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Abstract

We study contention resolution (CR) on a shared
channel modelled as a game with selfish players.
There are n agents and the adversary chooses some
k ≤ n of them as players. Each participating player
in a CR game has a packet to transmit. A trans-
mission is successful if it is performed as the only
one at a round. Each player aims to minimize its
packet latency. We introduce the notion of adver-
sarial equilibrium (AE), which incorporates adver-
sarial selection of players. We develop efficient de-
terministic communication algorithms that are also
AE. We characterize the price of anarchy in the CR
games with respect to AE.

1 Introduction

Agents using a shared channel concurrently need to resolve
contention for access to the shared medium if they want to
broadcast on the channel as quickly as possible. There are
n agents and the adversary chooses some k ≤ n of them as
players, each having a packet to transmit. A packet is trans-
mitted successfully if there are no other simultaneous trans-
missions. The challenge is to resolve contention while not
knowing the selection of the k participants in advance. Per-
formance of algorithms scheduling transmissions is measured
by latency defined as the delay of the last transmitted packet.
Contention resolution on a shared channel has been defined in
context of Ethernet by [Metcalfe and Boggs, 1976], and has
won Metcalfe the 2023 Turing Award. It has been extensively
studied in cooperative settings, see, e.g., [Chlebus, 2001;
De Marco et al., 2019].

[Fiat et al., 2007] initiated the work on contention resolu-
tion algorithms for a shared channel that provide the number
of contenders as feedback and selfish agents seek to mini-
mize their individual latency costs. They designed random-
ized algorithms that are Nash equilibria with bounded latency.
[Christodoulou et al., 2014] studied games on a shared chan-
nel where the cost of each agent depends on the number of
attempted transmissions before success. They designed ran-
domized algorithms that are Nash equilibria with bounded ex-
pected cost.

1.1 Summary of Contributions
We study contention resolution (CR) games where selfish
agents use only deterministic strategies. We assume mini-
mal feedback from the channel in that once a player success-
fully transmits, it receives an acknowledgment of this fact and
may no longer contend for access to the medium. To provide
a framework facilitating design of equilibria, we incorporate
the adversary who chooses a configuration of k players from
among all n agents. We introduce a concept of adversar-
ial equilibrium (AE) for such games. AE models a situation
where the players are risk averse so they would not deviate
even if there exist one configuration in the game that could
be chosen by the adversary and make them worse-off. This
concept combines a notion of classical worst-case adversary
from distributed computing [Greenberg and Winograd, 1985;
Komlós and Greenberg, 1985], with that of Nash equilibrium
and Pareto optimal solution concepts from game theory [Os-
borne and Rubinstein, 1994]. AE is Pareto optimal in a sense
that for any player there is no alternative strategy that is as
good for each configuration, and strictly better for at least
one configuration.

We design efficient deterministic communication algo-
rithms that are also AE, with sublinear maximum latency. A
summary of our communication algorithms along their per-
formance is given in Table 1. The existence of such algo-
rithms allows us to consider the price of anarchy and the price
of stability [Nisan et al., 2007; Maschler et al., 2020] in CR
games with respect to AE.

Our equilibria with deterministic strategies imply an up-
per bound of O(1) on the price of stability (PoS) in the CR
game for any n and k = 2 and k = 3. To compare, [Fiat
et al., 2007] design Nash equilibria in randomized strategies
in their (different CR) model, achieving O(n) latency with
overwhelming probability.

We characterize the price of anarchy (PoA) by showing it
is in the interval [ n

Θ(log n) ,
n+1

Θ(log n) ] when k = 2 and it is un-
bounded when k ≥ 3. In comparison, [Fiat et al., 2007] prove
that PoA is always unbounded in their model of shared chan-
nel, and PoS is O(1) with high probability.

A CR game can be modeled as a simultaneous play of an
extensive game, see, e.g., [Nisan et al., 2007, Sec. 3.7]. A
special kind of an extensive game is a repeated game, where
each stage is the same game. Our game is quite different
because the games played in each stage (time) might be dif-
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Class Active Players Algorithm Max-Latency PoS, Theorem 4 PoA, Theorem 5
All k ≥ 3 Persistent RR(n) O(n), [Full version] n

Θ(k log(n/k)) unbounded
GT k ≥ 2 Noisy GTRR(n) O(n), Theorem 1 n

Θ(k log(n/k)) unbounded

GT k = 2 Half Size(n) O(log n), Theorem 2 O(1)
[

n
Θ(log n) ,

n+1
Θ(log n)

]
GT k = 3 Alt Rec(n) O(log n), Theorem 3 O(1) unbounded

Table 1: Our results. Grim-Trigger protocols (GT), see Section 2, is a subclass of all protocols (All). Bounds on PoS in the table are derived
by dividing the latency of each algorithm by the known lower bound Ω(k log(n/k)) on latency of (n, k)-selectors, which is the optimal
outcome without selfish agents.

ferent. A player who deviates and transmits successfully, no
longer participates in the game and cannot be “punished”
later for its misbehavior. For this reason “folk theorems”
[Maschler et al., 2020; Osborne and Rubinstein, 1994] about
cooperation and punishment in repeated games do not apply,
see [Fiat et al., 2007]. On the other hand, designing equilib-
ria is impossible without using an appropriate “punishment”
mechanism. [Fiat et al., 2007] used deadlines as such a mech-
anism, and using it showed existence of equilibria. We use a
grim trigger punishment mechanism to design our equilibria.

1.2 Related Work on Cooperative Contention
Resolution

Shared channels model contention occurring in local-area
networks, see [Metcalfe and Boggs, 1976; Chlebus, 2001].
[Bender et al., 2005] proposed to study broadcasting in shared
channels with queue-free stations in the framework of adver-
sarial queuing. [Chlebus et al., 2012] introduced determin-
istic distributed broadcast performed by stations with queues
in adversarial shared channels. [Anantharamu et al., 2019]
studied latency of broadcasting by deterministic algorithms in
shared channels with adversarial packet injection. The mean-
ing of “adversarial” in these papers refers to the way of how
players are generated and is different to our adversary, who
decides which k ≤ n players are present in a configuration of
the game. These papers do not study game theoretic settings.

Contention resolution (CR) algorithms have been studied
to help multiple users use efficiently a shared channel. Ini-
tially it was assumed that agents would respect the given al-
gorithm. [Greenberg and Winograd, 1985] proved a lower
bound Ω(k logk n) on the length of CR protocols, later im-
proved in [Clementi et al., 2001], who showed a lower bound
Ω(k log(n/k)). [Komlós and Greenberg, 1985] proved that
there exist CR protocols of length O(k log(n/k)), matching
the lower bound in [Clementi et al., 2001], but their proof
was only existential. Later, [Kowalski, 2005] showed a poly-
nomial time CR protocol of length O(k logc n), for a con-
stant c > 1, which employs partial selectors by [Indyk, 2002;
Chlebus and Kowalski, 2005], efficient dispersers ([Ta-Shma
et al., 2007]) and superimposed codes ([Kautz and Singleton,
1964] and [Porat and Rothschild, 2011]).

Acknowledgement-based shared-channel algorithms, con-
sidered in this work, have been extensively studied in various
communication problems, both deterministic and randomized
[Abramson, 1970; Chlebus et al., 2012; De Marco and Sta-
chowiak, 2017; Hradovich et al., 2021; Komlós and Green-
berg, 1985; Kowalski, 2005].

2 Technical Preliminaries
There are n selfish agents (players), each having a single
packet to be broadcast on a shared channel. We will use
the term agent and player interchangeably. Each agent has
a unique name (id) which is an integer in the range [n].
The communication is in synchronous time slots (also called
rounds or steps, interchangeably).

A shared channel. If only one agent transmits a message
in a round then the transmission is successful. If two or more
agents transmit their packets at the same time slot then there
is a collision on the channel and none of them is success-
ful. Agents attached to the channel receive feedback in each
round. In the model of acknowledgements we use, a success-
ful transmission results in the transmitting agent receiving an
acknowledgement (ack) while the feedback for other agents
is undetermined. If an agent transmits a dummy message to
increase contention, then this is a noisy transmission.

2.1 Contention Resolution Games
A distributed algorithm executed by an agent serves as its
strategy. We consider only deterministic algorithms. An
algorithm determines for each round if the agent transmits,
pauses, or possibly halts and exits. An algorithm is oblivious
if the sequence of attempts to transmit and pauses for each
agent is determined in advance and encoded as a sequence of
zeros and ones. An oblivious algorithm can be represented
as a binary array with n rows, row i representing agent i’s
schedule of transmissions. The number of columns in such
array is an upper bound on the algorithm’s running time. An
array representing an oblivious algorithm, with the property
that if k agents only participate in an execution and each of
them succeeds in its transmission, is an (n, k)-selector.

Each player executes the same deterministic algorithm de-
termined by the parameters n, k. Player’s actions are deter-
mined by its unique id. In the course of a game, the algo-
rithm executed by a player could use feedback in a round to
define its action in the next round(s). In the model with ac-
knowledgements, a player can only hear acknowledgement of
its own successful transmission, i.e., it follows a hardwired
schedule of transmissions until it hears acknowledgement,
and then it switches off.

A game configuration is as a subset of k ≤ n agents des-
ignated as players and none of the players knows who other
k − 1, players are. Let Fk

n be the set of all k-element sub-
sets of [n] = {1, . . . , n}, that is, the set of all possible game
configurations. Initially an adversary chooses a configuration
K ∈ Fk

n and informs every player of their status with respect
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to the configuration. We refer to our game as a CR game
with acknowledgements. Any algorithm (strategy) for player
i, usually denoted si ∈ {0, 1,1×}∗, could be modelled using
two constructs:

• 0/1 sequence for player i, where 1, “transmission one”,
in position t means that i transmits in step t (unless it
has already transmitted successfully and switched off),
and 0 means that it is idle in step t. Players can also
transmit a “noisy one”, denoted 1×. If player i transmits
1× in step t, their packet is not transmitted even if no one
else transmits. If any j (j ̸= i), transmits 1 in step t, they
are unsuccessful.

• The adaptive switch-off rule: once a player receives an
acknowledgement of its successful transmission, it stops
following the activities encoded in the sequence (it could
also be viewed as the agent swapping all next positions
of the sequence to zeros).

Adversarial equilibria. An oblivious algorithm (s1, s2,
. . . , sn) for n players is called an (n, k)-adversarial equilib-
rium, (n, k)-AE, iff for each player i ∈ [n] and any change of
his strategy (a.k.a. a deviation) from si to some other strategy
s′i ̸= si (and all other players j ̸= i following their strategies
sj), if there is a configuration K of k players for which the
change strictly decreases the latency of player i, then there is
a configuration K ′ of k players for which the change strictly
increases the latency of player i. K (K ′, resp.) is called an
improving (worsening, resp.) configuration for player i un-
der deviation s′i. More formally, s = (s1, s2, . . . , sn) is an
(n, k)-AE, if and only if

∀i ∈ [n] ∀s′i, s′i ̸= si :(
∃K ∈ Fk

n : lati((s
′
i, s−i),K) < lati((si, s−i),K)

)
⇒(

∃K ′ ∈ Fk
n : lati((s

′
i, s−i),K

′) > lati((si, s−i),K
′)
)
,

where lati(s,K) is the latency of player i under s
and K, s−i = (s1, . . . , si−1, si+1, . . . , sn) and (s′i, s−i) =
(s1, . . . , si−1, s

′
i, si+1, . . . , sn). Given (s1, s2, . . . , sn), max-

imum latency is the latest successful transmission time of any
player under any configuration without deviation.

Grim-trigger algorithms. Our particular focus is on a nat-
ural and broad subclass of protocols, called Grim-trigger al-
gorithms, where a player (before deviation) is allowed to use
noisy ones 1×, only after the last transmission one 1. The
notion of Grim-trigger strategies were used in a similar con-
text in repeated games, see [Axelrod and Hamilton, 1981;
Nisan et al., 2007, Sec. 27.2].

Price of Anarchy and Stability. [Koutsoupias and Pa-
padimitriou, 2009] introduced the notion of the Price of An-
archy (PoA) to measure how far from the socially optimal
outcome is the outcome of the worst (Nash) equilibria. More
formally, PoA is the ratio of the outcome of the worst case
Nash equlibrium and the socially optimal outcome without
selfish agents. The other widely studied concept of Price of
Stability (PoS) [Anshelevich et al., 2004], is the ratio be-
tween the best-case (Nash) equilibrium and the socially opti-
mal outcome.

Algorithm 1: Noisy GTRR(n), player i
1 for t ∈ [n] do
2 if t = i then
3 transmit(packet) (switch-off upon ack)
4 else if t > i then transmit(noise) ;

Notation. Given a sequence ρ, ρ[t1, . . . , ta] denotes a sub-
sequence of ρ consisting of values of a given sequence ρ in
positions t1, . . . , ta. Also, [n] = {1, . . . , n}.

3 Algorithmic Equilibria
We first show simple adversarial equilibria (AE’s) with max-
imum latency n, to be used as building blocks to construct
more sophisticated AE’s with sublinear latency.

3.1 Enhanced Round Robin Equilibria
Consider the following Persistent Round Robin-type algo-
rithm Persistent RR(n): given any deterministic permutation
π of (1, 2, . . . , n), player i ∈ [n] transmits in time slot i and
if i is unsuccessful in this time slot i, i.e., i has not heard
an acknowledgement (ack), then i transmits from that time
point until it gets acknowledgement but no later than time
slot n (inclusive). Algorithm Persistent RR(n) is obviously
an (n, k)-selector with maximum latency n. It can also be
shown to be (n, k)-AE for all n, k such that n ≥ k > 2, ex-
cept n ≥ 3 and k = 2 (these claims are relegated to the full
version).

A small modification could turn Persistent RR(n) into an
(n, 2)-AE. Namely, if the first transmission of player i in
round i is not successful, then the player continues trans-
mitting a dummy message (noise) till the end of round n.
The noisy message introduces a permanent channel block-
ing effect after unsuccessful unique transmission of an active
player; hence, belongs to the class of grim-trigger protocols
and we call it Noisy GTRR(n). See Figure 1 for illustrations.

(a) Persistent RR(5) for parame-
ter k ≥ 3.

(b) Noisy GTRR(5) for k ≥ 2.
Orange are noisy 1×’s.

Figure 1: Round Robin algorithms examples.

Theorem 1 For any n ≥ k ≥ 2, Noisy GTRR(n) is a grim-
trigger protocol that is an (n, k)-selector with maximum la-
tency n and an (n, k)-AE for the CR game with acknowledge-
ments.

Proof. Being an (n, k)-selector with latency at most n fol-
lows from the fact that without any deviation, there are no
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Algorithm 2: Half Size(n), player i
1 si ← Gen(n, i) /* half-size seq. for player i */
2 tlast ← max{j : si[j] = 1} /* last slot of 1 in si */
3 for t ∈ {1, 2, . . . , tlast} do
4 if si[t] = 1 then
5 transmit(packet) (switch-off upon ack)
6 else idle ;
7 if t > tlast then transmit(noise) ;

collisions – thus, every player transmits once and success-
fully in its exclusive time slot. In the remainder, we prove
that it is also an (n, k)-AE.

Suppose first k ≥ 3 and an agent i deviates so that his first
transmission is in some earlier slot j < i− 1. Then we show
existence of a worsening configuration of size k for agent i.
Let us consider any configuration K of size k such that j, j+
1, i ∈ K. Both agents i and j will be unsuccessful in round
j and, moreover, agent j starts transmitting dummy messages
(noise). Then, in time step j+1, agent j+1 will collide with
j, hence j + 1 will start transmitting noise. From this time
unit on, all time steps will have agents j, j + 1 transmitting
dummy noise messages, hence no agent will be successful
till the end of the algorithm (time step n inclusive), including
agent i. Therefore, the latency of agent i will be larger than
n, which is worse than before the deviation (i ≤ n).

The next possible case is when an agent i deviates and his
first transmission is in slot j = i − 1. Let us consider any
configuration K containing, among other players, i and j =
i − 1. Similarly as in the previous case, i and j collide in
time slot j and j starts noisy transmissions, which means that
agent i cannot successfully transmit in slot i = j +1. Hence,
agent i worsens his latency in this configuration when doing
this deviation.

Finally, note that if the first transmission of deviating agent
i is in slot i or later, he does not have any configuration for
which the deviation would improve its latency (originally i),
hence in order to satisfy the definition of (n, k)-AE we do
not have to show any configuration for which this deviation
worsens the latency of agent i.

Let us now assume that n ≥ k = 2. The player i = 1 can-
not improve its latency by any deviation, as he has a unique
slot 1 to transmit; so, we do not have to show any worsening
configuration for him. If i > 1, then any transmission attempt
by player i in round j < i worsens his latency in configura-
tion K = {j, i}, as after collision in round j player j triggers
its grim of noise messages till the end of step n, blocking all
transmissions. □

3.2 Low-Latency Solution for k = 2

We visualize the strategies as n 0/1 sequences of length log n,
that is, as a 0/1 matrix M of size n × log n. As the (n, 2)-
selector, we choose as the rows of the matrix, all sequences of
length log n, each containing (log n)/2 of 1’s. The number of
such sequences is

(
logn

(log n)/2

)
= Θ

(
2log n
√
logn

)
= Θ

(
n√
logn

)
.

We need to slightly increase the length of those sequences to

(a) Strategies of 6 players.
Noisy 1×’s are in orange.

(b) In configuration {2, 3},
pl3 is switched off in yellow.

(c) {2, 3}-improving configu-
ration for pl2.

(d) {2, 6}-worsening conf. for
pl2; pl6 blocks pl2 using 1×’s.

Figure 2: Half size(6), k = 2. Improving and worsening configura-
tions: pl2 deviates by putting 1 in first slot.

say x log n for some x ≥ 1, so that the number of the se-
quences is exactly n, because we have n agents. We consider
the number of players n to be a central binomial coefficient,
i.e. n =

(
2y
y

)
, for some integer y. The first few central bino-

mial coefficients are 2, 6, 20, 70, 252, . . . . There are infinitely
many such numbers, and

(
2(y+1)
y+1

)
=

(
2y
y

)
· 4 ·

(
1− 1

2(y+1)

)
,

meaning that the next central binomial coefficient is at least
3 times larger and less than 4 times smaller than the previ-
ous one. Hence we choose the appropriate xi =

2i
logn , where

i ∈ N such that
(xi·log n

xi·log n

2

)
= n. After matrix M is defined,

in each row of M we change all 0’s, if any, into 1×’s, after
the right-most 1 in this row. This construction, see Algo-
rithm Half Size(n), is an (n, 2)-AE. Given a player i ∈ [n],
procedure Gen(n, i) generates (in any fixed order) all 0/1 se-
quences of length x log n with exactly (x log n)/2 1’s and re-
turns i’th such sequence, called a half-size sequence. Figure 2
shows an example of sequences, deviation and configurations.

Theorem 2 Half Size(n) is a grim-trigger protocol that is
an (n, 2)-selector with maximum latency O(log n) and an
(n, 2)-AE for the CR game with acknowledgements.

Proof. We first argue that for any k = 2 players, both players
successfully transmit. This follows from the fact that given
any pair of rows of M , these are two different sequences of
length log n, each with exactly (log n)/2 1’s. Their symmet-
ric difference has at least two positions that are 0−1 and 1−0,
implying that both players will successfully transmit at least
in these time units, so this is a (n, 2)-selector with maximum
latency O(log n).

Observe that Half size(n) is a grim-trigger protocol, be-
cause any player i (without deviations) transmits noisy 1×’s
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only after its last transmission 1 – see Algorithm 2.
We now argue that Half size(n) is an (n, 2)-AE. For each

player i let ti be the time of the left-most (first) 1. Notice that
ti ≤ (x log n)/2+1 for each player i. Let us denote by si the
strategy Half size(n)i of player i. Observe that there exists a
configuration under which player i transmits at time ti. We
will denote by s′i the deviation of player i from her strategy
si. We consider three cases.

Firstly, consider that player i deviates by modifying some
bits in the time interval [1, . . . , ti]. Assume that now there
exists an improving configuration in which i transmits strictly
earlier than ti. By the construction of these n sequences we
observe that there exists another player j such that both i (af-
ter deviation) and j have the same subsequence until ti, i.e.,
s′i[1, . . . , ti] = sj [1, . . . , ti]. Hence under the configuration
K = {i, j}, after deviation, i will transmit strictly later than
ti. However, before the deviation, i would have transmitted
at time ti, since the respective subsequences of players i and
j differ at least at one bit and ti is the first 1 of player i. Thus
K = {i, j} is a worsening configuration.

Secondly, assume that i deviates by modifying some bits
after ti, i.e., in the time interval [ti +1, . . . , x log n]. Assume
that this results in an improving configuration. Apparently, in
this improving configuration i transmits after ti. We will now
construct worsening configurations based on the total number
of 1’s in s′i, denoted by ones(s′i):

• ones(s′i) ≥ (x log n)/2. Let tlasti be the time of the
(x log n)/2’th 1 (one) in s′i. By the construction of
these n sequences, there exists a player j ̸= i such that
s′i[1, . . . , t

last
i ] = sj [1, . . . , t

last
i ]. Hence, in this config-

uration, K = {i, j}, they will be both blocked up until
tlasti and since j follows the protocol afterwards she will
transmit noisy 1×’s and i will not be able to transmit.
Thus K = {i, j} is a worsening configuration.

• ones(s′i) < (x log n)/2. Let tlasti be the time of the
last 1 (one) in s′i. We know by the construction of these
n sequences that there exists a player j ̸= i such that
s′i[1, . . . , t

last
i ] = sj [1, . . . , t

last
i ]. Before the deviation,

under configuration K = {i, j}, since Half Size(n) is
an (n, 2)-selector, we know that player i would have
transmitted with maximum latency x log n. However,
after this deviation she will not transmit at all. Thus
K = {i, j} is a worsening configuration.

Lastly, assume that i deviates before and after ti. This falls
into the first case as well and therefore we can find a worsen-
ing configuration in the same way as above.

Notice that the deviator i may choose to transmit noisy 1×’s,
but this has the same effect on the congestion of the channel
as transmitting a packet at this given time slot, and it prevents
player i from transmit. Thus, the worsening configurations
constructed in the same ways as above, remain worsening for
player i after such deviations. □

Remark. In case when n is not equal to a binomial central
coefficient, our construction can be made to work by using
a recent construction in [Griggs et al., 2023] of maximal an-
tichains with an additional chronological property. We will
include details in the full version of the paper.

Algorithm 3: Alt Rec(n), player i
1 if n ≤ 5 then Noisy GTRR(n)i ;
2 if i ≤ n/2 then
3 transmit(packet) (switch-off upon ack)
4 idle
5 Alt Rec(n/2)i
6 else
7 idle
8 transmit(packet) (switch-off upon ack)
9 Alt Rec(n/2)i−n/2

3.3 Low-Latency Recursive Solution for k = 3

The “Alternating Recursion” algorithm Alt Rec(n) for player
i ≤ n, called Alt Rec(n)i, executes the strategy of player i
in Persistent RR(n) for n ≤ 5, otherwise it proceeds recur-
sively as follows. If i ≤ n/2, the player starts to transmit,
followed by silence. If the transmission was unsuccessful,
it continues by executing Alt Rec(n/2)i. If i > n/2, the
player starts with a silence, followed by transmission. If the
transmission was not successful, it continues by executing al-
gorithm Alt Rec(n/2)i−n/2. See Table 2 for an illustration.

Players/rows Rounds/columns
1 1 0

Alt Rec(n/2)
2 1 0
...

...
...

n/2 1 0

n/2 + 1 0 1

Alt Rec(n/2)
n/2 + 2 0 1

...
...

...
n 0 1

Table 2: Schematic illustration of Alt Rec(n).

We first prove some properties of Alt Rec(n). Let n′ ∈
{3, 4, 5} be the last (and smallest) argument used in the re-
cursive process initialized by Alt Rec(n/2). Let σi be the 0-1
transmission sequence of player i generated by Alt Rec(n)i,
encoding a transmission of player i in step t as 1 in posi-
tion t, and no transmission – as 0. We split σi into two,
different length, subsequent parts: σ

(P )
i and σ

(R)
i . σ

(P )
i

can be viewed as a sequence of x = log(n/n′) pairs,
σ
(P )
i [1, 2], . . . , σ

(P )
i [2x − 1, 2x], while σ

(R)
i , as shown next,

as a sequence of length n′.

Lemma 1 The following holds for any player i ≤ n:
(1) Each σ

(P )
i [2y− 1, 2y] is 1, 0 if the y-th digit of the binary

representation of i is 1, and 0, 1 otherwise, for any 1 ≤ y ≤
x.
(2) Sequence σ

(R)
i is equal to Noisy GTRR(n′)i mod n′ .

(3) For any 0-1 sequence ρ containing y ≤ x pairs, each
being either 10 or 01, there exist n/2y different players j such
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that σ(R)
j [1, . . . , 2y] = ρ[1, . . . , 2y] and each j has a unique

schedule in Alt Rec(n/2y).

Proof. The proof, by induction on y = 1, . . . , x, is straight-
forward by Alt Rec(n)’s recursive definition. □

Does Theorem 3 subsume Theorem 2, i.e., is (n, 3)-AE
also (n, 2)-AE? This is not true, e.g., if player 1 plays against
one other player in Alt Rec (case k = 2), it can deviate and
transmit in the second round. This way it improves against
other player ≤ n/2 and does not worsen against any player
> n/2. Hence, it is not (n, 2)-AE.

Theorem 3 Alt Rec(n) is a grim-trigger protocol that is
an (n, 3)-selector with maximum latency O(log n) and an
(n, 3)-AE for the CR game with acknowledgements.

Proof. The algorithm’s length T (n) is given by the following
recursive equations: T (n) = n for n ≤ 5, and T (n) ≤ 2 +
T (n/2) otherwise, thus T (n) ≤ O(log n).

Observe that for n ≤ 5, the (n, 3)-selector and (n, 3)-AE
follow from Theorem 1. Therefore, in the remainder we focus
on the recursive case for n > 5. Assume that the theorem
holds for any Alt Rec(n∗), where n∗ < n.

We first show that it is an (n, 3)-selector. By inductive
assumption, Alt Rec(n/2) is an (n/2, 3)-selector. Consider
any three players with ids i1 < i2 < i3 in Alt Rec(n). If
all of them are in the same half-range, i.e., all in [1, n/2] or
all in [n/2+ 1, n] respectively, the selection follows from the
recursive part of Alt Rec(n/2), applied to ids i1, i2, i3 or to
i1−n/2, i2−n/2, i3−n/2, respectively. Otherwise, there is
only one player (i1) in the first half-range or only one player
(i3) in the second half-rage of ids, and the two other play-
ers in the other half-range of ids. The one player transmits
successfully during the first two steps (more precisely, in step
1 if it is i1 alone in the half-range [1, n/2] and in the sec-
ond round if it is i3 alone in half-range [n/2 + 1, n]). The
other two players block themselves in the first two rounds
(following the same transmission sequences), but then they
execute Alt Rec(n/2) with different ids (i2 − n/2, i3 − n/2
in the former case and i1, i2 in the latter, resp.), guaranteeing
selection for them by recursive assumption about (n/2, 3)-
selection of Alt Rec(n/2). In the latter argument, it is im-
portant that the other player transmitted successfully and thus
switched off before the two players started Alt Rec(n/2), as
otherwise it could have performed Alt Rec(n/2) with same
id as one of the other two players and block him (e.g., player
i1 ≤ n/2 and player i2 = i1 + n/2 > n/2 would both exe-
cute Alt Rec(n/2)i1 , with the same id i1).

It remains to prove (n, 3)-AE. First consider a deviation
of a player i which changes only the recursive part of its
schedule: Alt Rec(n/2)i if i ≤ n/2 and Alt Rec(n/2)i−n/2

otherwise. So any improvement of the latency of player i
could happen only in that part, while the transmissions and
their results in the first two steps are unchanged. Thus, i
must be blocked in the first two steps by some other player
j in the same range of ids as i, and if the third player is
in the other half of ids then it would be successful in the
first two rounds and switched off in the recursive part. Thus,
there will be no players executing the same sequence Alter-
nate Recursive(n/2)i′ in the recursive part, for any i′ ≤ n/2.

Hence, by recursive assumption, if there is any improving
configuration in the part Alt Rec(n/2), there will be also a
worsening configuration K (for the latency of the deviating
agent i) of size 3 in Alt Rec(n/2). Now we have to show
such worsening configuration also in the original Alt Rec(n):
if i ≤ n/2 then we just take K (all three players in the lower
half-range of ids), otherwise we take K ′ = {i, j, j′} such that
K = {i− n/2, j − n/2, j′ − n/2}.

Now consider a deviation that starts in the first two steps
of Alt Rec(n)i. There are three possible flips: both steps
flip, only 1 flips to 0, and finally, only 0 flips to 1. The first
two deviations lead to a worsening configuration, despite of
any further deviations that may happen later. Indeed, we can
choose two other players from the other half-range of ids –
after the double flip of player i or just flipping 1 into 0, it
will have the first two steps identical to those players or full
of 0’s, resp. Thus they together block one of the steps and
keep the other silent, while before the flip (deviation) player
i would have transmitted successfully in one of the two first
(the unblocked) steps.

It remains to consider the deviation, ρi, with two 1’s in the
first two steps. Analogously to the original σi obtained from
Alt Rec(n)i, we partition ρi into part ρ(P )

i containing first
x = log(n/n′) pairs and the remaining sequence ρ

(R)
i of the

last n′ digits. There are two cases, which we consider below.
Case 1: We assume that there is a pair y ≤ x such that ρ(P )

i [y]
contains at least one 0 – in this case we apply analogous case
analysis as above for the first pair, showing either a direct
worsening configuration on steps 2y − 1, 2y or by using a
recursive assumption for Alt Rec(n/2y), see Lemma 1 (3).
Case 2: All pairs ρ

(P )
i [2y − 1, 2y] contain only 1’s, for 1 ≤

y ≤ x. We can block all these 1’s of deviator i by choosing
any players j, j′ s.t. σ(P )

j contains only pairs 10, while σ
(P )
j′

contains only pairs 01, see Lemma 1(3). Let z be the location
of first 1 in ρ

(R)
i – it exists, as otherwise i would not have any

transmission during the last n′ steps while, as we have argued,
it could be blocked along the first 2y steps by some players
j, j′ (so its latency would worsen by not having a successful
transmission). As all i, j, j′ have different first 2x positions,
they will be in different copies of Noisy GTRR(n′) that are
executed in the last n′ steps. It means that each player j, j′
can execute any of the schedules in Noisy GTRR(n′) – it fol-
lows by Lemma 1(3). We can choose schedule for j that has
first 1 in position z in Noisy GTRR(n′), while schedule for
j′ having first 1 on position min{z + 1, n′}. Together with
deviator i, they block position z in ρ

(R)
i , and j, j′ block posi-

tion min{z + 1, n′} and all the remaining ones in ρ
(R)
i . So,

player i will be blocked by the end of the algorithm, hence
worsening its latency. □

Remark. If n is not a power of 2, Alt Rec(n) can be
adjusted as follows. We put Alt Rec(⌊n/2⌋)i (line 5),
Alt Rec(⌈n/2⌉)i−⌊n/2⌋ (line 9), and additional correction at
the end: if some 5 players i, . . . , i+4 of the same prefix σ

(P )
i

execute Noisy GTRR(5) at the end, while other 3 players
i′, . . . , i′+2 of the same prefix σ

(P )
i′ execute Noisy GTRR(3),
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player i+4 replaces σ(P )
i+4 by σ

(P )
i′ and “joins” i′, i′+1, i′+2

to execute Noisy GTRR(4) together. Lengths of the resulting
schedules differ by at most 1 and the current analysis holds.

4 Price of Anarchy and Price of Stability
We study here the price of anarchy (PoA) and the price of
stability (PoS). Theorem 4 follows from the lower bound
Ω(k log(n/k)) on the latency of selectors by [Clementi et
al., 2001], and its part (1) follows by the properties of Persis-
tent RR; the part (2) is obtained by an application of Theorem
1; and, finally, (3) follows from Theorems 2 and 3.

Theorem 4 The PoS of the CR game with acknowledgements
with n players, and k active players is at most:
(1) n

Θ(k log(n/k)) , when n ≥ k > 2 or n = k = 2,
(2) n

Θ(k log(n/k)) , when n ≥ k ≥ 2,
(3) O(1), in model with grim-trigger protocols and k = 2, 3.

Here we will provide an almost complete characterisation
of the price of anarchy.

Theorem 5 Given the number of players n and active play-
ers k ≤ n, the PoA of the CR game with acknowledgements
and with grim-trigger protocols is
(1) at least n

Θ(log n) , and at most n+1
Θ(log n) when k = 2,

(2) unbounded when k ≥ 3.

Proof. By Theorem 1, we know that Noisy GTRR(n) is an
(n, k)-AE with maximum latency n for k = 2. This implies
that the price of anarchy for k = 2 is at least n

Θ(log n) , observ-
ing that Ω(log n) is the latency of the shortest (n, 2)-selector,
see [Clementi et al., 2001].

We will now prove the upper bound of n+1
Θ(log n) on the price

of anarchy. Towards this goal we will prove that any (n, 2)-
AE has maximum latency at most n + 1. Let (s1, . . . , sn)
be any given (n, 2)-selector which is also (n, 2)-AE. Let s1
be the player that has the maximum possible latency in this
(n, 2)-AE and let this maximum latency be ℓ. This means
that the left-most (i.e., last) transmission 1 in s1 is at time
slot ℓ, s1[ℓ] = 1. Because (s1, . . . , sn) is a (n, 2)-selector,
there must exist other player, without loss of generality it
could be s2, such that player s1 transmits at time ℓ under
configuration {1, 2} with no deviations. This means that
player 2 blocks player 1 until time slot ℓ − 1. More pre-
cisely, if player 1 has the but last 1 in time slot i ≤ ℓ − 1
(the last 1 in time slot ℓ could also be the only 1 in s1), then
player 2 must be such that: s1[1, 2, . . . , i] = s2[1, 2, . . . , i],
i ≤ ℓ − 2, s1[i + 1, . . . , ℓ − 1] = (0, . . . , 0), and there
must be at least one transmission 1 in s2[i + 1, . . . , ℓ − 1];
let i′ ∈ {i+ 1, . . . , ℓ− 1} be the time slot of the first 1 in the
sequence s2[i+ 1, . . . , ℓ− 1]; i′ is the time slot where player
2 transmits under configuration {1, 2} with no deviations, be-
cause (s1, . . . , sn) is a (n, 2)-selector. Note that there is no
noisy one 1× in sequence s1[1, . . . , ℓ] because the players use
grim-trigger protocols. To be precise, s1 has the grim-trigger,
i.e., sequence of 1×’s, after time slot ℓ, and the same is true for
s2 after the last 1 in the sequence s2[i+1, . . . , ℓ− 1]; that is,
s2[ℓ] = 1×.

Let us consider the following deviations of player 1: tj =
(¬s1[j], s1[−j]) for any j = 1, 2, . . . , ℓ − 1, where ¬0 = 1

and ¬1 = 0, s1[−j] is sequence s1 except position j, and
tj is sequence s1 with ¬s1[j] in time slot j. It is easy to
check that configuration {1, 2} is improving for player 1 un-
der any deviation tj , except for j ∈ {i, i′}. But (s1, . . . , sn)
is an (n, 2)-AE, for each of these ℓ − 3 deviations tj of
player 1, for j ∈ [ℓ − 1] \ {i, i′}, so there must be a player
pj ∈ {3, 4, . . . , n} so that configuration {1, pj} is worsening
for player 1 under deviation tj .

We will call these players pj “blockers”, and define them
as follows. For any j ∈ [ℓ− 1] \ {i, i′}:

• If s1[j] = 0, then blocker pj has the same prefix as s1
until time slot j−1, it has ¬s1[j] in time slot j, and then
follows sequence s1[j + 1, . . . , ℓ].

• If s1[j] = 1, then blocker pj has the same prefix as s1
until time slot j−1, it has ¬s1[j] in time slot j, and then
it is arbitrary on time slots j + 1, . . . , ℓ.

It is easy to check that the configuration {1, pj} is worsen-
ing for player 1 under deviation tj for any j ∈ [ℓ−1]\{i, i′}.
Players pj have the same prefix as s1 until time slot j−1 and
on time slot j they are flipped to ¬s1[j], so they all are pair-
wise distinct players. They are also all distinct from players
1 and 2. Thus, there are at least ℓ − 3 + 2 = ℓ − 1 distinct
players, and ℓ− 1 ≤ n, implying ℓ ≤ n+ 1. This concludes
the proof for k = 2.

To show that PoA is unbounded if k ≥ 3, consider
Noisy GTRR(n), which by Theorem 1 is (n, k)-AE with
maximum latency n. Let us add in front of Noisy GTRR(n),
ℓ columns containing only 1’s, for any integer ℓ > 0. We
argue that the resulting n × (ℓ + n) matrix, M ′, is (n, k)-
AE. By Theorem 1, no player can profitably deviate in the
Noisy GTRR(n) part of M ′. If any player i ∈ [n] deviates
in the first ℓ time slots, changing any of its 1’s to 0’s or 1×’s,
such deviation has no effect of i’s transmission for any chosen
other k − 1 ≥ 2 players in the configuration, because these
players block player i in the first ℓ time slots. Thus, matrix
M ′ is an (n, k)-AE with maximum latency ℓ + n, which is
arbitrarily large when ℓ→∞, hence unbounded PoA. □

5 Conclusion and Further Directions
We introduced contention resolution games, with adversarial
configurations and deterministic algorithms as agents’ strate-
gies. We proposed adversarial equilibrium as a solution con-
cept and efficient algorithms that are such equilibria. There
are efficiency gaps for larger k, see Table 1, thus designing
more efficient equilibria and/or proving negative results is a
natural research direction.

We expect that our methodology of adversarial selection
of players in equilibrium applicable to deterministic algorith-
mic strategies of selfish autonomous agents, could be used
to study communication problems beyond transmission of a
single packet on a channel. Natural generalizations include
shared channels with stronger feedback than acknowledge-
ments, adaptive algorithms, and contention resolution in radio
networks with general topologies. Finally, it is intriguing if
there are similar, natural definitions of AE for less risk-averse
players, which admit efficient deterministic solutions.
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