for bundle {a, g} after removing her least-
valued item a. Her value for the other bundle {b, c, d, e, h}
after removing her least-valued item d is only 24. We can see
that agent 2 is not EFX-satisfied in any allocation that gives
her a value of 24. In this case, agent 2 gets her value of 24
by items b and c and at most two other items among a, d, e,
and h. The items f and g should be in the first and third bun-
dle, respectively. These bundles should also have at least two
items among a, d, e, and h. Then, agent 2 will be envious
of some of these two bundles after removing her least-valued
item. Thus, the minimum EFX share of agent 2 is 25.

MXS allocations are similar in spirit to proportional and
MMS allocations. An allocation is MXS if each agent gets a
bundle of value at least her minimum EFX share. We define
our two new fairness concepts formally in Section 2.

We present the following technical results about EEFX and
MXS. First, in Section 3, we explore their relation to MMS
as well as to proportionality up to any item (PROP1), another
relaxation of proportionality [Conitzer et al., 2017]. We show
that every MMS allocation is EEFX, every EEFX allocation
is MXS, and every MXS allocation is PROP1. This chain of
implications puts the new fairness concepts in the spectrum of
existing fairness criteria and extends previous taxonomies by
Bouveret and Lemaı̂tre [2016] and Aziz et al. [2018]. To the
best of our knowledge, the fact that every MMS allocation is
also PROP1 was not known before.

Our main result is a polynomial-time algorithm that com-
putes an EEFX (and, hence, MXS) allocation in any fair di-
vision instance. Our analysis exploits several key ideas from
the fair division literature, such as the concept of ordered in-
stances, which are typically used in the design of approxi-
mation algorithms for MMS since the work of Bouveret and
Lemaı̂tre [2016], the envy cycle elimination algorithm of Lip-
ton et al. [2004], and the fact that applying this algorithm on
ordered instances results in EFX allocations, observed inde-
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pendently by Plaut and Roughgarden [2020] and Barman and
Krishnamurthy [2020]. Our algorithm is essentially identical
to an algorithm used by Barman and Krishnamurthy [2020] to
compute 2/3-MMS allocations. Due to our different fairness
objective, our analysis is considerably different and rather
simpler. In addition to EEFX, we get MXS and 2/3-MMS
as bonus properties for the allocations computed by our algo-
rithm. These results appear in Section 4.

Rather surprisingly, our last technical result states that
computing the minimum EFX share is an NP-hard prob-
lem. This suggests that any efficient algorithm for computing
MXS allocations cannot make explicit use of the minimum
EFX share. This result appears in Section 5. All our results
assume additive valuations. We conclude with a discussion
on extensions of our new fairness concepts and many open
problems in Section 6.

2 Definitions and Notation
Throughout the paper, we use [k] to denote the set {1, 2, ..., k}
for a positive integer k.

A fair division instance I consists of the set of n agents
and m (indivisible) items. We use positive integers to iden-
tify both the agents and the items and denote their sets as [n]
and [m], respectively. Each agent i has a non-negative valu-
ation vi(g) for each item g ∈ [m]. We use the term ordered
instances to refer to instances in which the valuations of all
agents for the items have a common ordering, i.e., they sat-
isfy vi(g) ≥ vi(g

′) whenever vi′(g) > vi′(g
′) for every pair

i, i′ of agents and every pair g, g′ of items. Valuations are ad-
ditive; by slightly abusing notation, we define the valuation
agent i has for the bundle S of items as vi(S) =

∑
g∈S vi(g).

An allocation X = (X1, X2, . . . , Xn) of the items to the
agents is a partition of [m] into n bundles X1, X2, . . . , Xn,
with Xi being the bundle allocated to agent i. Formally, Xi∩
Xj = ∅ for all i ̸= j and ∪ni=1Xi = [m]. We often use Γ to
refer to the set of all allocations of a given instance.

Envy-freeness up to any item (EFX) is among the most
compelling fairness concepts in the literature.
Definition 1 (Envy-freeness up to any item (EFX)). For a
fair division instance, an allocation X = (X1, . . . , Xn) is
envy-free up to any item (EFX) if for any agent i ∈ [n], any
bundle Xk ∈ X , and any item g ∈ Xk such that vi(g) > 0 it
holds that vi(Xi) ≥ vi(Xk \ {g}).

We will say an agent i is EFX-satisfied with an allocation
X if her envy against any other agent vanishes after removing
any single item from that other agent’s bundle. That is, an
allocation X is EFX if every agent is EFX-satisfied with it.1

We are ready to define our first new fairness concept.
Definition 2 (Epistemic EFX (EEFX) and EEFX certifi-
cates). For a fair division instance, an allocation X =
(X1, X2, . . . , Xn) is called epistemic EFX (EEFX) if for
every agent i ∈ [n], there exists an allocation Y =
(Y1, Y2, . . . , Yn) such that Yi = Xi and agent i is EFX-
satisfied with Y . We will refer to such an allocation Y as
an EEFX certificate of agent i for bundle Xi.

1We refer the reader to Section 6 for a discussion on our choice
of including the restriction vi(g) > 0 in Definition 1.

In other words, we can say that an allocation X is epistemic
EFX if there exists an EEFX certificate for every agent with
respect to her bundle in X . Note that, an EFX allocation
trivially serves as an EEFX certificate for every agent, and,
thus, an EFX allocation is EEFX as well.

Our second new fairness concept is similar in spirit to the
well-known MMS fairness property.
Definition 3 (Maximin share (MMS)). For a fair division
instance, we define the maximin share of an agent i ∈ [n],
denoted as MMSi, as follows.

MMSi := max
Z=(Z1,...,Zn)∈Γ

min
j∈[n]

vi(Zj)

Moreover, we say that an allocation is MMS if every agent
receives a bundle of value that is at least as high as her max-
imin share.

Analogously, we will define minimum EFX share (MXS)
and MXS allocations. For a fair division instance, we use
EFXi to denote the collection of all allocations where agent i
is EFX-satisfied. Formally,

EFXi :={Z = (Z1, . . . , Zn) ∈ Γ :

vi(Zi) ≥ max
g∈Zj :vi(g)>0

vi(Zj \ {g}), ∀j ∈ [n]}.

Note that when the above maximum is taken over an empty
set, then it implies that agent i values every item in bundle Zj

at 0, and hence the stated condition is trivially satisfied. We
now define an agent’s minimum EFX share as the least value
she derives from any allocation where she is EFX-satisfied.
Definition 4 (Minimum EFX share, MXS allocations). For
a fair division instance, we define the minimum EFX share
of agent i as MXSi := minZ∈EFXi

vi(Zi). Moreover, we say
that Z = (Z1, . . . , Zn) is an MXS allocation if vi(Zi) ≥
MXSi for every agent i ∈ [n].

One may wonder why we do not define a maximum EFX
share fairness concept using the (similar to MMSi) thresh-
old of maxZ∈EFXi

minj∈[n] vi(Zj) for agent i. Interestingly,
we can show that this gives just an alternative definition for
MMS.

We conclude this section with the definition of proportion-
ality up to some item (PROP1), a variation of the well-known
concept of proportionality.
Definition 5 (Proportionality up to one item (PROP1)). For a
fair division instance, we define the proportionality threshold
for an agent i ∈ [n], denoted by PSi as PSi := vi([m])/n.
An an allocation X = (X1, . . . , Xn) is proportional up to
one item (PROP1) if vi(Xi) ≥ PSi−maxg∈[m]\Xi

vi(g) for
every agent i ∈ [n].

It is well-known—e.g., see [Bouveret and Lemaı̂tre,
2016]—that in every fair division instance, we have MMSi ≤
PSi for every agent i ∈ [n].

3 Relations to Other Fairness Concepts
In this section, we establish interesting connections between
our proposed fairness concepts of EEFX and MXS with pre-
viously well-studied notions of fairness in the literature, sum-
marized in the following chain of implications:

MMS ⇒ EEFX ⇒ MXS ⇒ PROP1
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The connection between EEFX and MXS allocations fol-
lows easily by the definitions.

Theorem 1 (EEFX ⇒ MXS). An EEFX allocation in a fair
division instance is also MXS.

Proof. Let X = (X1, . . . , Xn) denote an EEFX allocation
in a fair division instance. Fixing an agent i ∈ [n], we will
prove that vi(Xi) is at least as high as her minimum EFX
share. By definition, since X is an EEFX allocation, there
must exist an EEFX certificate Y = (Y1, . . . , Yn) for agent i
such that Yi = Xi and Y ∈ EFXi. Therefore, we can write

vi(Yi) ≥ min
Z∈EFXi

vi(Zi) = MXSi.

Since, the bundles Xi and Yi are identical, we obtain
vi(Xi) ≥ MXSi, thereby completing the proof.

The opposite implication, however, is not true as the fol-
lowing example shows.

Example 3 (MXS ⇏ EEFX). Consider the fair division
instance with three agents having identical valuations v over
six items g1, . . . , g6: items g1 and g2 have a value of 1, while
each of the remaining items has a value of 2. Consider an
allocation X = (X1, X2, X3), with X1 = {g1, g2}, X2 =
{g3, g4} and X3 = {g5, g6}, and notice that all agents are
EFX-satisfied. Hence, we have MXSi ≤ 2 for each agent i.

Let us now consider the allocation X ′ = (X ′
1, X

′
2, X

′
3),

with X ′
1 = {g3}, X ′

2 = {g1, g2, g4} and X ′
3 = {g5, g6}.

This is an MXS allocation since every agent has a bundle
of value greater or equal to 2. However, X ′ is not EEFX.
Indeed, consider an allocation Y in which agent 1 gets item
g3. Clearly, agent 1 would not be EFX-satisfied if Y had
the three items g4, g5, g6 in the same bundle. Furthermore,
agent 1 would not be EFX-satisfied if one of g1 or g2 are in
the same bundle with two items among g4, g5, g6. The only
case left for Y is when there is a bundle containing one of
the items g4, g5, g6 and both item g1 and g2; agent 1 would
not be EFX-satisfied in this case either. Thus, for agent 1,
there is no way to reallocate the remaining items and make
her EFX-satisfied.

We now present a non-trivial connection where we prove
that any maximin share allocation necessarily admits an
EEFX-certificate for every agent.

Theorem 2 (MMS ⇒ EEFX). An MMS allocation in a fair
division instance is also EEFX.

Proof. Consider a fair division instance. We begin with a
definition. For an allocation Z = (Z1, . . . , Zn) and an agent
i ∈ [n] in the fair division instance, denote by rZ,i the (n −
1)-entry vector with entries the values vi(Zj) for j ∈ [n] \
{i}, sorted in non-decreasing order, i.e., the vector rZ,i =

⟨rZ,i
1 , rZ,i

2 , . . . , rZ,i
n−1⟩ satisfies rZ,i

t ≤ rZ,i
t+1 for t ∈ [n− 2].

Let X = (X1, . . . , Xn) be an MMS allocation in the
fair division instance and i ∈ [n] any agent. Let Y =
(Y1, . . . , Yn) be an allocation with Yi = Xi so that rY,i is
lexicographically minimum. We will show that Y is an EEFX
certificate for agent i and bundle Xi, proving that the alloca-
tion X is also EEFX.

Assume otherwise. Then, by definition, there exists j1 ∈
[n] \ {i} so that for the item g ∈ Yj1 for which agent i has the
minimum non-zero value among the items in Yj1 , it holds

vi(Xi) < vi(Yj1)− vi(g). (1)

Now, assume that vi(Yj) > vi(Xi) for every j ∈ [n] \ {i}.
Then, for the allocation Z ′ = (Z ′

1, . . . , Z
′
n) that is obtained

from Y after removing item g from bundle Yj1 and adding
it to bundle Yi, we obtain an allocation in which vi(Z

′
j) >

vi(Xi) ≥ MMSi for every j ∈ [n]. This follows by our
assumption for j ∈ [n] \ {i, j1}, since vi(g) > 0 for j = i,
and by eq. (1) for j = j1 since vi(Z

′
j1
) = vi(Yj1)− vi(g) >

vi(Xi). The existence of allocation Z ′ contradicts the fact
that allocation X is MMS.

So, there must be j2 ∈ [n] \ {i, j1} so that vi(Yj2) ≤
vi(Xi). Now, consider the allocation Z ′′ = (Z ′′

1 , . . . , Z
′′
N )

obtained after removing item g from bundle Yj1 and adding
it to bundle Yj2 . Notice that vi(Z

′′
j ) = vi(Yj) for j ∈

[n] \ {j1, j2}, vi(Z ′′
j1
) = vi(Yj1) − vi(g) < vi(Yj1) and,

vi(Z
′′
j2
) = vi(Yj2)+vi(g) ≤ vi(Xi)+vi(g) < vi(Yj1), using

the definition of j2 and eq. (1). Hence, rZ
′′,i is lexicograph-

ically smaller than rY,i and, furthermore, Z ′′
i = Xi, contra-

dicting the assumption on Y . This completes the proof.

The implication of Theorem 2 is strict. As we show in
the next section, EEFX allocations always exist. This is not
the case for MMS, as Kurokawa et al. [2018] have proved.
Then, any EEFX allocation in their counter-example instance
cannot be MMS.

We conclude the section by establishing a connection be-
tween MXS and PROP1.

Theorem 3 (MXS ⇒ PROP1). An MXS allocation in a fair
division instance is also PROP1.

Proof. Consider a fair division instance and let X =
(X1, . . . , Xn) be an MXS allocation. Clearly, the propor-
tionality and, consequently, the PROP1 constraints are sat-
isfied for every agent i with MXSi = PSi. Now, consider
an agent i ∈ [n] with MXSi < PSi; we will show that X
satisfies the PROP1 constraints for agent i as well.

Assume otherwise that

vi(Xi) < PSi − vi(g) (2)

for every item g ∈ [m] \ Xi. Let Y = (Y1, . . . , Yn) be an
allocation in EFXi such that vi(Yi) = MXSi < PSi. Since∑

j∈[n] vi(Yj) = n · PSi, there exists k ∈ [n] \ {i} such
that vi(Yk) > PSi. By eq. (2), we have vi(Yk) > vi(Xi),
meaning that there exists an item g∗ that belongs to Yk but
not to Xi. By the definition of EFXi, we have

MXSi = vi(Yi) ≥ vi(Yk)− vi(g
∗) > PSi − vi(g

∗)

and, using eq. (2), we get

vi(Xi) < PSi − vi(g
∗) < MXSi,

contradicting the fact that allocation X is MXS.

Again, the opposite implication is not true.
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Algorithm 1 Computing EEFX allocations

Input: A fair division instance I
Output: An allocation X in I

1: I ′ ← Order(I);
2: X ′ ← EnvyCycleElimination(I ′);
3: L← PickingSequence(I ′, X ′);
4: X ← Pick(I, L);
5: return X

Example 4. Consider the fair division instance with four
items and two agents with identical valuations of 1 for each
of them. Then, each agent gets two items in each EFX allo-
cation making the minimum EFX share equal to 2. So, the
allocation in which agent 1 gets only one item is not MXS. It
is PROP1 though.

4 Existence and Efficient Computation of
EEFX Allocations

We now present our main result.

Theorem 4. In any fair division instance, an EEFX alloca-
tion exists and can be computed in polynomial time.

We will prove Theorem 4 using Algorithm 1. We remark
that this is essentially identical to the algorithm proposed by
Barman and Krishnamurthy [2020] to compute 2/3-MMS al-
locations. However, proving that the algorithm returns EEFX
allocations requires additional arguments. Interestingly, our
analysis is relatively simple.

Algorithm 1 takes as input a fair division instance I con-
sisting of m items and n agents with valuations {vi}i∈[n] and
works as follows:

• It first (Step 1) executes routine Order, which creates
an ordered instance I ′ by modifying instance I. In-
stance I ′ has the same set of agents as I. The items
of I are arbitrarily renamed as g1, g2, . . . , gm and the
valuation v′i of agent i ∈ [n] is defined as follows:
for j = 1, 2, . . . ,m, the valuation v′i(gj) of agent
i for item gj is the jth highest value in the multiset
{vi(g1), vi(g2), . . . , vi(gm)}.

• Next, in Step 2, the algorithm executes the envy cycle
elimination algorithm of Lipton et al. [2004] on instance
I ′ to get an intermediate allocation X ′ = (X ′

1, . . . , X
′
n).

• Then, in Step 3, the routine PickingSequence takes as
input instance I ′ and allocation X ′ and computes the
picking sequence L = [L1, . . . , Lm] as follows. For
j = 1, 2, . . . ,m, Lj is the agent who gets item gj in
allocation X ′, i.e., gj ∈ X ′

Lj
.

• Finally, in Step 4, the routine Pick is executed with in-
put the instance I and the picking sequence L to com-
pute the allocation X = (X1, . . . , Xn) as follows. Pick
runs m rounds, one for each item. In round j, agent Lj

picks the highest-valued item (breaking ties using a tie-
breaking rule) that has not been allocated to any agent in
rounds 1, 2, . . . , j − 1.

Algorithm 1 returns allocation X as output.

Algorithm 1 clearly runs in polynomial time. To complete
the proof of Theorem 4, we will show (in Lemma 3) that al-
location X is EEFX. To do so, we will exploit two crucial
properties maintained by the algorithm. The first one follows
by a result of Plaut and Roughgarden [2020] and Barman and
Krishnamurthy [2020], who proved that the application of the
envy cycle elimination algorithm on ordered fair division in-
stances produces an EFX allocation.

Lemma 1 (Plaut and Roughgarden [2020]). The allocation
X ′ of instance I ′ is EFX.

The second crucial property is given by the next lemma.

Lemma 2. For every agent i ∈ [n], there exists a bijection
πi : [m]→ [m] such that the following are true:

• πi(g) ∈ Xi and vi(πi(g)) ≥ v′i(g) for every g ∈ X ′
i .

• πi(g) ̸∈ Xi and vi(πi(g)) ≤ v′i(g) for every g ̸∈ X ′
i .

Proof. Let i ∈ [n] be an agent. We will refer to the items us-
ing the renaming g1, g2, . . . , gm used by routine Order. Let
σi : [m] → [m] be a permutation such that gσi(j) is agent
i’s jth most valuable item according to valuation function vi.
Formally, for every j1, j2 ∈ [m] such that j1 < j2, we have
vi(gσi(j1)) ≥ vi(gσi(j2)). Furthermore, when vi(gσi(j1)) =
vi(gσi(j2)), the tie between items gσi(j1) and gσi(j2) is re-
solved in favour of gσi(j1) during the execution of routine
Pick in Step 4 of Algorithm 1. By the definition of the or-
dered instance I ′, it holds that vi(gσi(j)) = v′i(gj) for every
j ∈ [m].

We define the function πi : [m] → [m] as follows. For
every item gj ∈ X ′

i , define πi(gj) to be the item picked in
round j of the execution of Pick in Step 4 of Algorithm 1.
For k = 1, . . . ,m−|X ′

i|, consider the item g that is kth in the
ordering g1, g2, . . . , gm, ignoring the items in X ′

i . Set πi(g)
to be the kth item in the ordering gσi(1), gσi(2), . . . , gσi(m),
ignoring the items in Xi.

Clearly, πi is a bijection. Furthermore, by the definition of
the picking sequence L, for every item gj ∈ X ′

i , it is agent
i who picks at round j of the execution of Pick at Step 4
of Algorithm 1 (i.e., Lj = i), and thus, πi(gj) ∈ Xi. The
definition of πi(gj) for every gj ̸∈ X ′

i ensures that πi(gj) ̸∈
Xi.

Now, notice that, for every gj ∈ X ′
i , exactly j − 1 items

have been picked before round j (of the execution of Pick in
Step 4). So, some item in the set {gσi(1), . . . , gσi(j)}, which
are the j highest-valued items for agent i, will be available
and will be picked by agent i at round j. Thus, πi(gj) ∈
{gσi(1), . . . , gσi(j)} and vi(πi(gj)) ≥ vi(gσi(j)) = v′i(gj).

Finally, we prove that vi(πi(gj)) ≤ v′i(gj) for ev-
ery item gj ̸∈ X ′

i . Assume otherwise and let ℓ be
the smallest integer in [m] such that gℓ ̸∈ X ′

i and
vi(πi(gℓ)) > v′i(gℓ) = vi(gσi(ℓ)), meaning that πi(gℓ) ∈
{gσi(1), . . . , gσi(ℓ−1)}. Also, for every t < ℓ such that
gt ̸∈ X ′

i , it must also be that πi(gt) ∈ {gσi(1), . . . , gσi(ℓ−1)}
since, by the definition of πi, πi(gt) precedes πi(gℓ) in
the ordering gσi(1), . . . , gσi(m). Finally, as we observed
above, for every t < ℓ such that gt ∈ X ′

i , πi(gt) ∈
{gσi(1), . . . , gσi(t)} ⊆ {gσi(1), . . . , gσi(ℓ−1)}. We conclude
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that {πi(g1), . . . , πi(gℓ)} ⊆ {gσi(1), . . . , gσi(ℓ−1)}, contra-
dicting the fact that πi is a bijection.

We are now ready to complete the proof of Theorem 4 by
proving the next lemma.

Lemma 3. Allocation X is EEFX.

Proof. Consider agent i ∈ [n] and let πi be the bijection de-
fined in Lemma 2. Define the allocation Y with Yj = {πi(g) :
g ∈ X ′

j} for j ∈ [n]. Since πi is a bijection, allocation Y is
well-defined. Also, by Lemma 2, Yi = Xi. We will prove
that Y is an EEFX certificate for agent i with bundle Xi.

Let j ∈ [n] \ {i} and g∗ be the item of bundle X ′
j such

that πi(g
∗) (which, by definition, belongs to bundle Yj) has

minimum non-zero value according to vi. Thus, proving
vi(Yi) ≥ vi(Yj \ {πi(g

∗)}) is enough to complete the proof.
Since g∗ ̸∈ X ′

i and vi(πi(g
∗)) > 0, Lemma 2 implies that

π(g∗) ̸∈ Xi and v′i(g
∗) > 0. Then, the fact that X ′ is EFX

with respect to the valuations v′ (from Lemma 1) implies

v′i(X
′
i) ≥ v′i(X

′
j \ {g∗}). (3)

Now, the properties of πi from Lemma 2 yield

vi(Yi) =
∑
g∈X′

i

vi(πi(g)) ≥
∑
g∈X′

i

v′i(g) = v′i(X
′
i) (4)

and

v′i(X
′
j \ {g∗}) =

∑
g∈X′

j\{g∗}

v′i(g) ≥
∑

g∈X′
j\{g∗}

vi(πi(g))

= vi(Yj \ {πi(g
∗)}). (5)

By applying equations (4), (3), and (5), we get the desired
inequality vi(Yi) ≥ vi(Yj \ {πi(g

∗)}).

We remark that the complexity of verifying if a given allo-
cation is EEFX is currently an open problem. Fortunately,
Lemma 3 implies that agents can trust that the allocation
computed by Algorithm 1 is EEFX. Moreover, note that the
proof of Lemma 3 shows that Algorithm 1 can be used to
explicitly provide to each agent her EEFX certificate in poly-
nomial time.

By Theorems 1 and 4, we obtain the next corollary. Pareto-
optimality follows since any Pareto-improvement of an MXS
allocation is MXS as well.

Corollary 1. In any fair division instance, there exists a
Pareto-optimal MXS allocation. Furthermore, an MXS al-
location can be computed in polynomial time.

5 Computing the Minimum EFX Share
We now present a hardness result for computing the mini-
mum EFX share, which may come as a surprise given the
positive result in Corollary 1. Fortunately, Algorithm 1
computes MXS allocations without computing the minimum
EFX share of any agent at any point of its execution.

Theorem 5. Computing the minimum EFX share of the
agents in a fair division instance is NP-hard.

BALANCEDPARTITION

Input: A set N = {x1, . . . , x2t} of positive integer
values such that

∑2t
h=1 xh = 2T for t, T ∈ N

Problem: Does there exist a balanced partition of N ,
i.e., an equipartition (S,N \ S) of the elements in N

(i.e., |S| = t) such that
∑

h∈S xh =
∑

h∈N\S xh?

Proof. We prove the theorem by developing a polynomial-
time reduction from the NP-hard problem of BALANCED-
PARTITION [Garey and Johnson, 1979].

Starting from an instance ϕ of BALANCEDPARTITION with
a set N of elements and parameters t and T , we construct a
fair division instance I(ϕ) as follows. For h = 1, ..., 2t, there
is an element item corresponding to the element xh ∈ N ;
there is also an extra item 2t+1. There are two agents having
identical valuations denoted by v; the value both agents have
is 4T − xh for the element item h ∈ [2t] and 2T for the extra
item 2t+ 1. Our reduction is clearly polynomial-time.

For every allocation X = (X1, X2) in I(ϕ), define the
induced partition (SX , N \ SX) as follows. Let i ∈ {1, 2}
be such that 2t + 1 ∈ Xi. Then, SX = {xh ∈ N : h ∈
Xi}. The next two lemmas state structural properties of EFX
allocations and their induced partitions.

Lemma 4. Let X = (X1, X2) be an EFX allocation of I(ϕ).
Then, its induced partition (SX , N \ SX) is an equipartition
of N .

Proof. Let t1 and t2 be the number of element items that bun-
dles X1 and X2 have. Let i ∈ {1, 2} be such that the extra
item 2t + 1 belongs to bundle Xi. Consequently, |SX | = ti
and |N \ SX | = t3−i. Since X is EFX, bundle X3−i cannot
be empty; let g be the least valued item in X3−i.

By the definition of valuations, we have∑
h∈SX

xh −
∑
h ̸∈SX

xh = (4ti − 4t3−i)T − v(Xi \ {2t+ 1})

+ v(X3−i). (6)

Since agent 3 − i is EFX-satisfied and
∑

h∈SX
xh ≤ 2T ,

equation (6) yields

2T ≥
∑
h∈SX

xh −
∑
h ̸∈SX

xh ≥ (4ti − 4t3−i)T,

i.e., ti − t3−i ≤ 1/2. Also, since agent i is EFX-satisfied,
the facts

∑
h ̸∈SX

xh ≤ 2T and v(g) < 4T , and equation (6)
yield
−2T ≤ (4ti − 4t3−i)T − v(Xi) + v(X3−i \ {g})

+ v(2t+ 1) + v(g) < (4ti − 4t3−i + 6)T,

i.e., ti − t3−i > −2. Since ti + t3−i = 2t the difference ti −
t3−i must be an even integer, and ti = t3−i is the only case
allowed by the inequalities −2 < ti − t3−i ≤ 1/2, implying
that SX is an equipartition.

Lemma 5. Let X = (X1, X2) be an EFX allocation of I(ϕ)
and i ∈ {1, 2} is such that 2t+ 1 ∈ Xi. Then,

v(Xi) ≥ v(X3−i) ≥ v(Xi \ {2t+ 1}).
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Proof. Notice that the rightmost inequality follows since
agent 3 − i is EFX-satisfied. Now, by the definition of the
valuations, the fact that the induced partition (SX , N \ SX)
of allocation X is actually an equipartition (by Lemma 4),
and since

∑
h∈Sx

xh ≤ 2T , we have

v(Xi) = 2T +
∑
h∈SX

(4T − xh)

= 2T + v(X3−i) +
∑
h ̸∈SX

xh −
∑
h∈SX

xh ≥ v(X3−i),

thus proving the leftmost inequality as well.

We are now ready to establish a connection between any
EFX allocation and its induced equipartition.

Lemma 6. Let X = (X1, X2) be an EFX allocation of I(ϕ)
that induces the partition (SX , N \ SX) of N . Then

min{v(X1), v(X2)}+min

 ∑
h∈SX

xh,
∑
h ̸∈SX

xh

 = 4tT.

Proof. Let i ∈ {1, 2} be such that 2t + 1 ∈ Xi. Since
both bundles Xi and X3−i have t element items each (by
Lemma 4), the inequality v(Xi) ≥ v(X3−i) from Lemma 5
implies that

min{v(X1), v(X2)} = v(X3−i) =
∑
h ̸∈SX

(4T − xh)

= 4tT −
∑
h ̸∈SX

xh, (7)

and the inequality v(X3−i) ≥ v(Xi\{2t+1}) from Lemma 5
yields

∑
h ̸∈SX

(4T − xh) ≥
∑

h∈SX
(4T − xh) and, equiv-

alently,

min

 ∑
h∈SX

xh,
∑
h ̸∈SX

xh

 =
∑
h ̸∈SX

xh. (8)

The lemma follows by equations (7) and (8).

Lemma 6 implies that there exists an EFX allocation X
with min{v(X1), v(X2)} = (4t − 1)T (and, thus, the min-
imum EFX share of both agents is at most (4t − 1)T ) if
and only if its induced partition is balanced. To complete
the proof of correctness for our reduction, we need to prove
that every balanced partition is the induced partition of some
EFX allocation; we do so in the following.

Consider the balanced partition (S,N \ S), i.e.,∑
h∈S xh =

∑
h ̸∈S xh. Let us consider the allocation X =

(X1, X2) where X1 = {h ∈ [2t] : xh ∈ S} ∪ {2t + 1} and
X2 = {h ∈ [2t] : xh ∈ N \ S}. Note that it is straightfor-
ward to verify that the allocation X has the equipartition S as
induced partition. To complete the proof, we will show that
X is EFX.

For the sake of contradiction, assume otherwise that X
is not EFX. Since S is an equipartition, it is trivial to see
that v(X1) ≥ v(X2). Therefore, the only possibility is that
agent 2 is not EFX-satisfied. Then, the item 2t + 1 is the

least-valued item in bundle X1 and the fact that agent 2 is not
EFX-satisfied yields

0 > v(X2)− v(X1 \ {2t+ 1})

=
∑
h ̸∈S

(4T − xh)−
∑
h∈S

(4T − xh)

= 4(t2 − t1)T +
∑
h ̸∈S

xh −
∑
h∈S

xh.

Thus, either t1 ̸= t2 and (S,N \ S) is not an equipartition or
t1 = t2 but

∑
h ̸∈S xh <

∑
h∈S xh, meaning that (S,N \ S)

is an equipartition but not balanced. In any case, we obtain
the desired contradiction.

6 Discussion

We have presented epistemic EFX and minimum EFX share,
two new fairness concepts which are defined using the well-
known EFX fairness notion. We have adopted the origi-
nal definition of EFX by Caragiannis et al. [2019b] here
and used it in all our definitions. A simpler definition does
not have the restriction vi(g) > 0 (see Definition 1) and
yields a slightly stronger fairness notion, sometimes called
EFX0 [Kyropoulou et al., 2020]. Using EFX0, we can define
the variations EEFX0 and MXS0 in a similar way we defined
EEFX and MXS. With the exception of Theorem 2, our re-
sults carry over to EEFX0 and MXS0. Interestingly, we can
show that MMS does not imply EEFX0. So, we have used
the standard EFX definition, which allows us to establish the
seemingly novel implication MMS⇒ PROP1 in Section 3.

Our work reveals many open problems. We have al-
ready mentioned that, in addition to being EEFX and MXS,
the allocations computed by Algorithm 1 are 2/3-MMS as
well [Barman and Krishnamurthy, 2020]. Are there EEFX
allocations with better MMS guarantees possible? Can they
be computed in polynomial time? Combining EEFX with
other important fairness properties is also interesting. Are
there EEFX allocations that are also EF1?

Furthermore, proving that EEFX and MXS are compat-
ible with efficiency could nicely complement their fairness
properties. For example, one question we have left open is
whether Pareto-optimal EEFX allocations exist. Also, notice
that the allocation we showed to be EEFX in Example 1 has
maximum social welfare (i.e., maximum total value for the
agents). It is tempting to conjecture that this is the case in
general and EEFX has a low price of fairness [Caragiannis et
al., 2012; Bertsimas et al., 2012]. This deserves investigation
for both EEFX and MXS.

We remark that our main result (Theorem 4) holds for
chores as well (where agents have costs, instead of values, for
the items) with minor modifications in our arguments. Ex-
ploring the case of chores more systematically or even sce-
narios with mixed items, where an item can be good to some
agents and a chore to others [Aziz et al., 2022], are possible
directions for further work. Finally, it is certainly interesting
to explore how/whether the results we present here generalize
to non-additive valuations.
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