
A Unifying Formal Approach to Importance Values in Boolean Functions

Hans Harder1,2 , Simon Jantsch2 , Christel Baier2,4 and Clemens Dubslaff3,4
1University of Paderborn

2Dresden University of Technology
3Eindhoven University of Technology

4Centre for Tactile Internet with Human-in-the-Loop (CeTI)
hans.harder@uni-paderborn.de, {simon.jantsch, christel.baier}@tu-dresden.de, c.dubslaff@tue.nl

Abstract
Boolean functions and their representation through
logics, circuits, machine learning classifiers, or bi-
nary decision diagrams (BDDs) play a central role
in the design and analysis of computing systems.
Quantifying the relative impact of variables on the
truth value by means of importance values can pro-
vide useful insights to steer system design and de-
bugging. In this paper, we introduce a uniform
framework for reasoning about such values, relying
on a generic notion of importance value functions
(IVFs). The class of IVFs is defined by axioms
motivated from several notions of importance val-
ues introduced in the literature, including Ben-Or
and Linial’s influence and Chockler, Halpern, and
Kupferman’s notion of responsibility and blame.
We establish a connection between IVFs and game-
theoretic concepts such as Shapley and Banzhaf
values, both of which measure the impact of play-
ers on outcomes in cooperative games. Exploit-
ing BDD-based symbolic methods and projected
model counting, we devise and evaluate practical
computation schemes for IVFs.

1 Introduction
Boolean functions arise in many areas of computer sci-
ence and mathematics, e.g., in circuit design, formal log-
ics, coding theory, artificial intelligence, machine learn-
ing, and system analysis [Crama and Hammer, 2011a;
O’Donnell, 2014]. When modeling and analyzing systems
through Boolean functions, many design decisions are af-
fected by the relevance of variables for the outcome of the
function. Examples include noise-reduction components for
important input variables to increase reliability of circuits,
prioritizing important variables in decision-making of pro-
tocols, or the order of variables in BDDs [Bryant, 1992;
Bartlett and Andrews, 2001]. Many ideas to quantify such
notions of importance of variables in Boolean functions have
since been considered in the literature. To mention a few, in-
fluence [Ben-Or and Linial, 1985] is used to determine power
of actors in voting schemes, [Hammer et al., 2000] devised
measures based on how constant a function becomes depend-
ing on variable assignments, blame [Chockler and Halpern,

2004] quantifies the average responsibility [Chockler et al.,
2008] of input variables on the outcome of circuits or on
causal reasoning, and the Jeroslow-Wang value [Jeroslow
and Wang, 1990] quantifies importance of variables in CNFs
to derive splitting rules for SAT-solvers [Hooker and Vinay,
1995]. Closely related are notions of impact in cooperative
games, e.g., through the Shapley value [Shapley, 1953] or the
Banzhaf value [Banzhaf, 1965].

Although some of the aforementioned concepts are of quite
different nature and serve different purposes, they share some
common ideas. This raises the question of what characteris-
tics importance values have and how the notions of the liter-
ature relate. The motivation of this paper is to advance the
understanding of importance values, independent of concrete
applications. For this purpose, we introduce a generic ax-
iomatic framework that constitutes the class of importance
value functions (IVFs). Our axioms are motivated by proper-
ties one would intuitively expect from IVFs, e.g., that inde-
pendent variables have no importance or that permutations do
not change importance values. We show basic relationships
within and between IVFs and provide new insights for exist-
ing and new importance measures. By connecting Boolean
functions and cooperative games through cooperative game
mappings (CGMs) and using Shapley and Banzhaf values,
we show how to generically derive new IVFs . All aforemen-
tioned notions of importance values from the literature satisfy
our IVF axioms, showing that we provide a unifying frame-
work for all these notions, including CGM-derived ones.

Most notions of importance are known to be compu-
tationally hard, e.g., computing influence or the Shapley
value is #P-complete [Traxler, 2009; Faigle and Kern, 1992;
Deng and Papadimitriou, 1994]. We address computational
aspects by devising practical computation schemes for IVFs
using projected model counting [Aziz et al., 2015] and BDDs.

Contributions and outline. In summary, our main con-
tribution is an axiomatic definition of IVFs for variables in
Boolean functions (Section 3), covering notions of impor-
tance from the literature (Sections 4.1 and 4.2). Moreover,
we derive novel IVFs by linking Boolean functions with co-
operative games and related values (Section 4.3). Finally, we
provide practical computation schemes for IVFs (Section 5).

Supplemental material. All proofs can be found in an ex-
tended version at https://arxiv.org/abs/2305.08103. An im-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2728

https://arxiv.org/abs/2305.08103

plementation of the computing schemes for IVFs can be
found at https://github.com/graps1/impmeas.

2 Preliminaries
Let X = {x, y, z, . . . } be a finite set of n = |X| variables,
which we assume to be fixed throughout the paper.
Assignments. An assignment over U ⊆ X is a function
u : U → {0, 1}, written in the form u = x/0; y/1; We
denote assignments by bold lower-case letters and their do-
mains by corresponding upper-case letters. If u and v have
disjoint domains, we write their concatenation as w = u;v
with W = V ∪ U and w(x) = u(x) if x ∈ U and
w(x) = v(x) if x ∈ V . The restriction of u to a domain
S ⊆ U is denoted by uS . For a permutation σ of X , we define
σu as the assignment over σ(U) with (σu)(x) = u(σ−1(x)).
Boolean functions. We call f, g, h, · · · : {0, 1}X → {0, 1}
Boolean functions, collected in a set B(X). We write g = x
if g is the indicator function of x, and we write g for negation,
f ∨ g for disjunction, fg for conjunction and f ⊕ g for ex-
clusive disjunction. The cofactor of f w.r.t. an assignment v
is the function fv that always sets variables in V to the value
given by v, and is defined as fv(u) = f(v;uU\V). The
Shannon decomposition of f w.r.t. variable x is a decompo-
sition rule stating that f = xfx/1 ∨ xfx/0 holds, where fx/1
and fx/0 are the positive and negative cofactor of f w.r.t. x.
For a Boolean function f , variable x, and Boolean function
or variable s, let f [x/s] = sfx/1 ∨ sfx/0 be the function that
replaces x by s. For example, if f = y∨xz, then fx/1 = y∨z
and fx/0 = y. Moreover, for s = x1x2, we have

f [x/s] = s(y ∨ z) ∨ sy = y ∨ sz = y ∨ x1x2z.

For ∼ ∈ {≤,≥,=}, we write f ∼ g if f(u) ∼ g(u) is true
for all assignments. We collect the variables that f depends
on in the set dep(f) = {x ∈ X : fx/1 ̸= fx/0}. If v is
an assignment with dep(f) ⊆ V , then f(v) denotes the only
possible value that fv can take.

We say that f is monotone in x if fx/1 ≥ fx/0, and call
f monotone if f is monotone in all of its variables. Further-
more, f is the dual of g if f(u) = g(u), where u is the
variable-wise negation of u. We call f symmetric if f = σf
for all permutations σ of X , where σf(u) = f(σ−1u).
Expectations. We denote the expectation of f w.r.t. the uni-
form distribution over D by Ed∈D[f(d)] for f : D → R. We
only consider cases where D is finite, so

Ed∈D[f(d)] =
1

|D|
∑
d∈D

f(d).

If the domain of f is clear, we simply write E[f]. For f ∈
B(X), E[f] is the fraction of satisfying assignments of f .
Modular decompositions. We introduce a notion of mod-
ularity to capture independence of subfunctions as common
in the theory of Boolean functions and related fields [Ashen-
hurst, 1957; Birnbaum and Esary, 1965; Shapley, 1967;
Bioch, 2010]. Intuitively, f is modular in g if f treats g like
a subfunction and otherwise ignores all variables that g de-
pends on. We define modularity in terms of a template func-
tion ℓ in which g is represented by a variable x:

Definition 1. Let f, g ∈ B(X). We call f modular in g if g
is not constant and there is ℓ ∈ B(X) and x ∈ X such that
dep(ℓ) ∩ dep(g) = ∅ and f = ℓ[x/g]. If ℓ is monotone in x,
then f is monotonically modular in g.
If f is modular in g with ℓ and x as above, then f(u) = ℓ(w),
where w is defined for y ∈ X as

w(y) =

{
g(u) if y = x, and
u(y) otherwise.

Thus, the value computed by g is assigned to x and then used
by ℓ, which otherwise is not influenced by the variables that g
depends on. For example, f = x1∨z1z2x2 is modular in g =
z1z2 since f can be obtained by replacing x in ℓ = x1 ∨ xx2

by g. Note that dep(ℓ) = {x, x1, x2} and dep(g) = {z1, z2}
are disjoint. This property is crucial, since it ensures f and g
are coupled through variable x only.

If f is modular in g, then the cofactors ℓx/1 and ℓx/0 must
be unique since g is not constant. Hence, we can define the
cofactors of f w.r.t. g as fg/1 = ℓx/1 and fg/0 = ℓx/0. The
instantiation is reversed by setting f [g/x] = xfg/1 ∨ xfg/0.
Boolean derivatives. We frequently rely on the derivative
of a Boolean function f w.r.t. variable x,

Dxf = fx/1 ⊕ fx/0,

which encodes the undirected change of f w.r.t. x. For exam-
ple, f = x ∨ y has the derivative Dxf = y, with the intuition
that x can only have an impact if y is set to zero. Further-
more, if f is modular in g, we define the derivative of f w.r.t.
g as Dgf = fg/1 ⊕ fg/0. Given this, we obtain the following
lemma corresponding to the chain rule known in calculus:
Lemma 1. Let f be modular in g and x ∈ dep(g). Then

Dxf = (Dxg)(Dgf).

3 Importance Value Functions
In this section, we devise axiomatic properties that should be
fulfilled by every reasonable importance attribution scheme.

For a Boolean function f and a variable x, we quantify the
importance of x in f by a number Ix(f) ∈ R, computed by
some value function I. Not every value makes intutive sense
when interpreted as the “importance” of x, so we need to pose
certain restrictions on I.

We argue that I should be bounded, with 1 marking the
highest and 0 the lowest importance; that functions which are
independent of a variable should rate these variables the low-
est importance (e.g., Ix(f) = 0 if f = y ∨ z); that functions
which depend on one variable only should rate these vari-
ables the highest importance (e.g., Ix(f) = 1 for f = x);
that neither variable names nor polarities should play a role
in determining their importance (e.g., Ix(xz) = Iz(xz), cf.
[Slepian, 1953; Golomb, 1959]):
Definition 2 (IVF). A value function is a mapping of the form
I : X×B(X) → R with (x, f) 7→ Ix(f). An importance
value function (IVF) is a value function I where for all x, y ∈
X , permutations σ : X → X , and f, g, h ∈ B(X):

(BOUND) 0 ≤ Ix(f) ≤ 1.
(DUM) Ix(f) = 0 if x ̸∈ dep(f).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2729

https://github.com/graps1/impmeas

(DIC) Ix(x) = Ix(x) = 1.
(TYPE) (i) Ix(f) = Iσ(x)(σf) and

(ii) Ix(f) = Ix(f [y/y]).
(MODEC) Ix(f) ≥ Ix(h) if

(i) f and h are monotonically modular in g,
(ii) fg/1 ≥ hg/1 and hg/0 ≥ fg/0, and
(iii) x ∈ dep(g).

BOUND, DUM for “dummy”, DIC for “dictator” and TYPE
for “type invariance” were discussed above. MODEC (for
“modular encapsulation consistency”) is the only property
that allows the inference of non-trivial importance inequali-
ties in different functions. Let us explain its intuition. We say
that f encapsulates h on g if these functions satisfy (i) and
(ii) from MODEC. Intuitively, together with (i), condition (ii)
states that if one can control the output of g, it is both easier
to satisfy f than h (using fg/1 ≥ hg/1) and to falsify f than
h (using hg/0 ≥ fg/0). We argue in MODEC that if f encap-
sulates h on g, then g’s impact on f is higher than on h, and
thus, the importance of variables in dep(g) (cf. (iii)) should
be also higher w.r.t. f than w.r.t. h.
Example. Let f = x1x2 ∨ x3x4x5, h = x3x4 ∨ x1x2x5, and
I be an IVF. Then f encapsulates h on g = x1x2, since

1︸︷︷︸
fg/1

≥ x3x4 ∨ x5︸ ︷︷ ︸
hg/1

≥ x3x4︸︷︷︸
hg/0

≥ x3x4x5︸ ︷︷ ︸
fg/0

.

We then get Ix1
(f) ≥ Ix1

(h) by application of MODEC.
Swapping x1 with x3 and x2 with x4, we obtain a permutation
σ such that h = σf . By TYPE, we derive Ix1

(h) = Ix3
(f).

Using TYPE on the other variables yields
Ix1

(f) = Ix2
(f) ≥ Ix3

(f) = Ix4
(f) = Ix5

(f).

Together with TYPE, MODEC implies the Winder pre-
order, which is similar in spirit (see [Hammer et al., 2000]).
However, MODEC generalizes to modular decompositions
and allows inferring importance inequalities w.r.t. to differ-
ent functions.
Biased and unbiased. We say that an IVF is unbiased if
Ix(g) = Ix(g) holds for all Boolean functions g and vari-
ables x. That is, unbiased IVFs measure the impact of vari-
ables without any preference for one particular function out-
come, while biased ones quantify the impact to enforce a
function to return one or zero. Biased IVFs can, e.g., be use-
ful when the task is to assign responsibility values for the
violation of a specification.

3.1 Further Properties
We defined IVFs following a conservative approach, collect-
ing minimal requirements on IVFs. Further additional proper-
ties can improve on the predictability and robustness of IVFs.
Definition 3. A value function I is called

• rank preserving, if for all f, g ∈ B(X) such that f is
modular in g and x, y ∈ dep(g):

Ix(g) ≥ Iy(g) =⇒ Ix(f) ≥ Iy(f),

• chain-rule decomposable, if for all f, g ∈ B(X) such
that f is modular in g and x ∈ dep(g):

Ix(f) = Ix(g)Ig(f),

where Ig(f) = Ixg (f [g/xg]) for some xg ̸∈ dep(f),
• and derivative dependent, if for all f, g ∈ B(X), x ∈ X:

Dxf ≥ Dxg =⇒ Ix(f) ≥ Ix(g).

We also consider weak variants of rank preserving and chain-
rule decomposable where f ranges only over functions that
are monotonically modular in g.

Rank preservation. Rank preservation states that the rela-
tion between two variables should not change if the function
is embedded somewhere else. This can be desired, e.g., dur-
ing a modeling process in which distinct Boolean functions
are composed or fresh variables added, where rank preserv-
ing IVFs maintain the relative importance order of variables.
We see this as a useful but optional property of IVFs since
an embedding could change some parameters of a function
that might be relevant for the relationship of both variables.
For example, if f = gz with z ̸∈ dep(g), then the relative
number of satisfying assignments is halved compared to g. If
x is more important than y in g but highly relies on g taking
value one, it might be that this relationship is reversed for f
(cf. example given in Section 4.1).

Chain-rule decomposability. If an IVF is chain-rule de-
composable, then the importance of a variable in a module is
the product of (i) its importance w.r.t. the module and (ii) the
importance of the module w.r.t. the function. Many values
studied in this paper satisfy this property (Section 4).
Example. Let f = x1 ⊕ · · · ⊕ xm, and let I be a chain-rule
decomposable IVFs with Ix(x⊕ y) = α. Since f is modular
in g = x1 ⊕ · · · ⊕ xm−1, and g modular in x1 ⊕ · · · ⊕ xm−2,
etc., we can apply the chain-rule property iteratively to get

Ix1
(f) = Ix1

(g)Ig(f) = Ix1
(g)α = · · · = αm−1,

where we use TYPE to derive Ig(f) = Ixg (xg ⊕ xm) = α.

Derivative dependence. Derivative dependence states that
an IVF should quantify the change a variable induces on a
Boolean function. It can be used to derive, e.g., the inequality
Ix1

(x1 ⊕ x2x3) ≥ Ix1
(x2 ⊕ x1x3), which is not possible

solely using MODEC since x1 ⊕ x2x3 is neither monotone
in x1 nor in x2. If a value function I (that is not necessarily
an IVF) is derivative dependent, then this has some interest-
ing implications. First, I is unbiased and satisfies MODEC.
Second, if I is weakly chain-rule decomposable (weakly rank
preserving), then it is also chain-rule decomposable (rank pre-
serving). Finally, if I satisfies DIC and DUM, then it is also
bounded by zero and one. As a consequence, if I is deriva-
tive dependent and satisfies DIC, DUM, and TYPE, then I is
an IVF.

3.2 Induced Relations
In this section, we will establish foundational relations be-
tween IVFs. Recall that f is a threshold function if

f(u) = 1 iff
∑

x∈X wxu(x) ≥ δ ∀u ∈ {0, 1}X ,

where {wx}x∈X ⊆ R is a set of weights and δ∈R a threshold.

Theorem 1. Let I be an IVF, f, g, h∈B(X), x, y∈X . Then:

(1) If f is symmetric, then Ix(f) = Iy(f).

(2) If I is unbiased and f is dual to g, then Ix(f) = Ix(g).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2730

(3) If f is a threshold function with weights {wx}x∈X ⊆ R,
then |wx| ≥ |wy| implies Ix(f) ≥ Iy(f).

(4) If f is monotonically modular in g and x ∈ dep(g), then
Ix(g) ≥ Ix(f).

(5) If I is derivative dependent and x ̸∈ dep(g), then
Ix(h⊕ g) = Ix(h).

(6) If I is (weakly) chain-rule decomposable, then it is
(weakly) rank preserving.

For the case of threshold functions, Theorem 1 shows in
(3) that any IVF will rank variables according to their abso-
lute weights. In (4), it is stated that the if a function is mono-
tonically embedded somewhere, the importance of variables
in that function can only decrease, e.g., Ix(xy) ≥ Ix(xyz).
Moreover, in (5), if derivative dependence is satisfied, ⊕-
parts without the variable can be dropped. As a consequence,
Ix(f) = 1 whenever f is a parity function and x ∈ dep(f).

4 Instances of Importance Value Functions
In this section, we show that IVFs can be instantiated with
several notions for importance values from the literature and
thus provide a unifying framework.

4.1 Blame
Chockler, Halpern, and Kupferman’s (CHK) notions of re-
sponsibility [Chockler et al., 2008] and blame [Chockler and
Halpern, 2004] measure the importance of x in f through the
number of variables that have to be flipped in an assignment
u until x becomes critical, i.e., “flipping” x changes the out-
come of f to its complement. Towards a formalization, let

flipS(u)(x) =

{
u(x) if x ∈ S

u(x) otherwise

denote the assignment that flips variables in S. We now rely
on the following notion of critical set:

Definition 4 (Critical sets). A critical set of x ∈ X in f ∈
B(X) under assignment u over X is a set S ⊆ X\{x} where

f(u) = f(flipS(u)) and f(u) ̸= f(flipS∪{x}(u)).

We define scsux (f) as the size of the smallest critical set, and
set scsux (f) = ∞ if there is no such critical set.

Example. The set S = {y} is critical for x in f = x∨y under
u = x/1; y/1. It is also the smallest critical set. On the other
hand, there is no critical set if u = x/0; y/1.

The responsibility of x for f under u is inversely related
to scsux (f). Using the following notion of a share function,
we generalize the original notion of responsibility [Chockler
et al., 2008]:

Definition 5 (Share function). Call ρ : N∪{∞} → R a share
function if (i) ρ is monotonically decreasing, (ii) ρ(∞) =
limn→∞ ρ(n) = 0, and (iii) ρ(0) = 1.

In particular, we consider three instances of share functions:

• ρexp(k) = 1/2k,
• ρfrac(k) = 1/(k+1),
• ρstep(k) = 1 for k = 0 and ρ(k) = 0 otherwise.

Given a share function ρ, the responsibility of x for f un-
der u is defined as ρ(scsux (f)). Note that ρfrac(scs

u
x (f))

implements the classical notion of responsibility [Chockler
et al., 2008]. While responsibility corresponds to the size
of the smallest critical set in a fixed assignment, CHK’s
blame [Chockler et al., 2008] is a global perspective and fits
our notion of value function. It is the expected value of the
responsibility (we restrict ourselves to uniform distributions):
Definition 6 (Blame). For a share function ρ, we define the ρ-
blame as value function Bρ where for any x ∈ X , f ∈ B(X):

Bρ
x(f) = Eu∈{0,1}X [ρ(scsux (f))].

Example. Let f = x∨y. To compute the importance of x we
can count the number of times scsux (f) = 0, 1, 2, . . . ,∞ oc-
curs if u ranges over the assignments for {x, y}: scsux (f) =
∞ happens once, scsux (f) = 0 happens twice, and scsux (f) =
1 occurs once. Thus, Bρ

x(f) = 1/4·ρ(∞)+1/2·ρ(0)+1/4·ρ(1),
which is 5/8 for ρ = ρexp.

Independent of ρ, the blame is always an IVF:
Theorem 2. Bρ is an unbiased IVF for any share function ρ.

In full generality, the blame violates the optional properties
for IVFs (see Section 3.1). For example, if ρ ̸= ρstep, then
the ρ-blame is neither chain-rule decomposable nor derivative
dependent, and one can find counterexamples for the rank-
preservation property for ρfrac and ρexp:
Proposition 1. Let ρ be a share function. Then the following
statements are equivalent:

(i) Bρ is weakly chain-rule decomposable,
(ii) Bρ is derivative dependent, and

(iii) ρ = ρstep.
Further, neither Bρfrac nor Bρexp are weakly rank preserving.

To give an example for the reason why the ρfrac-blame is
not weakly rank preserving, consider g = x1x0x2∨x1x0∨x3

and f = g ∨ z. Note that f is clearly monotonically modular
in g – only z is added as fresh variable. Nevertheless, the
order of x0 and x3 changes:

Bρfrac
x0

(g) = 0.6302 < 0.7188 = Bρfrac
x3

(g)

Bρfrac
x0

(f) = 0.4802 > 0.4688 = Bρfrac
x3

(f).

Intuitively, this is because by CHK’s definition of critical sets:
for all Boolean functions h, variables x and assignments u,

h(u) = 1, hx/1 ≥ hx/0,u(x) = 0 =⇒ scsux (h) = ∞.

Hence, whenever an assignment u satisfies the premise for x
in h, the responsibility of x for h under u will be zero.

For x3, this is more frequently the case in g than in f (19%
vs. 34% of all assignments). On the other hand, there is
always a critical set for x0 in both f and g. Partly for this
reason, the importance of x3 decreases more than x0 when
switching from g to f .

Modified Blame
We modify the definition of critical sets in order to derive a
modified blame that satisfies more optional properties for a
wider class of share functions.

For a Boolean function f , an assignment u over X and a
variable x, the modified scs is defined as the size mscsux (f)
of the smallest set S ⊆ X \ {x} that satisfies

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2731

f
(
flipS(u)

)
̸= f

(
flipS∪{x}(u)

)
.

If there is no such set, we set mscsux (f) = ∞.
Example. The condition for critical sets is relaxed, hence
mscsux (f) provides a lower bound for scsux (f). Let for ex-
ample f = x ∨ y and u = x/0; y/1. Then

mscsux (f) = 1 < ∞ = scsux (f).

The definitions for responsibility and blame are analogous
for the modified version, replacing scs by mscs. We denote
by MBρ the modified ρ-blame, which is (in contrast to Bρ)
always derivative dependent and even chain-rule decompos-
able if ρ is an exponential- or stepping-function:

Theorem 3. MBρ is an unbiased, derivative-dependent IVF
for any share function ρ. If there is 0 ≤ λ < 1 so that ρ(k) =
λk for all k ≥ 1, then MBρ is chain-rule decomposable.

4.2 Influence
The influence [Ben-Or and Linial, 1985; Kahn et al., 1988;
O’Donnell, 2014] is a popular importance measure, defined
as the probability that flipping the variable changes the func-
tion’s outcome for uniformly distributed assignments:

Definition 7. The influence is the value function I defined by
Ix(f) = E[Dxf] for all f ∈ B(X) and variables x ∈ X .

It turns out that the influence is a special case of blame:

Proposition 2. I = MBρstep = Bρstep .

Since ρstep(k) = 0k for k ≥ 1, Proposition 2 and Theo-
rem 3 show that the influence is a derivative-dependent, rank-
preserving, and chain-rule decomposable IVF.

Characterizing the Influence
Call a value function I cofactor-additive if for all Boolean
functions f and variables x ̸= z:

Ix(f) = 1/2 · Ix(fz/0) + 1/2 · Ix(fz/1).
Using this notion, we axiomatically characterize the influ-
ence as follows.

Theorem 4. A value function I satisfies DIC, DUM, and
cofactor-additivity if and only if I = I.

Remark. A relaxed version of cofactor-additivity assumes the
existence of αz, βz ∈ R for z ∈ X such that for all x ̸= z:

Ix(f) = αzIx(fz/0) + βzIx(fz/1).

This, together with the assumption that I satisfies TYPE,
DUM and DIC, implies αz = βz = 1/2. Hence, another char-
acterization of the influence consists of TYPE, DUM, DIC,
and relaxed cofactor-additivity.

Moreover, we give a syntactic characterization of the in-
fluence by a comparison to the two-sided Jeroslow-Wang
heuristic used for SAT-solving [Jeroslow and Wang, 1990;
Hooker and Vinay, 1995; Marques-Silva, 1999]. This value is
defined for families of sets of literals, which are sets of sub-
sets of X ∪ {z : z ∈ X}, and it weights subsets that contain
x or x by their respective lengths:

Definition 8 ([Hooker and Vinay, 1995]). Let D be a family
of sets of literals. The two-sided Jeroslow-Wang value for a
variable x is defined as

JWx(D) =
∑

C∈D s.t. x∈C or x∈C 2−|C|

We call a set C of literals trivial if there is a variable x
such that x ∈ C and x ∈ C. For a variable x, say that D is
x-orthogonal if for all C,C ′ ∈ D, C ̸= C ′, there is a literal
η ̸∈ {x, x} such that η ∈ C and η ∈ C ′. Orthogonality
is well-studied for DNFs [Crama and Hammer, 2011b]. The
two-sided Jeroslow-Wang value and the influence agree up
to a factor of two for some families of sets of literals when
interpreting them as DNFs:

Theorem 5. Let D be a family of sets of literals such that all
of its elements are non-trivial, and let x be variable such that
D is x-orthogonal. Then:

Ix(
∨

C∈D
∧

η∈C η) = 2 · JWx(D).

A simple example that illustrates Theorem 5 would be
D = {{x, y, z}, {y, z}}. Note that we can interpret D as
a CNF as well, since the influence does not distinguish be-
tween a function and its dual (Theorem 1). Note that every
Boolean function can be expressed by a family D that satis-
fies the conditions of Theorem 5. For this, we construct the
canonical DNF corresponding to f and resolve all monomials
that differ only in x.

4.3 Cooperative Game Mappings
Attribution schemes analogous to what we call value func-
tions were already studied in the context of game theory, most
often with emphasis on Shapley- and Banzhaf values [Shap-
ley, 1953; Banzhaf, 1965]. They are studied w.r.t. coopera-
tive games, which are a popular way of modeling collabora-
tive behavior. Instead of Boolean assignments, their domains
are subsets (coalitions) of X . Specifically, cooperative games
are of the form v : 2X → R, in which the value v(S) is as-
sociated with the payoff that variables (players) in S receive
when collaborating. Since more cooperation generally means
higher payoffs, they are often assumed to be monotonically
increasing w.r.t. set inclusion. In its unconstrained form, they
are essentially pseudo Boolean functions.

We denote by G(X) the set of all cooperative games. If
image(v) ⊆ {0, 1}, then we call v simple. For a cooper-
ative game v, we denote by ∂xv the cooperative game that
computes the “derivative” of v w.r.t. x, which is ∂xv(S) =
v(S∪{x})−v(S \{x}). We compose cooperative games us-
ing operations such as ·,+,−,∧,∨ etc., where (v ◦ w)(S) =
v(S) ◦ w(S). For ∼ ∈ {≥,≤,=}, we also write v ∼ w if
v(S) ∼ w(S) for all S ⊆ X . The set of variables v depends
on is defined as dep(v) = {x ∈ X : ∂xv ̸= 0}.

Cooperative game mappings map Boolean functions to
cooperative games. Specific instances of such mappings
have previously been investigated by [Hammer et al., 2000;
Biswas and Sarkar, 2021]. We provide a general definition of
this concept to show how it can be used to construct IVFs.

Definition 9 (CGM). A cooperative game mapping (CGM) is
a function τ : B(X) → G(X) with f 7→ τf . We call τ impor-
tance inducing if for all x, y ∈ X , permutations σ : X → X ,
and f, g, h ∈ B(X):

(BOUNDCG) 0 ≤ ∂xτf ≤ 1.

(DUMCG) ∂xτf = 0 if x ̸∈ dep(f).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2732

(DICCG) ∂xτx = ∂xτx = 1.

(TYPECG) (i) τf (S) = τσf (σ(S)) and
(ii) τf (S) = τf [y/y](S) for all S ⊆ X .

(MODECCG) ∂xτf ≥ ∂xτh if
(i) f and h are monotonically modular in g,
(ii) fg/1 ≥ hg/1 and hg/0 ≥ fg/0 and
(iii) x ∈ dep(g).

We call τ unbiased if τg = τg for all g ∈ B(X).

An example is the characteristic CGM ζ given by ζf (S) =
f(1S), where 1S(x) = 1 iff x ∈ S. We study various
importance-inducing CGMs in the following sections. Note
that ζ is not importance inducing: for example, it violates
BOUNDCG since ∂xζf (∅) = −1 for f = x.

The restriction to importance-inducing CGMs ensures that
compositions with the Banzhaf or Shapley value are valid
IVFs (Lemma 2). These CGMs satisfy properties that are
related to Definition 2: τf should be monotone (0 ≤ ∂xτf),
irrelevant variables of f are also irrelevant for τf (DUMCG),
etc. In an analogous fashion, we can think of properties re-
lated to Definition 3:

Definition 10. A CGM τ is called

• chain-rule decomposable, if for all f, g ∈ B(X) such
that f is modular in g and x ∈ dep(g):

∂xτf = (∂xτg)(∂gτf),

where ∂gτf = ∂xgτf [g/xg] for some xg ̸∈ dep(f). We
call τ weakly cain-rule decomposable if this holds for
all cases where f is monotonically modular in g.

• derivative dependent, if for all f, g ∈ B(X), x ∈ X

Dxf ≥ Dxg =⇒ ∂xτf ≥ ∂xτg.

Since (weak) rank-preservation for value functions uses an
IVF in its premise, it cannot be stated naturally at the level of
CGMs. Let us now define the following abstraction, which
captures Shapley and Banzhaf values:

Definition 11. Call E : X × G(X) → R, (x, v) 7→ Ex(v) a
value function for cooperative games. Call E an expectation
of contributions if there are weights c(0), . . . , c(n−1) ∈ R
such that for all v ∈ G(X) and x ∈ X:∑
S⊆X\{x}

c(|S|) = 1 and Ex(v) =
∑

S⊆X\{x}

c(|S|) · ∂xv(S).

If E is an expectation of contributions, then Ex(v) is indeed
the expected value of ∂xv(S) in which every S ⊆ X \ {x}
has probability c(|S|). The Banzhaf and Shapley values are
defined as the expectations of contributions with weights:

cBz(k) =
1

2n−1 (Bz) and cSh(k) =
1
n

(
n−1
k

)−1
(Sh).

Observe that there are
(
n−1
k

)
sets of size k ∈ {0, . . . , n−1},

so the weights of the Shapley value indeed sum up to one.
If τ is a CGM, then its composition with E yields (E ◦

τ)x(f) = Ex(τf), which is a value function for Boolean
functions. Then every composition with an expectation of
contributions is an IVF if the CGM is importance inducing:

Lemma 2. If τ is an importance-inducing CGM and E an
expectation of contributions, then E ◦ τ is an IVF. If τ is un-
biased/derivative dependent, then so is E ◦ τ . Finally, if τ is
(weakly) chain-rule decomposable, then so is Bz ◦ τ .

In the following sections, we study two novel and the
already-known CGM of [Hammer et al., 2000]. By Lemma 2
we can focus on their properties as CGMs, knowing that any
composition with the Shapley value or other expectations of
contributions will induce IVFs.

Simple Satisfiability-Biased Cooperative Game Mappings
The first CGM interprets the “power” of a coalition as its abil-
ity to force a function’s outcome to one: If there is an assign-
ment for a set of variables that yields outcome one no matter
the values of other variables, we assign this set a value of one,
and zero otherwise.

Definition 12. The dominating CGM ω is defined as

ωf (S) =

{
1 if ∃u ∈ {0, 1}S . ∀w ∈ {0, 1}X\S . f(u;w).

0 otherwise.

Example. Let f = x∨(y⊕z). We have ωf ({y, z}) = 1 since
fu = 1 for u = y/1; z/0. On the other hand, ωf ({y}) = 0,
since x/0; z/1 resp. x/0; z/0 falsify fy/1 and fy/0.

Theorem 6. The dominating CGM is weakly chain-rule de-
composable and importance inducing.

Example. Let Z be the expectation of contributions with
c(0) = 1, i.e., Zx(v) = v({x}) − v(∅). By Lemma 2 and
Theorem 6, the mapping

(Z ◦ ω)x(f) =
{
1 if f ̸= 1 and fx/0 = 1 or fx/1 = 1

0 otherwise

is an IVF. Intuitively, x has the highest importance if the func-
tion is falsifiable and there is a setting for x that forces the
function to one. Otherwise, x has an importance of zero.

Biasedness and rank preservation. The dominating CGM
is biased: Consider g = x∨(y⊕z) with g = x∧(y⊕z). Note
that ωg(S) = 1 for S = {x} while ωg(S) = 0, which shows
biasedness. Composing ω with the Banzhaf value yields

(Bz ◦ ω)(·)(g) : z : 0.25 = y : 0.25 < x : 0.75,
(Bz ◦ ω)(·)(g) : z : 0.25 = y : 0.25 = x : 0.25,

One can force g to one by controlling either x or both y and
z, so x is rated higher than the others. But to force g to one,
control over all variables is required, so all variables in g have
the same importance.

Since g is modular in g, we also obtain a counterexample
for rank preservation:

(Bz ◦ ω)y(g) ≥ (Bz ◦ ω)x(g)
does not imply (Bz ◦ ω)y(g) ≥ (Bz ◦ ω)x(g).

However, weak rank preservation is fulfilled by Bz ◦ ω since
it is weakly chain-rule decomposable by Theorem 6 and
Lemma 2. Then the claim follows with Theorem 1.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2733

A dual to the dominating CGM. One can think of a dual
notion of the CGM ω that reverses the order of both quanti-
fiers. Intuitively, we are now allowed to choose an assignment
depending on the values of the remaining variables:
Definition 13. The rectifying CGM ν is defined as

νf (S) =

{
1 if ∀w ∈ {0, 1}X\S . ∃u ∈ {0, 1}S . f(u;w).

0 otherwise.
If we compose ν with an expectation of contributions that

satisfies c(k) = c(n−1−k) for all k ∈ {0, . . . , n−1}, which
is a condition satisfied both by the Shapley and Banzhaf val-
ues, the induced importance of a variable equals its impor-
tance w.r.t. ω and the negated function:
Proposition 3. Let E be an expectation of contributions with
c(k) = c(n−1−k) for all k ∈ {0, . . . , n−1}. Then for all
g ∈ B(X) and x ∈ X:

(E ◦ ω)x(g) = (E ◦ ν)x(g)
We now discuss connections to the influence. If a Boolean

function is monotone, and we “control” a set of variables S,
the best towards satisfaction (resp. falsification) is to set all
variables in S to one (resp. to zero). This can be used to show
that both Bz ◦ ω and Bz ◦ ν agree with the influence:
Proposition 4. Let f be a monotone Boolean function and x
a variable. Then (Bz ◦ ω)x(f) = (Bz ◦ ν)x(f) = Ix(f).

A Constancy-Based Cooperative Game Mapping
Hammer, Kogan and Rothblum [Hammer et al., 2000] (HKR)
defined a CGM that measures the power of variables by how
constant they make a function if assigned random values. It
depends on the following notion of constancy measure:
Definition 14. We call a mapping κ : [0, 1] → [0, 1] a con-
stancy measure if (i) κ is convex, (ii) κ(0) = 1, (iii) κ(x) =
κ(1−x), and (iv) κ(1/2) = 0.
The following functions are instances of constancy measures:

• κquad(a) = 4(a− 1/2)2,
• κlog(a) = 1+alb(a)+(1−a)lb(1−a) with 0lb(0) = 0,
• κabs(a) = 2|a− 1/2|.

For a constancy measure κ and a Boolean function f , the κ-
constancy of f is the value κ(E[f]), which measures how bal-
anced the share of ones and zeros is. It is close to one if f
is very unbalanced and close to zero if the share of zeros and
ones in f is (almost) the same. The power of a set of variables
S is now measured in terms of the expected κ-constancy of f
if variables in S are fixed to random values:
Definition 15 ([Hammer et al., 2000]). Given a constancy
measure κ, we define the CGM Hκ by

Hκ
f (S) = Ea∈{0,1}S [κ(E[fa])].

Example. Let f = x ∨ y ∨ z and S = {x}. We obtain
Hκ

f (S) = 1/2 · κ(3/4) + 1/2 · κ(1), since

E[fx/0] = 3/4 and E[fx/1] = 1.
Setting x to zero does not determine f completely, while set-
ting it to one also sets f to one, i.e., makes it constant. The
measure then gives a lower value to the less-constant cofac-
tor, a higher value to the more-constant cofactor and com-
putes the average. For this example and κ = κabs, we obtain
Hκ

f (S) = 3/4 due to κ(3/4) = 1/2 and κ(1) = 1.

Theorem 7 shows that Hκquad is a chain-rule decompos-
able and importance-inducing CGM. It is open whether other
constancy measures are importance inducing too.
Theorem 7. Suppose κ is a constancy measure. Then Hκ is
an unbiased CGM that satisfies BOUNDCG, DICCG, DUMCG,
and TYPECG. Further, Hκquad is chain-rule decomposable
and satisfies MODECCG.
Example. For the special case where κ = κquad, note that

1/2 · κ(a) + 1/2 · κ(b)− κ(1/2 · a+ 1/2 · b) = (a− b)2.

Using E[f] = 1/2 · E[fx/1] + 1/2 · E[fx/0], this implies

(Z ◦Hκ)x(f) = (E[fx/1]− E[fx/0])2,
where Z is again the expectation of contributions with

Zx(v) = v({x})− v(∅).
The value Z ◦ Hκ is an IVF according Lemma 2 and The-
orem 7. In contrast to derivative-dependent IVFs, Z ◦ Hκ

assigns low values to variables in parity-functions: for f =
x⊕y, we have E[fx/1] = E[fx/0], and thus (Z◦Hκ)x(f) = 0.
Derivative dependence. This property cannot be achieved,
as witnessed by f = x⊕ y and g = x. Due to Dxf = Dxg, it
suffices to show that ∂xHκ

f ̸= ∂xH
κ
g holds for all κ. Note that

E[fx/0] = 1/2, E[fx/1] = 1/2, E[gx/0] = 0, E[gx/1] = 1,

and E[f] = E[g] = 1/2. Thus, for all constancy measures κ,

∂xH
κ
f (∅) = 1/2 · κ(1/2) + 1/2 · κ(1/2)− κ(1/2) = 0,

∂xH
κ
g (∅) = 1/2 · κ(1) + 1/2 · κ(0)− κ(1/2) = 1,

which shows ∂xHκ
f ̸= ∂xH

κ
g .

5 Computing Importance Values
In this section, we present and evaluate computation schemes
for blame, influence, and CGMs. While there exists a prac-
tical approach based on model counting for the influence in
CNFs [Traxler, 2009], we are only aware of naı̈ve computa-
tions of CHK’s blame [Dubslaff et al., 2022].
Blame. We focus on the modified blame. CHK’s blame can
be computed in a very similar fashion. Observe that for a
Boolean function f and x ∈ X ,

MBρ
x(f) = E[γ0] +

∑n−1
k=1 ρ(k)(E[γk]− E[γk−1]),

where γk is the Boolean function for which γk(u) = 1 iff
mscsux (f) ≤ k. We devise two approaches for computing
E[γk]. The first represents γk through BDDs using the fol-
lowing recursion scheme: mscsux (f) ≤ k holds iff

• k = 0 and f(u) ̸= f(flip{x}(u)), or
• k > 0 and

– mscsux (f) ≤ k−1 or
– there is y ̸= x such that mscsux (f [y/y]) ≤ k−1.

This allows us to construct BDDs for γk from γk−1, which
lends itself to BDD-based approaches since γk does not nec-
essarily increase in size as k grows. The second approach
introduces new existentially quantified variables in the input
formula of f to model occurrences of variables in critical sets
of mscsux (f). With an additional cardinality constraint re-
stricting the number of variables in critical sets to at most k,
we can use projected model counting to compute E[γk].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2734

(projected) model counting approaches BDD-based approaches

Instance #Variables #Clauses Influence (CNF) Influence (formula) Blame Construction Influence DCGM Blame

b02 26 66 5 ms 49 ms timeout 1 ms <1 ms 2 ms 3’649 ms
b06 44 122 7 ms 99 ms timeout 3 ms <1 ms 6 ms 697’573 ms
b01 45 120 7 ms 110 ms timeout 4 ms <1 ms 8 ms 3’068’667 ms
b03 156 376 11 ms 442 ms timeout 53’934 ms 24 ms 1’776 ms timeout
b13 352 847 34 ms 1’088 ms timeout timeout timeout timeout timeout
b12 1’072 2’911 230 ms 8’555 ms timeout timeout timeout timeout timeout

Table 1: Computation time for instances of the ISCAS’99 dataset, timeout set to one hour. BDD columns Influence, DCGM (construction of
the BDD for the dominating CGM), and Blame are without the BDD construction time for the initial CNF (cf. column Construction).

10 13 16 19 22 25 28

Number of variables

101

103

T i
m

e
[m

s]

GPMC blame
GPMC mod. blame
BDD blame
BDD mod. blame
BDD construction

Figure 1: Computation of blame values on random (n, 3n, 7)-CNFs
(number of variables, number of clauses, clause width). BDD times
include construction time of the BDD for the initial CNF.

Influence. In case f is given as a CNF formula, we use
Traxler’s method to compute the influence [Traxler, 2009].
For all other formulas, note that standard satisfiability-
preserving transformations do not preserve influence values:
For example, applying the Tseytin transformation to x∨xy
results in a CNF where x has a higher influence than y.

However, the influence is proportional to the number of
models of Dxf . If f is given by a BDD, computing a repre-
sentation of Dxf means squaring f ’s size in the worst case,
while the formula-based representation only doubles it. For
the latter case, we can count the models of Dxf using a
Tseytin transformation and a standard model counter.
BDD representations of satisfiability-biased CGMs. The
dominating CGM computes a simple game, which is essen-
tially a Boolean function, and therefore permits a representa-
tion by BDDs. Moreover, using a BDD representation of f ,
we compute ωf using a recursion on cofactors of variables z,
(ωf)z/1 = ωfz/1∨ ωfz/0 and (ωf)z/0 = ωfz/0∧fz/1 .

The Banzhaf value of x in ωf is then just
E[(ωf)x/1]− E[(ωf)x/0],

which poses no effort once the BDD of ωf is constructed.
The rectifying CGM can be computed analogously.
Implementation and evaluation. We have implemented
Traxler’s method and our new computation schemes in
Python, using BuDDy [Lind-Nielsen, 1999] as BDD backend
with automatic reordering and GPMC [Suzuki et al., 2015;
Suzuki et al., 2017] for (projected) model counting. To eval-
uate our approaches, we conducted experiments on Boolean
functions given as CNFs that were either randomly generated
or generated from the ISCAS’99 dataset [Davidson, 1999;
Compile! Project, 2023]. We always computed importance
values w.r.t. the first variable in the input CNF and averaged
the timings over 20 runs each. Our experiments were carried

out on a Linux system with an i5-10400F CPU at 2.90GHz
and 16GB of RAM. To compare our BDD-based and model
counting approaches, Figure 1 shows timings for blame com-
putations on random CNFs. Here, the BDD-based approach
clearly outperforms the one based on projected model count-
ing. This is also reflected in real-world benchmarks from
ISCAS’99 shown in Table 1, where the approach based on
model counting runs into timeouts for even small instances.
Table 1 shows that computations for influence values based
on model counting scale better than the BDD-based approach,
mainly due to an expensive initial BDD construction. Com-
puting the BDD of the dominating CGM is done without
much overhead once the BDD for the CNF is given.

6 Conclusion
This paper introduced IVFs as a way to formally reason about
importance of variables in Boolean functions. We established
general statements about IVFs, also providing insights on no-
tions of importance from the literature by showing that they
all belong to the class of IVFs. Apart from revealing several
relations between known IVFs, we have shown how to gener-
ate new ones inspired by cooperative game theory.

For future work, we will study properties with strict impor-
tance inequalities, IVFs for sets of variables, IVFs for pseudo
Boolean functions, and global values similar to the total in-
fluence [O’Donnell, 2014]. On the empirical side, the gen-
eration of splitting rules for SAT-solvers and variable-order
heuristics for BDDs based on different instances of IVFs are
promising avenues to pursue.

Acknowledgments
The authors were partly supported by the DFG through the
DFG grant 389792660 as part of TRR 248 and the Cluster of
Excellence EXC 2050/1 (CeTI, project ID 390696704, as part
of Germany’s Excellence Strategy) and “SAIL: SustAInable
Life-cycle of Intelligent Socio-Technical Systems” (Grant ID
NW21-059D), funded by the program “Netzwerke 2021” of
the Ministry of Culture and Science of the State of North
Rhine-Westphalia, Germany.

References
[Ashenhurst, 1957] Robert Ashenhurst. The Decomposition

of Switching Functions. In Proceedings of an Interna-
tional Symposium on the Theory of Switching, April 1957.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2735

https://perspicuous-computing.science

[Aziz et al., 2015] Rehan Abdul Aziz, Geoffrey Chu, Chris-
tian Muise, and Peter Stuckey. #∃SAT: Projected
model counting. In International Conference on Theory
and Applications of Satisfiability Testing, pages 121–137.
Springer, 2015.

[Banzhaf, 1965] John Francis Banzhaf. Weighted Voting
Doesn’t Work: A Mathematical Analysis. Rutgers Law
Review, 19:317–343, 1965.

[Bartlett and Andrews, 2001] L. M. Bartlett and J. D. An-
drews. Comparison of two new approaches to variable
ordering for binary decision diagrams. Quality and Re-
liability Engineering International, 17(3):151–158, May
2001.

[Ben-Or and Linial, 1985] Michael Ben-Or and Nathan
Linial. Collective Coin Flipping, Robust Voting Schemes
and Minima of Banzhaf Values. In 26th Annual Sympo-
sium on Foundations of Computer Science (Sfcs 1985),
pages 408–416, Portland, OR, USA, 1985. IEEE.

[Bioch, 2010] Jan C. Bioch. Decomposition of Boolean
Functions. In Yves Crama and Peter L. Hammer, editors,
Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, pages 39–76. Cambridge Uni-
versity Press, first edition, June 2010.

[Birnbaum and Esary, 1965] Zygmunt Wilhelm Birnbaum
Birnbaum and J. D. Esary. Modules of Coherent Binary
Systems. Journal of the Society for Industrial and Applied
Mathematics, 13(2):444–462, June 1965.

[Biswas and Sarkar, 2021] Aniruddha Biswas and Palash
Sarkar. Influence of a set of variables on a boolean func-
tion. Electron. Colloquium Comput. Complex., TR21-111,
2021.

[Bryant, 1992] Randal E. Bryant. Symbolic Boolean ma-
nipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3):293–318, September 1992.

[Chockler and Halpern, 2004] Hana Chockler and Joseph Y.
Halpern. Responsibility and Blame: A Structural-Model
Approach. Journal of Artificial Intelligence Research,
22:93–115, October 2004.

[Chockler et al., 2008] Hana Chockler, Joseph Y. Halpern,
and Orna Kupferman. What Causes a System to Satisfy
a Specification? ACM Transactions on Computational
Logic, 9(3):1–26, June 2008.

[Compile! Project, 2023] Compile! Project. Benchmarks.
https://www.cril.univ-artois.fr/kc/benchmarks.html, 2023.
Accessed: 2023-01-11.

[Crama and Hammer, 2011a] Yves Crama and Peter L.
Hammer. Boolean Functions: Theory, Algorithms, and
Applications. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, 2011.

[Crama and Hammer, 2011b] Yves Crama and Peter L.
Hammer. Orthogonal forms and shellability. In Boolean
Functions: Theory, Algorithms, and Applications, Ency-
clopedia of Mathematics and Its Applications, chapter 7,
pages 326–350. Cambridge University Press, Cambridge,
2011.

[Davidson, 1999] Scott Davidson. Itc’99 benchmark
circuits-preliminary results. In International Test Con-
ference 1999. Proceedings (IEEE Cat. No. 99CH37034),
pages 1125–1125. IEEE, 1999.

[Deng and Papadimitriou, 1994] Xiaotie Deng and Chris-
tos H. Papadimitriou. On the complexity of cooperative
solution concepts. Mathematics of Operations Research,
19(2):257–266, 1994.

[Dubslaff et al., 2022] Clemens Dubslaff, Kallistos Weis,
Christel Baier, and Sven Apel. Causality in configurable
software systems. In Proceedings of the 44th Interna-
tional Conference on Software Engineering, ICSE ’22,
page 325–337, New York, NY, USA, 2022. Association
for Computing Machinery.

[Faigle and Kern, 1992] Ulrich Faigle and Walter Kern. The
shapley value for cooperative games under precedence
constraints. International Journal of Game Theory,
21(3):249–266, 1992.

[Golomb, 1959] Solomon Golomb. On the classification of
Boolean functions. IRE Transactions on Information The-
ory, 5(5):176–186, May 1959.

[Hammer et al., 2000] Peter L. Hammer, Alexander Kogan,
and Uriel G. Rothblum. Evaluation, Strength, and Rele-
vance of Variables of Boolean Functions. SIAM Journal
on Discrete Mathematics, 13(3):302–312, January 2000.

[Hooker and Vinay, 1995] John N. Hooker and V. Vinay.
Branching rules for satisfiability. Journal of Automated
Reasoning, 15(3):359–383, 1995.

[Jeroslow and Wang, 1990] Robert G. Jeroslow and Jin-
chang Wang. Solving propositional satisfiability prob-
lems. Annals of Mathematics and Artificial Intelligence,
1(1-4):167–187, September 1990.

[Kahn et al., 1988] Jeff Kahn, Gil Kalai, and Nathan Linial.
The Influence of Variables on Boolean Functions. In [Pro-
ceedings 1988] 29th Annual Symposium on Foundations
of Computer Science, pages 68–80, October 1988.

[Lind-Nielsen, 1999] Jørn Lind-Nielsen. BuDDy: A binary
decision diagram package. Department of Information
Technology, Technical University of Denmark, 1999.

[Marques-Silva, 1999] João Marques-Silva. The Impact of
Branching Heuristics in Propositional Satisfiability Algo-
rithms. In G. Goos, J. Hartmanis, J. van Leeuwen, Pe-
dro Barahona, and José J. Alferes, editors, Progress in Ar-
tificial Intelligence, volume 1695, pages 62–74. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999.

[O’Donnell, 2014] Ryan O’Donnell. Analysis of boolean
functions. Cambridge University Press, 2014.

[Shapley, 1953] Loyd. S. Shapley. A Value for n-Person
Games. In Harold William Kuhn and Albert William
Tucker, editors, Contributions to the Theory of Games
II, pages 307–318. Princeton University Press, December
1953.

[Shapley, 1967] Lloyd S. Shapley. Compound simple games,
III: On committees. Technical report, RAND CORP
SANTA MONICA CA, 1967.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2736

https://www.cril.univ-artois.fr/kc/benchmarks.html

[Slepian, 1953] David Slepian. On The Number of Symme-
try Types of Boolean Functions of n Variables. Canadian
Journal of Mathematics, 5:185–193, 1953.

[Suzuki et al., 2015] Ryosuke Suzuki, Kenji Hashimoto, and
Masahiko Sakai. An Extension of a DPLL-Based Model-
Counting Solver for Projected Model. JSAI Technical Re-
port, SIG-FPAI-97-B404:59–64, March 2015.

[Suzuki et al., 2017] Ryosuke Suzuki, Kenji Hashimoto, and
Masahiko Sakai. Improvement of Projected Model-
Counting Solver with Component Decomposition Using
SAT Solving in Components. JSAI Technical Report, SIG-
FPAI-103-B506:31–36, March 2017.

[Traxler, 2009] Patrick Traxler. Variable influences in con-
junctive normal forms. In International Conference on
Theory and Applications of Satisfiability Testing, pages
101–113. Springer, 2009.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2737

	Introduction
	Preliminaries
	Importance Value Functions
	Further Properties
	Induced Relations

	Instances of Importance Value Functions
	Blame
	Modified Blame

	Influence
	Characterizing the Influence

	Cooperative Game Mappings
	SimpleSatisfiability-BiasedCooperativeGameMappings
	A Constancy-Based Cooperative Game Mapping

	Computing Importance Values
	Conclusion

