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Abstract

We study the election of sequences of committees,
where in each of τ levels (e.g. modeling points in
time) a committee consisting of k candidates from a
common set of m candidates is selected. For each
level, each of n agents (voters) may nominate one
candidate whose selection would satisfy her. We
are interested in committees which are good with re-
spect to the satisfaction per day and per agent. More
precisely, we look for egalitarian or equitable com-
mittee sequences. While both guarantee that at least
x agents per day are satisfied, egalitarian committee
sequences ensure that each agent is satisfied in at
least y levels while equitable committee sequences
ensure that each agent is satisfied in exactly y levels.
We analyze the parameterized complexity of finding
such committees for the parameters n,m, k, τ, x,
and y, as well as combinations thereof.

1 Prologue
Consider the very basic committee selection scenario where
every agent may nominate one candidate for the committee.
The only committee that gives certain satisfaction to each
agent, which we call egalitarian committee, consist of all
nominated candidates. A committee that gives each agent
the same satisfaction, which we call equitable committee,
would also have to consist of all nominated candidates, or
of no candidate at all. Either outcome appears impractical.
So, aiming for an equitable or egalitarian committee seems
pointless in this setting.

With a small twist, however, it becomes a meaningful yet
unstudied case: what happens when the agents can nominate
candidates in different levels, or, to put differently, for different
points in time? Are there non-trivial egalitarian or equitable
committee sequences? Can we simultaneously guarantee a
certain minimum number of nominations in each level? And
if so, what is the computational complexity we have to face
when trying to find such a committee?

What probably appears abstract at first glace is indeed quite
natural: when selecting the menu for some event, each partici-
pant may nominate a food option (with levels being courses),
when organizing a panel, each organizer may nominate a ses-
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Figure 1: Illustration to Example 1. Left: Preferences indicating the
favorite activity of each agent for each day. Middle: An egalitarian
committee sequence. Right: An equitable committee sequence.

sion topic (with levels being days with different topic frames),
or when planning activities as sketched next.
Example 1. We want to bring together six agents at some
weekend trip. Each one announces what they want to do on
each day of the weekend. They will only form a group if each
of them is happy with at least one of the chosen activities
over all days. Possible activities are: dancing (D), hiking (H),
museum (M), restaurant (R), sightseeing (S), and theater (T).
The agents’ preferences are given in Fig. 1. Assume we can
choose two activities per day. To get an overall good satis-
faction, we aim to ensure that a strict majority of agents is
satisfied each day (in addition to requiring each agent being
satisfied at least once). To realize this, we must select {D,S}
for day one and {M,H} for day two. While this egalitarian
committee sequence indeed maximizes satisfaction per day,
the agents might not find this fair, because some are satisfied
on two days while others are only satisfied once. We can fix
this by aiming to ensure that each agent is satisfied exactly
once and only a weak majority of agents is satisfied each day.
To realize this, we select {D,M} for day one and {M,T} for
day two, which gives an equitable committee sequence.

More formally, we study the following two problems and
analyze their (parameterized) complexity with respect to the
following parameters and their combinations: number n of
agents, number m of candidates, number τ of levels (e.g., time
points), size k of each committee, number x of nominations the
selected committee shall receive in each level, and number y
of successful nominations each agent makes in total.1

1In Example 1, we have n = m = 6, τ = k = 2, y = 1, as well as
x = 4 in the egalitarian and x = 3 in the equitable case.
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EGALITARIAN COMMITTEE SEQUENCE ELECTION (GCSE)
Input: A set A of n agents, a set C of m candidates,

a sequence of nomination profiles U = (u1, . . . , uτ)
with ut∶A → C ∪ {∅}, and three integers k, x, y ∈ N0.

Question: Is there a sequence C1, . . . , Cτ of subsets of C
each of size at most k such that

∀t ∈ {1, . . . , τ}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ x, (1)

and ∀a ∈ A: ∑τ

t=1
∣ut(a) ∩ Ct∣ ≥ y? (2)

We also refer to the left-hand side of (1) and of (2) as commit-
tee and agent score, respectively. EQUITABLE COMMITTEE
SEQUENCE ELECTION (QCSE) denotes the variant where we
replace “≥” with “=” in (2).
Related Work. From the motivations perspective, our model
aims to select committees, which is a well-studied core topic of
computational social choice. The three main goals of selecting
committees discussed in the literature are individual excel-
lence, proportionality, and diversity (cf. Elkind et al. [2017]).
The latter is usually reached by egalitarian approaches [Aziz
et al., 2018] (on which we also focus), where the quality of a
committee is defined by the least satisfied voter.

Our model considers preferences with more than one level.
Related, in the multistage setting [Eisenstat et al., 2014;
Gupta et al., 2014] one finds committee election problems with
multiple preferences for each agent [Kellerhals et al., 2021;
Bredereck et al., 2022]. While they also require a minimum
satisfaction in each time step, they do not require a minimum
satisfaction of agents. Instead, they have explicit constraints
on the differences between two successive committees.

Also other aspects of selecting multiple (sub)committees
have been studied before. Bredereck et al. [2020b] augment
classic multiwinner elections with a time dimension, also se-
lecting a sequence of committees. The crucial differences with
our work is that they do not allow agents (voters) to change
their ballots over time. While Freeman et al. [2017], Lack-
ner [2020], and Parkes and Procaccia [2013] allow this, they
consider online scenarios in contrary to our offline scenario.
Moreover, they mostly focus on single-winner decisions and
evaluate the quality of solutions quite differently. Bulteau et
al. [2021] also consider an offline setting but aim for justified
representation, a fairness notion for groups of individuals.
Our Contributions. Fig. 2 gives a results overview from
our parameterized analysis. We highlight the following: Each
of GCSE and QCSE is solvable in uniform polynomial time

• for constantly many constant-size committees, but not
for constantly many committees where each must have a
committee score of at least a given constant (unless P =

NP); or
• for a constant number of agents, but not for a constant

number of candidates (unless P = NP).
We discovered the following differences between the egalitar-
ian and equitable case:

• For two stages, GCSE is NP-hard while QCSE is polyno-
mial-time solvable (QCSE is NP-hard for three stages);

• For parameter n+y, GCSE admits a polynomial problem
kernel while QCSE presumably does not;

• When k = m, GCSE is polynomial-time solvable,
while QCSE is still NP-hard in this case. Notably, GCSE
is NP-hard even if k = m − 1.

Due to the space constraints, many details, marked by ⭑, can
be found in a full version of this paper.

2 Preliminaries and Basic Observations
We use standard notation from parameterized algorith-
mics [Cygan et al., 2015]. A problem with parameter p is
fixed-parameter tractable (in the class FPT), if it can be solved
in f(p) ⋅ sc, where s denotes the input size, for some con-
stant c and computational function f only depending on p; i.e.,
it can be solved in uniform polynomial time O(sc) for every
constant value of p. A (decidable) parameterized problem is
fixed-parameter tractable if and only if it admits a problem
kernel, that is, a polynomial-time algorithm that maps any
instance with parameter p to an equivalent instance of size at
most g(p), where g is some function only depending on p. We
speak of a polynomial problem kernel if g is a polynomial.
Basic Observations. We first discuss two trivial cases for
GCSE and QCSE regarding the value of y and of k.
Observation 1. If y ∈ {0, τ}, then GCSE and QCSE are
solvable in linear time.

Note that Observation 1 implies that for τ = 1, each of
GCSE and QCSE is linear-time solvable. Another trivial case
for GCSE is the following.
Observation 2. GCSE is linear-time solvable if k ≥ m.

We will see that Observation 2 does not transfer to QCSE:
QCSE remains NP-hard, even if k ≥ m (Proposition 3).

The following allows us to assume throughout to have at
most number of agents many candidates.
Lemma 1 (⭑). Each instance (A,C,U, k, x, y) of GCSE
(of QCSE) can be mapped in linear time to an equivalent in-
stance (A,C

′
, U

′
, k, x, y), ∣C ′∣ ≤ ∣A∣ of GCSE (of QCSE).

Corollary 1. (i) Each of GCSE and QCSE admits a problem
kernel of size O(n2 ⋅ τ). (ii) There are at most (n + 1)n
pairwise different nomination profiles.

3 Intractability
We discuss the general intractability of our problems as well
as several special cases where they remain hard.

3.1 Dichotomies Regarding the Number of Levels
Both GCSE and QCSE are easy problems if there is only one
level. Yet, already for two levels, GCSE becomes NP-hard
while QCSE stays efficiently solvable. For three levels, how-
ever, also QCSE becomes NP-hard. We have the following.
Theorem 1. We have the following dichotomies for GCSE
and QCSE regarding τ :

(i) If τ = 1, then each of GCSE and QCSE is polynomial-
time solvable.

(ii) If τ = 2, then (a) GCSE is NP-hard and, unless NP ⊆

coNP/poly, admits no problem kernel of size O(m2−ε)
for any ε > 0, and (b) QCSE is polynomial-time solv-
able.
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Figure 2: Overview of our results for GCSE and QCSE. Each box has three horizontal layers, the top layer gives the parameter, the middle
layer the result’s reference, and the bottom layer gives additional information. If a box is vertically split, then the left and right side corresponds
to GCSE and QCSE, respectively; Otherwise, the information holds for both. The boxes are arranged according to the corresponding parameter
hierarchy: If two boxes are connected by an edge, the upper one’s parameter upper bounds the lower one’s parameter (by some function).

(iii) If τ ≥ 3, then each of QCSE with k ≥ m and GCSE is
NP-hard and, unless the ETH breaks, admits no 2

o(n+m)⋅
poly(n +m)-time algorithm.

We first discuss (iia), then (iib), and finally (iii).

Two Levels Make GCSE Intractable
Proposition 1 (⭑). Even for two levels and x = 0, GCSE
is NP-hard and, unless NP ⊆ coNP/poly, admits no problem
kernel of size O(m2−ε) for any ε > 0.

The following problem is NP-hard [Kuo and Fuchs, 1987].
CONSTRAINT BIPARTITE VERTEX COVER (CBVC)
Input: An undirected bipartite graph G = (V,E) with V =

V1 ⊎ V2 and k1, k2 ∈ N.
Question: Is there a set X ⊆ V with ∣X ∩ Vi∣ ≤ ki for

each i ∈ {1, 2} such that G −X contains no edge?

Note that we can assume that k1 = k2. CBVC is in FPT
when parameterized by k1 + k2 [Fernau and Niedermeier,
2001] but, unless NP ⊆ coNP/poly, admits no problem kernel
of size O(∣V ∣2−ε) for any ε > 0 [Jansen, 2016]. The construc-
tion behind the proof of Proposition 1 is the following (the
correctness proof is deferred to the full version of the paper).
Construction 1. Let I = (G = (V = V1 ⊎ V2, E), k, k)
be an instance of CBVC. We construct an instance I

′
≔

(A,C, (u1, u2), k, x, y) with x = 0 and y = 1 as follows.

For each vertex vi,j with i ∈ {1, 2} and j ∈ {1, . . . , ∣Vi∣},
add a candidate ci,j to C. For each edge {v1,j , v2,j ′}, add
agent aj,j ′ to A which nominates c1,j in level 1 and c2,j ′ in
level 2. This finishes the construction. ⋄

Two Levels Leave QCSE Tractable
Interestingly, in contrast to GCSE, just one additional level
does not change the tractability of QCSE.
Proposition 2. QCSE is polynomial-time solvable if τ = 2.

We provide reduction rules for a generalization of QCSE
on two levels, and then reduce it to a special variant of CBVC.
The generalization of QCSE with τ = 2 is the following.
X2 EQUITABLE COMMITTEE SEQUENCE ELECTION
(X2QCSE)
Input: A set A of agents, a set C of candidates, a two nomi-

nation profiles U = (u1, u2) with ut∶A → C ∪ {∅}, and
five integers k1, k2, x1, x2, y ∈ N0.

Question: Is there C1 ⊆ C with ∣C1∣ ≤ k1 and C2 ⊆ C
with ∣C2∣ ≤ k2 such that

∀t ∈ {1, 2}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ xt,

and ∀a ∈ A: ∑2

t=1
∣ut(a) ∩ Ct∣ = y?

We know that y ∈ {0, 2} are trivial cases. Thus, we assume
that y = 1 is the remainder. Our goal is to reduce X2QCSE to
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the following problem, which, as we will show subsequently,
is polynomial-time solvable.
CONSTRAINT BIPARTITE INDEPENDENT VC W/ SCORE
(CBIVCS)
Input: An undirected bipartite graph G = (V,E) with V =

V1 ⊎ V2 and k1, k2, x1, x2 ∈ N.
Question: Is there an independent set X ⊆ V with ∣X∩Vi∣ ≤
ki and ∑v∈X∩Vi

deg(v) ≥ xi for each i ∈ {1, 2} such
that G −X contains no edge?

Lemma 2 (⭑). CBIVCS is polynomial-time solvable.

To reduce X2QCSE to CBIVCS we have to deal with
agents nominating none or only one candidate. The first case
is immediate.

Data Reduction Rule 1. If there is an agent nominating no
candidate, then return no.

If an agent nominates only one candidate in one level and
none in the other, we have to pick this nominated candidates.

Data Reduction Rule 2 (⭑). If there is an agent a∗ nom-
inating one candidate c

∗ in one level t ∈ {1, 2}, and none
in the other level t′, then do the following: Decrease kt by
one, xt by ∣{a ∈ A ∣ ut(a) = c

∗}∣, replace each candidate
in {c′ ∈ C ∣ ∃a ∈ A ∶ ut(a) = c

∗ ∧ ut′(a) = c
′} with ∅,

and delete all agents from {a ∈ A ∣ ut(a) = c
∗}.

Using Data Reduction Rule 1 and 2 exhaustively, we can
finally reduce X2QCSE to CBIVCS, proving Proposition 2.

Observation 3 (⭑). There is a polynomial-time many-one
reduction from X2QCSE to CBIVCS.

Three Levels Make QCSE Intractable
We have seen that QCSE is polynomial-time solvable if τ ≤ 2.
This changes for τ ≥ 3.

Proposition 3. For at least three levels and x = 0, each of
QCSE with k ≥ m and GCSE is NP-hard and, unless the
ETH breaks, admits no 2

o(n+m) ⋅poly(n+m)-time algorithm.

For GCSE, the proof is via a polynomial-time many-
one reduction from the famous NP-complete problem 3-
SATISFIABILITY (3-SAT), which transfers the well-known
ETH lower bound [Impagliazzo et al., 2001] as well as NP-
hardness [Garey and Johnson, 1979]. Given a set X of N
variables and a 3-CNF formula ϕ = ⋀M

i=1 Ki over X , 3-SAT
asks whether there is a truth assignment f ∶X → {⊥,⊤}
satisfying ϕ.

Construction 2. Let I = (X,ϕ) be an instance of 3-
SAT with N variables and M clauses. We construct an
instance I

′
≔ (A,C,U, k, x, y) of GCSE as follows (see

Fig. 3 for an illustration). Let C ≔ {ci, ci ∣ xi ∈ X}.
Let Ai ≔ ⋃3

j=1{ai,j , ai,j} for each i ∈ {1, . . . , N}. and A ≔

A1∪⋅ ⋅ ⋅∪AN∪{a1, . . . , aM}. See Fig. 3 for the nominations.
Let k ≔ N , x ≔ 0, and y ≔ 1. ⋄

The construction provides the following key property
when I

′ is a yes-instance: for every variable, exactly one
of the two corresponding candidates must be in the committee.

1 2 3

⋮ ⋮ ⋮ ⋮
ai,1: ci ∅ ci
ai,2: ci ci ∅
ai,3: ∅ ci ci
ai,1: ci ∅ ci
ai,2: ci ci ∅
ai,3: ∅ ci ci

⋮ ⋮ ⋮ ⋮

Ai

ar: ci cq cp
⋮ ⋮ ⋮ ⋮

Figure 3: Illustration to Construction 2 with Kr = (xi ∨ xq ∨ xp).

Lemma 3 (⭑). If I ′ is a yes-instance, then for every so-
lution (C1, C2, C3) it holds true that ∣Cj ∩ {ci, ci}∣ = 1

and Cj ∩ {ci, ci} = Cj ′ ∩ {ci, ci} for all j, j ′ ∈ {1, 2, 3}
and i ∈ {1, . . . , N}.

Proof of Proposition 3 (GCSE). (⇒) Let f be a satisfying
truth assignment. We claim that (C ′

, C
′
, C

′) with C
′
= {ci ∈

C ∣ f(xi) = ⊤} ∪ {ci ∈ C ∣ f(xi) = ⊥} is a solution
to I

′. Clearly, ∣C ′∣ = N . Moreover, if f(xi) = ⊤, then ai,j
is satisfied in level j, and ai,1 is satisfied in level 3 and ai,j
with j ∈ {2, 3} is satisfied in level j − 1. If f(xi) = ⊥,
then ai,j is satisfied in level j, and ai,1 is satisfied in level 3
and ai,j with j ∈ {2, 3} is satisfied in level j − 1. Since f is
satisfying, there is exactly one level t with ar being satisfied.

(⇐) Let (C1, C2, C3) be a solution to I
′.

From Lemma 3 we know that C ′
= C1 = C2 = C3 and

that C ′ ∩ {ci, ci} = 1 for all i ∈ {1, . . . , N}. Let f(xi) = ⊤

if ci ∈ C
′, and f(xi) = ⊥ otherwise. Clearly, f is a truth

assignment. Suppose it is not satisfying, i.e., there is a
clause Kr with no literal evaluated to true. Then, agent ar
is satisfied in no level, contradicting that (C1, C2, C3) is a
solution to I

′.

For QCSE, yet using again Construction 2, we instead
reduce from the NP-hard problem EXACTLY 1-IN-3 SAT
(X1-3SAT) [Schaefer, 1978], where, given a boolean 3-CNF
formula ϕ over a set X of variables, the question is whether
there is a truth assignment f ∶X → {⊥,⊤} such that for every
clause, there is exactly one literal evaluated to true?
Notably, Lemma 3 also holds true here. In fact, we can even
allow k = 2N , since for each variable only one candidate is
chosen, as otherwise there is an agent scoring more than once.

3.2 Few Candidates Are of No Help
One could conjecture that it should be possible to guess the
committees, and hence get some, possibly non-uniformly poly-
nomial running time when the number of candidates is con-
stant. In this section, we will show that this conjecture is
wrong unless P = NP: each of GCSE and QCSE are NP-hard
even for two candidates.

Theorem 2 (⭑). Even for x = 0, k = 1, and y = 1, each of
GCSE with two candidates and QCSE with one candidate is
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NP-hard. Moreover, unless the SETH breaks, GCSE admits
no (2 − ε)τ ⋅ poly(τ + n)-algorithm.

For GCSE, we reduce from the well-known NP-complete
problem SATISFIABILITY (SAT), which transfers the well-
known SETH lower bound [Impagliazzo and Paturi, 2001]
as well as NP-hardness [Garey and Johnson, 1979]. Given a
set X of N variables and a CNF formula ϕ = ⋀M

i=1 Ki over X ,
SAT asks whether there is a truth assignment f ∶X → {⊥,⊤}
satisfying ϕ.

The construction is quite intuitive: Each level corresponds
to a variable, and each agent corresponds to a clause. In
each level, if the corresponding variable appears as a literal in
the agent’s corresponding clause, then the agent nominates a
candidate regarding whether it appears negated or unnegated.

Construction 3. Let I = (X,ϕ) be an instance of SAT.
Construct an instance I

′
≔ (A,C,U, k, x, y) as follows.

Let A ≔ {a1, . . . , aM}, C ≔ {c⊤, c⊥}, τ ≔ N , x ≔ 0,
k ≔ 1, and y ≔ 1. In level i, agent aj nominates

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c⊤, if xi appears unnegated in Kj ,
c⊥, if xi appears negated in Kj , and
∅, otherwise.

This finishes the construction. ⋄

Remark 1. For QCSE, we reduce from X1-3SAT (see pre-
vious section) where no variable appears negated [Schmidt,
2010], where the construction is very similar to Construction 3
(yet c⊥ can be dropped). Hence, a lower bound based on the
SETH as for GCSE remains open for QCSE. ◁

4 Tractability
In this section, we discuss non-trivial tractable cases of GCSE
and QCSE. It turns out that fixed-parameter tractability starts
with the number n of agents or the solution size k ⋅ τ , i.e.,
with the combination of the size k of each committee and
the number τ of levels. As to the latter, recall that each of
GCSE and QCSE is NP-hard if either k is constant or τ
is constant. Finally, we discuss efficient and effective data
reduction regarding n and n + y.

4.1 Few Small Committees May be Tractable
We show that each of GCSE and QCSE when parameterized
by the solution size k ⋅ τ is in FPT. That is, we can deal
with many agents and candidates, as long as we are asked to
elect few small committees. We also show that GCSE admits
presumably no problem kernel of size polynomial in m ⋅ τ .

Theorem 3. Each of GCSE and QCSE is solvable in 2
k⋅τ2

⋅
poly(n +m + τ) time, and hence fixed-parameter tractable
when parameterized by k + τ .

We introduce generalized versions of GCSE and QCSE. In-
tuitively, they allow to fix certain parts of the solution. More-
over, one may request level-individual committee sizes, level-
individual numbers of nomination the committees shall re-
ceive, and agent-individual numbers of successful nominations
the agents still have to make.

Algorithm 1: FPT-algorithm for PE-GCSE parameter-
ized by k + τ on input (A,C,U, (kt)t, (xt)t, (ya)a).

1 main((A,C,U, (kt)t, (xt)t, (ya)a));
2 return no;
3 function main((A,C,U, (kt)t, (xt)t, (ya)a)):
4 if kt < 0 for some t ∈ {1, . . . , τ} then break
5 if ∀a ∈ A ∶ ya ≤ 0 then
6 foreach t ∈ {1, . . . , τ} do
7 if xt > 0 then
8 if any level-t committee of kt most

nominated candidates in C w. r. t. ut

scores less than xt then break

9 return yes
10 if ∃a ∈ A with ya > 0 but no fingerpint with at

least ya non-empty entries then break
11 Let a ∈ A be such that ya > 0 with at least one

fingerpint with at least ya non-empty entries
12 foreach X ∈ {u1(a),∅} × ⋅ ⋅ ⋅ × {uτ(a),∅} with

at least ya non-empty entries do // ≤ 2
τ many

13 foreach t ∈ {1, . . . , τ} do
14 Set x′

t ← xt − ∣{a′ ∈ A ∣ ut(a′) =
Xt ∧Xt ≠ ∅}∣, u′

t ← ut − ut(a), and
k
′
t ← kt − ∣Xt∣

15 foreach a
′
∈ A

′
← A \ {a} do

16 Set y′a′ ← ya′ −∑t ∣ut(a′) ∩Xt∣
17 main((A′

, C, U
′
, (k′t)t, (x′

t)t, (y′a)a))

PRE-ELECTED GCSE (PE-GCSE)
Input: A set A of agents, a set C of candidates, a sequence

of nomination profiles U = (u1, . . . , uτ) with ut∶A →
C ∪ {∅}, integers xt, kt ∈ N0 for each t ∈ {1, . . . , τ} and
integers ya ∈ N0 for each a ∈ A.

Question: Is there a sequence C1, . . . , Cτ ⊆ C with ∣Ct∣ ≤ kt
for every t ∈ {1, . . . , τ} such that

∀t ∈ {1, . . . , τ}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ xt,

and ∀a ∈ A: ∑τ

t=1
∣ut(a) ∩ Ct∣ ≥ ya. (3)

PRE-ELECTED QCSE (PE-QCSE) denotes the variant when
replacing “≥” with “=” in (3).

Each of PE-GCSE and PE-QCSE use slightly different ap-
proaches. However, the core idea is the same: in any solution,
each agent has a fingerprint over all levels regarding whether
or not her candidate is elected into the respective committee.
Note that there are at most 2τ fingerprints. Hence, we can
guess such a fingerprint for any unsatisfied agent and branch.
Together with the fact that the sum of the committee sizes in
the sequence is at most k ⋅ τ , the result follows.

Throughout, we use the following. Fix any agent a ∈ A.
We define for A′

≔ A \ {a} the utility function

ut−ut(a)∶A′
→ C∪{∅}, (ut−ut(a))(a′) ↦ ut(a′)\ut(a).
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We first show the following Turing-reduction for PE-
GCSE. The idea of this reduction is then used to obtain fixed-
parameter tractability through Algorithm 1.

Lemma 4 (⭑). Let I ≔ (A,C,U, (kt)t, (xt)t, (ya)a∈A) be
an instance with at least one agent a ∈ A with ya > 0
and at least one fingerprint with at least ya non-empty en-
tries. Then, I is a yes-instance of PE-GCSE if and only
if for any agent a ∈ A with ya > 0 and at least one fin-
gerprint with at least ya non-empty entries, one of the in-
stances I

1
, . . . , I

p is a yes-instance, where X
1
, . . . , X

p
∈

{u1(a),∅} × ⋅ ⋅ ⋅ × {uτ(a),∅} are the fingerprints with at
least ya non-empty entries and for each q ∈ {1, . . . , p},
I
q
= (A′

, C, U
′
, (kqt )t, (x

q
t )t, (yqa)a∈A′), where A′

≔ A\{a},
and

• for each t ∈ {1, . . . , τ}, x′
t ≔ xt − ∣{a′ ∈ A ∣ ut(a′) =

X
q
t ∧X

q
t ≠ ∅}∣, u′

t ≔ ut−ut(a), k′t ≔ kt− ∣Xq
t ∣, and

• for each a
′
∈ A

′, y′a′ ≔ ya′ −∑τ
t=1 ∣ut(a′) ∩X

q
t ∣.

Proposition 4 (⭑). Algorithm 1 is correct and runs in FPT-
time regarding k + τ .

The proof for PE-QCSE works very similarly and is hence
deferred to the full version of the paper.

In terms of kernelization, we cannot improve much further:
Presumably, there is no problem kernel of size polynomial
in k + τ . In fact, we have the following stronger result.

Theorem 4 (⭑). Unless NP ⊆ coNP/poly, GCSE admits
no problem kernel of size polynomial in τ , even if m = 2
and x = 0.

Remark 2. We leave open whether the composition can be
adapted for QCSE. For this, the last q levels forming the
selection gadget must be changed or extended such that each
agent gets the same score over the selection. ◁

4.2 Tractability Borders Regarding n

We first show that both problems become fixed-parameter
tractable when parameterized by the number n of agents.

Theorem 5. Each of GCSE and QCSE is fixed-parameter
tractable when parameterized by n.

Proof. Due to Lemma 1, we know that there are at most n
candidates, and at most ν ≔ (n + 1)n pairwise different
nomination profiles. That is, we have at most ν types, each
having at most (n

k
) committees of size k and score of at least x

(we call such a committee valid subsequently; note that we
can check whether a committee is valid in linear time).

Let xt,ϕ denote the variable for type t and valid commit-
tee ϕ. Let nt denote the number of type-t profiles. For an
agent a ∈ A, let Xa denote the set of tuples (t, ϕ) where valid
committee ϕ respects a’s nomination in level t. We then have
the following integer programming constraints for GCSE:

∀a ∈ A∶ ∑(t,ϕ)∈Xa

xt,ϕ ≥ y (4)

∀t∶ ∑
valid ϕ

xt,ϕ = nt

∀t, valid ϕ∶ 0 ≤ xt,ϕ ≤ nt

As to Lenstra Jr. [1983], having 2
O(n log(n)) variables and

constraints, and numbers upper bounded by τ , the result fol-
lows. For QCSE, we replace “≥” with “=” in (4).

Theorem 5 is in fact tight in the following sense: decreasing n
by x gives a useless parameter (presumably).

Theorem 6 (⭑). GCSE is NP-hard even if n−x = 2 and m =

3, and QCSE is NP-hard even if n − x = 3 and m = 2.

The construction behind the proof of Theorem 6 is very similar
to Construction 3 but with no empty nominations (we hence
defer also the construction to the full version of the paper).

The FPT-algorithm behind Theorem 5 is not running in
single-exponential time. Combining n with y gives single-
exponential running time.

Theorem 7. Each of GCSE and QCSE is solvable in O((y+
1)n ⋅ 2n ⋅ n ⋅ τ) time.

Proof. We give the proof for QCSE, and it is not hard to adapt
it for GCSE. We use dynamic programming, where table

D[t,y] is true if and only if there are committees C1, . . . , Ct

each with committee size at most k and a score of at
least x such that the score of each agent ai at time t sums
up to exactly yi, where y = (y1, . . . , yn).

Set D[t,y], where t > 1 and each entry of y is at most y,
to true if and only if there is a set-to-true D[t − 1,y

′] and a
size-at-most k score-at-least x committee C ′

⊆ C with respect
to ut such that y′ + c⃗ = y, where c⃗ = (c1, . . . , cn) ∈ {0, 1}n
with ci = 0 ⟺ ut(ai) ∩ C

′
= ∅ is called the fingerprint

of C ′ regarding level t. Set

D[1, c⃗ ] ≔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⊤, if there is a size-at-most k
score-at-least x committee C

′
⊆ C

with fingerprint c⃗ regarding level 1, and
⊥, otherwise.

Return yes if the entry D[τ, (y1, . . . , yn)] is set to true,
where y1 = y2 = ⋅ ⋅ ⋅ = yn = y, and no otherwise.

The running time of filling the table is clear: We have at
most τ ⋅ (y + 1)n entries and at most 2n different committees
per level. We defer the correctness proof to the full version of
paper.

4.3 Efficient and Effective Data Reduction
Regarding n and y

While GCSE admits a problem kernel of size polynomial
in n + y, QCSE does not presumably. Moreover, for GCSE,
dropping y also leads to kernelization lower bounds. We have
the following.

Theorem 8 (⭑). Unless NP ⊆ coNP/poly, (i) GCSE admits
no problem kernel of size polynomial in n, even if m = 2
and k = 1, and (ii) QCSE admits no problem kernel of size
polynomial in n, even if m = 2, k = 1, and y = 1. (iii) GCSE
admits a problem kernel of size polynomial in n + y.

We only discuss (iii) briefly (refer to the full version of the
paper for the remaining details).
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Proposition 5. GCSE admits a problem kernel of size poly-
nomial in n + y.

In the following, we (again) call a committee valid if its
size is at most k and its score is at least x. For an agent a,
we denote by Z(a) the set of all levels where there is a valid
committee containing a’s nominated candidate. We call an
agent a non-critical if ∣Z(a)∣ > n ⋅ y, and critical otherwise.
We have the followings.

Data Reduction Rule 3 (⭑). If every agent a is non-critical,
then return a trivial yes-instance.

Thus, if we have a non-trivial instance, then there must be a
critical agent. We will see that the number of critical agents
can upper bound the number of levels. To this end, we first
delete levels which are irrelevant to critical agents as follows.

Data Reduction Rule 4. If there is a level t∗ such that there
is at least one valid committee and every valid committee only
includes candidates nominated by non-critical agents, then
delete this level.

Proof. Let I = (A,C,U, k, x, y) be the input instance
and I

′
≔ (A,C,U

′
, k, x, y) be the instance obtained by the

reduction rule. Clearly, if I
′ is a yes-instance, then I is a

yes-instance. Hence, we show the converse next.
Assume towards a contradiction that for every solu-

tion C ≔ (C1, . . . , Ct∗ , . . . , Cτ) it holds true that C ′
≔

(C1, . . . , Ct∗−1, Ct∗+1, . . . , Cτ) is no solution to I
′, i.e., there

is a maximal set A∗
⊆ A of agents which is not satisfied

when Ct∗ is dropped. Let q ≔ ∣A∗∣. Recall that A∗ consists
of only non-critical agents. Let T ⊆ {1, . . . , τ} \ {t∗} be
a minimum-size set of levels such that all agents of A \ A

∗

are satisfied (which exists since C ′ satisfies all agents except
for those in A

∗). Note that ∣T ∣ ≤ (n − q) ⋅ y. Let T ≔

{1, . . . , τ} \ (T ∪ {t∗}). Hence, for all a ∈ A
∗, we have

that ∣Z(a)∩ T ∣ ≥ ∣Z(a)∣− ∣T ∪ {t∗}∣ ≥ n ⋅ y + 1− ((n−
q) ⋅ y + 1) ≥ q ⋅ y. Thus, there is a solution to I

′, yielding a
contradiction.

It follows that in every level, there must be a valid commit-
tee for any of the at most n critical agents, each of which has
at most n ⋅ y levels of this kind. This leads to the following.

Lemma 5 (⭑). If each of Data Reduction Rule 3 and 4 is
inapplicable, then there are at most n2 ⋅ y levels.

To conclude, GCSE admits presumably no problem kernel
of size polynomial in n, but one of size polynomial in n + y.
Interestingly, for QCSE the latter is presumably impossible.

Proposition 6 (⭑). Unless NP ⊆ coNP/poly, QCSE admits
no problem kernel of size polynomial in n, even if m = 2,
k = 1, and y = 1.

5 Epilogue
We settled the parameterized complexity for both GCSE and
QCSE for several natural parameters and their combinations.
We found that both problems become tractable only if either
the number of agents or the solution size is lower bounding
the parameter. Hence, short trips with few per-day activities

like in our introductory example can be tractable even if many
agents participate and if there are many activities available.
Also the practically relevant setting where few agents have to
select from many options, where egalitarian or even equitable
solutions appear particularly relevant, can be solved efficiently.

Our two problems have a very similar complexity finger-
print, yet, they distinguish through the lens of efficient and
effective data reduction: While GCSE admits a problem ker-
nel of size polynomial in n + y, QCSE presumably does not.
In other words, it appears unlikely that we can efficiently and
effectively shrink the number of levels for QCSE.

Other Variants. Looking at the constraints in GCSE and
QCSE, one quickly arrives at the following general problem.
Herein, we generalize to preference functions, where each
agent assigns some utility value to each candidate. Moreover,
we use generalized OWA-based aggregation, e.g., allowing
max(⋅) and thus modeling rules such as Chamberlin-Courant.
Let ∼∈ {≤,=,≥}, Λ = {Λk ∈ R

k ∣ k ∈ N} be a family
of (OWA) vectors, and U be a class of preference functions.
We write u⃗(C ′) for the vector of utilities that u assigns to
the candidates from C

′ sorted in nonincreasing order. See
Bredereck et al. [2020a] for details.
(∼k ∣∼x ,∼y)-BICMCE[Λ,U]
Input: A set A of agents, a set C of candidates, a sequen-

tial profile of preference functions U = (ua,t ∶ C →
N0 ∣ a ∈ A, t ∈ {1, . . . , τ}) each from U , and three
integers k, x, y ∈ N0.

Question: Is there a sequence C1, . . . , Cτ ⊆ C such that

∀t ∈ {1, . . . , τ}: ∣Ct∣ ∼k k, (5)

∀t ∈ {1, . . . , τ}: ∑
a∈A

⟨Λ∣Ct∣, u⃗a,t(Ct)⟩ ∼x x, (6)

and ∀a ∈ A: ∑τ

t=1
⟨Λ∣Ct∣, u⃗a,t(Ct)⟩ ∼y y? (7)

Let SUM denote the family of OWA-vectors containing only
1-entries, and NOM be the class of preference functions that
contain only 0-entries except for at most one 1-entry. We
have that GCSE is (≤ ∣≥,≥)-BICMCE[SUM,NOM] and
QCSE is (≤ ∣≥,=)-BICMCE[SUM,NOM]. It turns out that
all variants except for (≤ ∣≤,≤)-BICMCE[SUM,NOM] and
(≥ ∣≥,≥)-BICMCE[SUM,NOM] are NP-hard. In fact, most
of the variants (including GCSE and QCSE) are NP-hard
even if every voter does not change their vote over the levels.
We defer the details to the full version of the paper.

Outlook. Since our model is novel, also several future re-
search directions come to mind. A parameterized analysis of
the variants of (∼k ∣∼x,∼y)-BICMCE[Λ,U] next to GCSE
and QCSE could reveal where these variants differ from each
other. One could consider a global budget instead of a bud-
get for each level, that is, variants where ∣⋃τ

t=1 Ct∣ ≤ k or
∑τ

t=1 ∣Ct∣ ≤ k. Speaking of variants, another modification
could be where the score of any two agents must not differ by
more than some given γ. Finally, as a concrete question: does
GCSE or QCSE admit a problem kernel of size polynomial
in k if τ is constant? (Recall that due to Theorem 4, we know
that there is presumably no problem kernel for GCSE of size
polynomial in τ if k is constant.)
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