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Abstract
We study the fair allocation of mixtures of in-
divisible goods and chores under lexicographic
preferences—a subdomain of additive preferences.
A prominent fairness notion for allocating indivis-
ible items is envy-freeness up to any item (EFX).
Yet, its existence and computation has remained a
notable open problem. By identifying a class of
instances with terrible chores, we show that de-
termining the existence of an EFX allocation is
NP-complete. This result immediately implies the
intractability of EFX under additive preferences.
Nonetheless, we propose a natural subclass of lexi-
cographic preferences for which an EFX and Pareto
optimal (PO) allocation is guaranteed to exist and
can be computed efficiently. Focusing on two
weaker fairness notions, we investigate finding EF1
and PO allocations for special instances with terri-
ble chores and show that MMS and PO allocations
can be computed efficiently for any mixed instance
with lexicographic preferences.

1 Introduction
Fair division of indivisible items has provided a rich mathe-
matical framework for studying computational and axiomatic
aspects of fairness in a variety of settings ranging from as-
signing students to courses [Budish, 2011] and distributing
food donations [Aleksandrov et al., 2015] to assigning pa-
pers to reviewers [Shah, 2022; Payan and Zick, 2022] and
distributing medical equipment and vaccines [Schmidt et al.,
2021; Aziz and Brandl, 2021; Pathak et al., 2021]. In these
applications, the preferences of agents over items may be sub-
jective, that is, some agents may consider an item as a good
(with non-negative utility) while others may see the same
item as a chore (with negative utility). For instance, in peer
reviewing, reviewers may consider a paper to be a chore if it
is outside of their immediate expertise while another subset
of reviewers consider it as a good due its proximity to their
own field. Thus, an emerging line of work has focused on fair
allocation of mixture of goods and chores [Aziz et al., 2022;
Bérczi et al., 2020; Kulkarni et al., 2021].

When distributing indivisible items, a prominent fairness
notion, envy-freeness (EF) [Foley, 1967; Gamow and Stern,

1958], may not always exist. Its most compelling relaxation,
envy-freeness up to any item (EFX) [Caragiannis et al., 2019],
states that any pairwise envy is eliminated if we remove any
single item that is considered as a good in the envied agent’s
bundle or is seen as a chore in the envious agent’s bundle. A
slightly weaker notion is envy-freeness up to one item (EF1)
[Lipton et al., 2004; Budish, 2011], which requires that any
pairwise envy can be eliminated by the removal of some sin-
gle item from the bundle of one of the two agents. These
relaxations gave rise to several challenging open problems,
particularly when dealing with chores: the existence of EFX
and, for mixed or even chores-only settings, the existence and
computation of EF1 in conjunction with efficiency notions
such as Pareto optimality (PO). To gain insights into struc-
tural and computational boundaries of achieving these fair-
ness notions, several recent efforts have considered a variety
of restricted domains such as limiting the number of agents
[Chaudhury et al., 2020; Mahara, 2021], the item types [Aziz
et al., 2023; Nguyen and Rothe, 2023], or the valuations (bi-
nary, bi-valued valuations, or identical) [Halpern et al., 2020;
Garg et al., 2022; Bérczi et al., 2020]. One such natu-
ral restriction are lexicographic preferences—a subdomain of
additive preferences—which provides a compact representa-
tion of preferences, and has been studied in voting [Lang et
al., 2018], object allocation [Saban and Sethuraman, 2014;
Hosseini and Larson, 2019], and fair division [Nguyen, 2020;
Ebadian et al., 2022].

In this domain, it was recently shown that an EFX alloca-
tion may not always exist for mixed instances [Hosseini et
al., 2023b]. Moreover, while weaker fairness notions such as
EF1 and maximin share (MMS) are guaranteed to exist for
mixed items, their computation along with PO remains un-
known even for objective instances where all agents agree on
whether an item is a good or a chore.

The non-existence of EFX for mixed items crucially re-
lies on a set of highly undesirable chores (or terrible chores).
Without these chores (i.e., if a single agent considers a good
as its most important item), under lexicographic preferences
an EFX and PO allocation can be computed in polynomial
time [Hosseini et al., 2023b]. This observation raises several
important questions: Can we efficiently decide whether an
EFX allocation exists even in the presence of terrible chores?
Can we efficiently compute an EF1 (or MMS) allocation in
conjunction with PO?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2738



1.1 Contributions
We focus on the allocation of mixtures of goods and chores in
the lexicographic domain and resolve several open computa-
tional problems pertaining to the well-studied fairness notions
of EFX, EF1, and MMS.1

EFX. We show that determining the existence of an EFX al-
location is NP-complete under lexicographic mixed instances
even for objective preferences, i.e., when all agents agree
on whether an item is a good or a chore (Theorem 1). To
the best of our knowledge, this finding is the first compu-
tational intractability result for EFX over every preference
extension containing lexicographic (and as a result additive)
preferences. Subsequently, we discuss that deciding whether
an EFX and PO allocation exist is NP-hard (Corollary 1).

EFX+PO. Given the possible non-existence of an EFX al-
location even for objective mixed instances, and the compu-
tational hardness of determining its existence, we identify a
natural variation of lexicographic preferences, called separa-
ble lexicographic preferences for which positive results can
be obtained. In particular, we show that EFX and PO allo-
cations always exist even in separable instances with terrible
chores (Theorem 2) and further prove that under separable
lexicographic preferences an EFX and PO allocation can be
computed efficiently (Corollary 2).

EF1+PO. Given that an EFX allocation may not exist un-
der general (not necessarily separable) lexicographic mixed
preferences, we focus our attention on EF1 along with Pareto
optimality. While an EF1 allocation always exists and can
be computed efficiently [Bhaskar et al., 2021; Aziz et al.,
2022], its existence and computation along with PO remains
open even for additive chores-only instances. We identify a
class of lexicographic mixed instances with sufficiently many
common terrible chores for which an EF1 and PO allocation
can be computed in polynomial time (Theorem 3) and discuss
several technical challenges in extending this result.

MMS+PO. Despite the non-existence of EFX and chal-
lenges in achieving EF1+PO, we show that an MMS and PO
allocation always exists for any mixed instance containing
terrible chores (Theorem 4) and can be computed efficiently
for any mixed instance (Corollary 3). Moreover, we show
that when the efficiency is strengthened to rank-maximality
(RM), deciding whether an instance admits an MMS and
rank-maximal allocation is NP-complete (Theorem 5).

1.2 Related Work
The existence of EFX is a major open problem in goods-only
and chores-only settings. Moreover, EFX is known to be
incompatible with PO under non-negative valuations [Plaut
and Roughgarden, 2020a]. An EFX allocation may fail to
exist under non-monotone, non-additive, and identical valua-
tion functions [Bérczi et al., 2020] and for mixed items with
additive valuations [Hosseini et al., 2023b]. While the com-
putation of EFX is known to be hard for submodular valua-
tions [Plaut and Roughgarden, 2020b; Goldberg et al., 2023],

1Some proofs and examples are relegated to the full version of
the paper [Hosseini et al., 2023a].

for additive preferences, the computational complexity of de-
termining whether an instance admits an EFX allocation has
been an open question, which we answer in this paper.

An EF1 allocation can be computed efficiently in goods-
only [Caragiannis et al., 2019; Lipton et al., 2004] and
chores-only [Aziz et al., 2022; Bhaskar et al., 2021] settings.
When considering economic efficiency, for goods-only in-
stances EF1 is compatible with PO [Caragiannis et al., 2019]
and can be computed in pseudo-polynomial time [Barman
et al., 2018]. In contrast, for chores-only settings, it is not
known whether EF1 and PO allocations exist under additive
valuations. For mixed items, an EF1 allocation can still be
computed efficiently when valuations are doubly monotonic
(which includes additive valuations) [Bhaskar et al., 2021;
Aziz et al., 2022] through a careful use of the envy-graph al-
gorithm. However, achieving EF1 alongside PO (except for
two agents [Aziz et al., 2022]) remains an open problem.

With additive valuations, an MMS allocation could fail
to exist in both the goods-only [Kurokawa et al., 2018]
and the chores-only [Aziz et al., 2017] settings. Due to
this non-existence, several multiplicative [Aziz et al., 2017;
Ghodsi et al., 2021; Garg and Taki, 2021] and ordinal ap-
proximations [Babaioff et al., 2019; Hosseini et al., 2022b]
to MMS have been proposed for both goods-only and chores-
only settings. For mixed items, no constant multiplicative
[Kulkarni et al., 2021] or ordinal [Hosseini et al., 2022a] ap-
proximation of MMS may exist.

Domain Restriction. To circumvent the negative results
and explore the computational boundary and their com-
patibility with other properties, much attention has been
given to studying fairness in restricted domains. For goods-
only settings, an EFX allocation is guaranteed to exist
when agents have identical monotone valuations [Plaut and
Roughgarden, 2020a], submodular valuations with binary
marginals [Babaioff et al., 2021; Viswanathan and Zick,
2023], or additive valuations with at most two distinct val-
ues [Amanatidis et al., 2021; Garg and Murhekar, 2021]. For
chores-only instances, an EFX allocation can be efficiently
computed when there are four agents with only two types of
additive valuations over seven items [Bérczi and Gedefa To-
lessa, 2022]. Under lexicographic preferences, an EFX and
PO allocation always exists and can be computed in polyno-
mial time for goods-only and chores-only settings [Hosseini
et al., 2021] and can often be guaranteed along with strate-
gyproofness and other desirable properties.

In chores-only settings, EF1 and PO allocations can be
computed in polynomial time when preferences are restricted
to bivalued additive valuations [Ebadian et al., 2022; Garg et
al., 2022] or when there are only two types of chores [Aziz et
al., 2023]. Similarly, MMS allocations are known to always
exist for restricted domains such as personalized bivalued
valuations, and can be computed efficiently along PO under
factored bivalued valuations and weakly lexicographic valua-
tions (allowing ties between items) [Ebadian et al., 2022].

2 Preliminaries
For every k ∈ N, let [k] = {1, . . . , k}. Let N := [n] be a set
of n agents and M := {o1, . . . , om} be a set of m items. For
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each i ∈ N , Gi ⊆ M denotes the subset of items considered
as goods and Ci := M \ Gi is the set of items considered as
chores by agent i. Items that are goods (chores) for all agents
are referred to as common goods (similarly, common chores)
i.e., Ḡ :=

⋂
i∈N Gi (C̄ :=

⋂
i∈N Ci).

Preferences. We consider lexicographic preferences over
all possible subsets of mixed items, through a linear order
that specifies an importance ordering of items for each agent.
That is, for each agent i ∈ N there is an associated impor-
tance ordering ▷i which is a linear order over M . Thus, an
importance profile is simply denoted by ▷ := (▷1, . . . ,▷n).
We use “+” (or “−”) in superscript to denote that an item is
a good (or a chore) in an importance ordering. For example,

▷i : o+1 ▷ o−2 ▷ o+3 , (1)

means that agent i considers o1 and o3 as goods and o2 as a
chore. For a subset of items X ⊆ M , let ▷i(k,X) denote the
k-th most important item in X according to an ordering ▷i.
When X = M , we will simply write ▷i(k) for brevity.

Agent i’s lexicographic preference ≻i is a strict linear or-
der over all possible subsets of items, which is defined based
on its importance ordering ▷i as follows: For every non-
identical X,Y ⊆ M , we say that X ≻i Y if and only if
▷i(1, X△Y ) ∈ (X ∩ Gi) ∪ (Y ∩ Ci), where △ denotes a
symmetric difference (formally, A△B = (A∪B) \ (A∩B)
for every sets A and B). In other words, X is preferred to Y
if and only if the most important item on which they differ is
either a good in X or a chore in Y . For every X,Y ⊆ M ,
we will write X ⪰i Y if X ≻i Y or X = Y . For instance,
based on agent i’s importance ordering stated above in (1), we
have {o+1 , o

+
3 } ≻i {o+1 } ≻i {o+1 , o

−
2 , o

+
3 } ≻i {o+1 , o

−
2 } ≻i

{o+3 } ≻i ∅ ≻i {o−2 , o
+
3 } ≻i {o−2 }.

Terrible Chores and Separable Preferences. For disjoint
subsets X,Y ⊆ M , we use a shorthand notation X ▷i Y to
say that for every x ∈ X and y ∈ Y it holds that x▷i y. A set
of terrible chores is a set of chores more important than any
good, i.e., a maximal set C∗

i ⊆ Ci such that C∗
i ▷i Gi (note

that, if Gi = ∅, then C∗
i = Ci). An importance ordering ▷i

is separable if either Ci ▷i Gi or Gi ▷i Ci. In other words,
in a separable ordering either all chores are terrible or every
good is more important than every chore.
Instance. An instance of the allocation problem with mixed
items (a mixed instance) is a four-tuple (N,M,G,▷), where
G := (Gi)i∈N and ▷ := (▷i)i∈N . An instance is goods-only
if G = M , chores-only if G = ∅, and is objective if Gi = Gj

for every i, j ∈ N . An instance (N,M,G,▷) is separable if
the importance orderings are separable. Note that separable
instances can be seen as a special extension of lexicographic
preferences over mixed items with the assumption that for
every agent either chores are more important than goods or
goods than chores. On the other hand, lexicographic prefer-
ences can be seen as a special case of additive preferences in
which the magnitude of valuations grow exponentially in the
importance ordering. Figure 1 illustrates the inclusion rela-
tion between different lexicographic extensions.

A mixed instance with terrible chores is a (possibly ob-
jective) instance in which C∗

i ̸= ∅ for every i ∈ N . The
following example illustrates such an instance.

lexicographic preferences
with chores-only

lexicographic preferences
with goods-only

separable lexicographic preferences
with mixed items

lexicographic preferences
with mixed items

additive preferences
with mixed items

Figure 1: Inclusion relation in different lexicographic extensions.

Example 1. Consider a mixed instance with three agents,
six items and a profile as follows. The set of common goods
is Ḡ = {o+5 , o

+
6 }, and the set of common chores is C̄ =

{o−1 , o
−
2 }. This mixed instance contains terrible chores be-

cause every agent has a top item as a chore, i.e., ▷i(1) ∈ Ci.
In fact, it is a separable instance as well.

1 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o+5 ▷ o+6

2 : o−1 ▷ o−2 ▷ o−3 ▷ o−4 ▷ o+5 ▷ o+6

3 : o−1 ▷ o−2 ▷ o+3 ▷ o+4 ▷ o+5 ▷ o+6

(underline denotes an allocation described in Section 3.1).
Allocations. An allocation A := (Ai)i∈N is a partition of
M such that Ai ⊆ M is agent i’s bundle. An allocation is
complete if all items in M are assigned, i.e.,

⋃
i∈N Ai = M

and is partial otherwise. Unless explicitly stated, we assume
that an allocation is complete.
Envy-freeness. Given a pair of agents i, j ∈ N , agent i
envies j if Aj ≻i Ai. Allocation A is envy-free (EF), if for
every pair of agents i, j ∈ N , we have Ai ⪰i Aj . Allocation
A is envy-free up to one item (EF1), if for every i, j ∈ N such
that i envies j, there is g ∈ Gi ∩Aj such that Ai ⪰i Aj \ {g}
or there is c ∈ Ci ∩ Ai such that Ai \ {c} ⪰i Aj . Allocation
A is envy-free up to any item (EFX), if for every i, j ∈ N
such that i envies j, it holds that for every g ∈ Gi ∩ Aj we
have Ai ⪰i Aj \ {g} and for every c ∈ Ci ∩ Ai we have
Ai \ {c} ⪰i Aj .
Maximin Share. The maximin share (MMS) of an agent,
i ∈ N , is the most preferred bundle it can guarantee by cre-
ating an n-partition and receiving the worst one. Formally,
MMSi := maxA∈Πn min{A1, . . . , An}, where Πn is the set
of all n-partitions of M , and max and min denote the most
preferred and the least preferred bundles according to ≻i, re-
spectively. An allocation A satisfies maximin share, if for all
i ∈ N it holds that Ai ⪰i MMSi. In our setting EFX implies
both EF1 and MMS, but the converse is not true. Also, EF1
and MMS do not imply each other [Hosseini et al., 2023b].
Economic Efficiency. A (possibly partial) allocation A
Pareto dominates allocation B if A assigns the same set of
items as B, i.e.,

⋃
i∈N Ai =

⋃
i∈N Bi, and Ai ⪰i Bi for

every i ∈ N and there exists i ∈ N such that Ai ≻i Bi.
Allocation A is Pareto optimal (PO), if it is not Pareto domi-
nated by any other allocation. In Section 5, we also consider
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rank maximality (RM), which is a stronger efficiency notion.
Intuitively, it means that each item is given to an agent that
values it the most. We give a formal definition in the full
version of the paper.

We note that EFX and PO allocations always exist and
can be efficiently computed in every instance without terrible
chores, i.e., when at least one agent sees its most important
item as a good [Hosseini et al., 2023b]. Thus, we primarily
focus on instances with terrible chores.

Serial Dictatorship. An ordering of agents is a sequence
σ = (σ1, . . . , σn) such that σi ∈ N denotes the i-th agent in
the sequence. A quota vector q = (q1, . . . , qn) is a vector of
nonnegative integers that we assign to each agent. A serial
dictatorship mechanism, prescribed by an ordering σ and a
quota q, proceeds as follows: starting from some partial (pos-
sibly empty) allocation A, in each step, i ∈ [k], if there are
still unallocated items, we take the qσi most preferred ones
by agent σi (i.e., the most important goods and then the least
important chores if there are not enough goods left) and add
them to the bundle of this agent.

3 Envy-Freeness up to Any Item (EFX)
Recall that an EFX allocation may fail to exist for mixed in-
stances [Hosseini et al., 2023b]. This non-existence crucially
relies on a set of chores that are at the top of the importance
orderings of the agents, i.e., the terrible chores. Otherwise, if
there is at least one agent with the top item as a good, an EFX
and PO allocation can be computed efficiently under lexico-
graphic preferences. Thus, we focus on mixed instances with
terrible chores and show that deciding whether an EFX al-
location exists is computationally hard under lexicographic
preferences, which subsequently implies hardness for addi-
tive preferences with mixed items.

Theorem 1. The problem of deciding whether there exists an
EFX allocation for a given lexicographic mixed instance is
NP-complete.

Proof (sketch). We prove the hardness by a reduction from
EXACT COVER BY 3-SETS (X3C). In an X3C instance, we
have a universe U = {u1, . . . , um} and a family of its three-
element-subsets, S = {S1, . . . , Sn}. The problem, which is
known to be NP-complete [Johnson and Garey, 1979], is to
decide whether there exists an exact cover K ⊂ S of size k,
such that

⋃
Sj∈K Sj = U .

For every such X3C instance, we construct a correspond-
ing objective mixed items instance (N,M,G,▷) as follows.
For every element ui ∈ U , we take 2n common chores
ci,1, . . . , ci,2n. We add to it k common goods g1, . . . , gk (the
assignment of which will correspond to the choice of subsets
in K), which gives us |M | = 2mn + k items in total. Next,
for every subset Sj ∈ S we take two agents 2j−1 and 2j and
we give them identical importance orderings, i.e., ▷2j−1 =
▷2j . Specifically, their importance ordering consists of three
“blocks”: first there are all chores corresponding to elements
ui such that ui ̸∈ Sj , then there are k goods g1, . . . , gk,
and at the end there are all chores corresponding to elements
ui ∈ Sj . For example, if we had Sj = {u1, u2, u3}, then

the importance ordering of agents 2j − 1 and 2j would be
c4,1 ▷ · · ·▷ cm,2n ▷ g1 ▷ · · ·▷ gk ▷ c1,1 ▷ · · ·▷ c3,2n.

We prove that there is a cover in an X3C instance, if and
only if, there is an EFX allocation in the corresponding mixed
item instance. If there is a cover, without loss of generality
we assume that K = {S1, . . . , Sk} and show that allocation
A = (A1, . . . , A2n), where

Aj=

{
{gj/2}∪{ci,l∈ C̄ : ui∈Sj/2}, if j∈{2,..., 2k},
∅, otherwise,

(2)

is EFX (and also PO). If there is no cover, we analyze the
number of “uncovered” chores in an allocation, i.e., chores
received by an agent that are more important than every good
it received. We show that EFX would imply that there can be
at most 2n−1 such chores, but no set cover implies that there
are at least 2n of them—a contradiction.

In the proof of Theorem 1, we show that the allocation de-
fined in equation (2) (i.e., an EFX allocation that exists when
there is a set cover in an X3C instance) is not only EFX but
also PO. This implies that deciding whether there exists an
allocation that is both EFX and PO is also NP-hard (since the
problem of verifying if an allocation is PO in polynomial time
remains open, we cannot claim NP-completeness).
Corollary 1. The problem of deciding whether there exists
an EFX and PO allocation for a given lexicographic mixed
instance is NP-hard.

The constructions in the proof of Theorem 1 only used ob-
jective instances, where all agents agree on whether an item
is a chore or a good. Thus, these computational hardness re-
sults hold for all mixed instances and do not rely on subjective
views of agents.

3.1 EFX and PO: Separable Preferences
An important feature of our construction in the proof of The-
orem 1 is that each agent has some terrible chores and some
other (non-terrible) chores that are separated by several goods
in its importance ordering. In this section, we analyze the
case where either all chores are terrible or all are less impor-
tant than every good, i.e., the separable lexicographic prefer-
ences. We show that such a constraint enables us to devise an
algorithm that computes an EFX and PO allocation for every
separable instance.

Algorithm 1 finds one such allocation for every mixed
instance with separable preferences that contains terrible
chores. It extends the algorithm by Hosseini et al. [2023b]
for EFX and PO allocations in instances in which the most
important item of one of the agents is a good (in fact Phase
2 of our algorithm can be seen as running this algorithm on a
smaller instance).
Algorithm 1. Fix any ordering of agents 1, . . . , n. The al-
gorithm runs in two phases. In Phase 1, we allocate all com-
mon chores (items in C̄) and goods to agents that receive
these chores. First, all common chores are allocated through
a serial dictatorship with ordering (1, . . . , n) and quotas q, in
which every agent, except possibly the first one, receives one
item. Then starting from the last agent which received a com-
mon chore (i.e., the worst chore), say agent z, in the reverse
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Algorithm 1 Finding an EFX and PO allocation for separable
lexicographic preferences

Input: A mixed instance (N,M,G,▷) with separable preferences
that contains terrible chores

Output: An allocation A that is EFX and PO
1: A := (∅, . . . , ∅)

▷ PHASE 1:
2: assign common chores, C̄, by a serial dictatorship with ordering

(1, . . . , n) and quotas q, where q1 = max(1, |C̄| − n+ 1) and
qi = 1, for i ∈ N \ {1}

3: N ′ := {i ∈ N : Ai = ∅}, H := M \ C̄
4: z := max{N \N ′}
5: for i ∈ (z, z − 1, . . . , 1) do
6: Ai ← Ai ∪ (Gi ∩H), H ← H \Ai

7: end for
▷ PHASE 2:

8: for k ∈ (1, . . . , |M |) do
9: while there is i ∈ N ′ such that ▷i(k) ∈ H ∩Gi do

10: gi := ▷i(k), Ai ← {gi}
11: Ai ← Ai ∪

(
H ∩Gi \

⋃
j∈N′\{i} Gj

)
12: N ′ ← N ′ \ {i}, H ← H \Ai

13: end while
14: end for
15: return A

order, i.e., z, z − 1, . . . , 1, we add to each agent’s bundle all
the unassigned items that it considers as goods. At the end of
Phase 1, all remaining items are considered as a good for at
least one agent in N , but considered as a chore by all agents
who received an item in Phase 1, i.e., agents in [z]. This is
crucial for ensuring that the final allocation will be EFX. In
Phase 2, we distribute the remaining items in such a way that
each is assigned to an agent for which it is a good. Specifi-
cally, we move through the positions in importance orderings,
one by one, starting from the first position with an unassigned
item. For each position k, we find an agent, i ∈ N ′, that
has yet unassigned good at position k, and assign this good
plus all remaining items that only i considers as goods (but
no other remaining agent considers as goods). This process
repeats until no item remains unassigned.
Example 2. Consider the mixed instance with separable
preferences given in Example 1. Algorithm 1 starts by run-
ning a serial dictatorship with a fixed ordering of (1, 2, 3)
to allocate all terrible common chores, i.e., {o−1 , o

−
2 }. Thus,

agents 1 and 2 receive o−2 and o−1 respectively, while agent 3
receives nothing. Then, starting from agent 2, the last agent
who received a chore (the worst chore), in the reverse or-
dering i.e., (2, 1), agents receive all their remaining goods
(if any). Therefore, at the end of Phase 1, A1 = {o−2 , o

+
4 },

A2 = {o−1 , o
+
5 , o

+
6 } and A3 = ∅.

In Phase 2, the only remaining item o3 is allocated to agent
3 who sees it as a good (while agents 1 and 2 consider o3 as
a chore). The final allocation is underlined in Example 1.

The proof of the correctness of Algorithm 1 relies on the
general result concerning the serial dictatorship mechanism
(Lemma 1). Assume there is a PO partial allocation, B, and
a set of common chores, H , such that for each agent H is
more important than its current bundle and all its goods (so,
chores in H are terrible for all agents). We show that extend-

ing B by allocating items in H through the serial dictatorship
with arbitrary ordering and quotas will preserve PO. Since the
order of allocating items does not affect the final allocation,
Lemma 1 can be used to show the correctness of Algorithm 1.
Lemma 1. For every instance (N,M,G,▷), subset of com-
mon chores H ⊆ C̄, and partial allocation B of items
in M \ H that is PO, if for each i ∈ N it holds that
H ▷i (Gi ∪Bi), then every allocation A obtained by extend-
ing B by the serial dictatorship with an arbitrary ordering
and quotas is PO.

Proof. Assume by contradiction that there exists A obtained
by the serial dictatorship that is not PO. This means that there
exists an allocation A′ that Pareto dominates A. Now, let
us consider two cases based on whether A and A′ differ on
assignment of chores in H . If this is true, then there exists
a common chore, c ∈ H , that is assigned to different agents
in A and A′, i.e., there exists i ∈ N such that c ∈ A′

i \ Ai.
Let us take c and i such that, among all such chores, c was
picked as the last one in the serial dictatorship leading to A.
Observe that every chore c′ ∈ H ∩ Ai such that c′ ▷i c was
picked by agent i after c was assigned (otherwise i would
pick c instead). Hence, for every such c′ we have also c′ ∈
A′

i (otherwise c would not be the last picked chore that is
assigned to different agents in A and A′). Since H ▷i (Gi ∪
Bi), this implies that Ai ≻i A′

i, which means that A′ does
not Pareto dominate A—a contradiction.

Finally, consider the case in which A and A′ assign chores
in H identically. By B′ let us denote the partial allocation
obtained from A′ by removing chores in H . Since A′ Pareto
dominates A, it means that B′ Pareto dominates B. But that
contradicts the fact that B is PO.

Theorem 2. Given a mixed instance with separable prefer-
ences that contains terrible chores, an EFX and PO alloca-
tion always exists and can be computed in polynomial time.

When at least one agent’s top item is a good, an EFX and
PO allocations are guaranteed to exist and can be computed
efficiently [Hosseini et al., 2023b]. Combining this with The-
orem 2 we obtain the following computational and existence
results for separable preferences.
Corollary 2. Given any mixed instance with separable pref-
erences, an EFX and PO allocation always exists and can be
computed in polynomial time.

4 EF1 and PO
Despite the non-existence of EFX and the computational
hardness of deciding whether an instance admits such an allo-
cation (Theorem 1), we identified a natural class of separable
lexicographic preferences for which an EFX and PO alloca-
tion is always guaranteed to exist and can be computed effi-
ciently (Theorem 2). This raises the question of whether fo-
cusing on weaker fairness notions, e.g., EF1 or MMS, enables
us to escape these negative results for the more general mixed
lexicographic (but not necessarily separable) preferences.

In this section, we focus on EF1 and discuss the technical
challenges in satisfying it with PO. We then devise an effi-
cient algorithm for finding EF1 and PO when there are suffi-
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ciently many common terrible chores, specifically, when there
are at least n− 1 terrible chores shared by all agents.

Before presenting our main result in this section, let us dis-
cuss the technical challenges in achieving EF1 and PO for
mixed lexicographic preferences.2 For mixed instances, un-
der additive or doubly monotone valuations,3 an EF1 alloca-
tion (without PO) can be computed efficiently through either
the double round robin algorithm [Aziz et al., 2022] or a vari-
ant of the envy-graph algorithm [Bhaskar et al., 2021]. How-
ever, both these approaches fail in satisfying PO even when
preferences are restricted to the lexicographic domain.

Remark 1. Other naive approaches also fail to achieve the
desired outcome. For instance, a good may have to be given
to an agent that does not rank it as high as other agents.
This observation immediately shows that approaches used for
achieving EFX and PO under separable preferences (as de-
scribed in Algorithm 1) or those proposed by [Hosseini et al.,
2023b] that assign goods to agents having them high in the
orderings fail. We illustrate this challenge in the next exam-
ple.

Example 3. Consider a mixed instance with five agents, six
items, and a profile as follows. The set of common chores
is C̄ = {o−2 , o

−
3 , o

−
4 , o

−
5 , o

−
6 }, the set of common goods is

Ḡ = {o+1 }, but the set of common terrible chores is empty.

1 : o−4 ▷ o−5 ▷ o−6 ▷ o+1 ▷ o−2 ▷ o−3

2 : o−2 ▷ o−3 ▷ o+1 ▷ o−4 ▷ o−5 ▷ o−6

3 : o−2 ▷ o−3 ▷ o+1 ▷ o−4 ▷ o−5 ▷ o−6

4 : o−2 ▷ o−3 ▷ o+1 ▷ o−4 ▷ o−5 ▷ o−6

5 : o−2 ▷ o−3 ▷ o+1 ▷ o−4 ▷ o−5 ▷ o−6

In this instance, every EF1 and PO allocation must assign
the only good, o+1 to agent 1; otherwise, either the allocation
violates PO or it violates EF1. Note that all other agents
rank o+1 higher in their importance ranking; yet, this common
good must be allocated to agent 1.

Note that if the preferences of agents 3, 4, and 5 were iden-
tical to those of agent 1 (instead of 2), then o+1 would need to
be allocated to agent 2 to guarantee EF1 and PO. In the full
version of the paper, we give additional examples to illustrate
the complexity of this problem.

Given the aforementioned challenges, we show that for lex-
icographic mixed instances that contain at least n−1 common
terrible chores, an EF1 and PO allocation always exists and
can be computed efficiently. Formally, the set of common ter-
rible chores contains all chores that are terrible for all agents,
i.e., C̄∗ =

⋂
i∈N C∗

i . We describe an algorithm that finds an
EF1 and PO allocation for every mixed instance with at least
n− 1 common terrible chores, i.e., |C̄∗| ≥ n− 1 (we present
its pseudocode in the full version of the paper).

2The existence and computation of EF1 and PO allocations re-
main open even for additive chores-only instances.

3Doubly (or item-wise [Chen and Liu, 2020]) monotone is a
broad valuation class where each agent can partition items into those
with non-negative (goods) or negative (chores) marginal utility.

Algorithm 2. Fix any ordering of agents 1, . . . , n. We start
by giving agent 1 all items it considers as goods. To each next
agent, in the order 2, . . . , n, we give everything it considers
as goods from the set of unassigned items (or nothing if there
are no such items left). The remaining items are necessarily
common chores. Next, we start from agent n, and assign to
it all of its non-terrible chores. To each next agent, in the
reversed order, i.e., n − 1, . . . , 1, we give all its non-terrible
chores that remain (if any). The only remaining items are
common terrible chores. Such partial allocation is PO, but
it can be very unfair (agent 1 got all its goods and agent n
all its non-terrible chores). To ensure fairness, we assign the
remaining common terrible chores using serial dictatorship
with ordering σ such that the last agent, σn, is not envied
by any other agent (since the partial allocation is PO there
surely is such σ). In this way, every agent (except possibly
σn) receives at least one common terrible chore, which results
in an EF1 allocation (and by Lemma 1 it is still PO).

Example 4. Consider a mixed instance with three agents,
eight items, and a profile as follows. The set of common
chores is C̄ = {o−1 , o

−
2 , o

−
3 , o

−
5 }.

1 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o−7 ▷ o+8

2 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o+7 ▷ o+8

3 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o−7 ▷ o+8

Suppose the ordering is (1, 2, 3). the algorithm starts by as-
signing {o+4 , o

+
6 , o

+
8 } and {o+7 } to agents 1 and 2, respec-

tively. Then in the reverse ordering (3, 2, 1), agents get their
common non-terrible chores (out of the remaining items), re-
sulting in agent 3 receiving o−5 (and nothing for others). Since
agent 3 is not envied (such an agent always exists), the algo-
rithm allocates all common terrible chores ({o−1 , o

−
2 , o

−
3 }) by

running a serial dictatorship with the ordering of (1, 2, 3) and
single quota. The final allocation is underlined.

Theorem 3. Given a lexicographic mixed instance with at
least n−1 common terrible chores, an EF1 and PO allocation
always exists and can be computed in polynomial time.

Given the theorem above, one may wonder whether a sim-
ilar approach can be utilized for instances with potentially
fewer than n − 1 common terrible chores. In the full ver-
sion of the paper, we show that even extending to n − 2 (if
possible) requires new techniques with a rather complicated
analysis to guarantee Pareto optimality.

5 MMS and Efficiency
Despite the challenges in satisfying EF1 and PO for lexico-
graphic mixed instances that contain terrible chores, we show
that an MMS and PO allocation always exists and can be
computed in polynomial time. Note that while an MMS al-
location can be computed efficiently [Hosseini et al., 2023b],
its computation along with economic efficiency notions such
as PO and rank maximality was open even for objective in-
stances. We build on the characterization of maximin share of
an agents which is specified by its most important item: if the
top item of an agent is a chore, its MMS is this top item and
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Algorithm 3 Finding an MMS and PO allocation

Input: A mixed instance (N,M,G,▷) with terrible chores
Output: An allocation A that is MMS and PO
1: A := (∅, . . . , ∅), c∗ := ▷n(1)
2: for i ∈ (1, . . . , n) do
3: Ai ← Gi \

⋃
j∈[i−1] Aj

4: end for
5: An ← An ∪ C̄ \ {c∗}
6: if for every i ∈ N it holds that ▷i(1) = c∗ then
7: A1 ← A1 ∪ {c∗}
8: else if c∗ ∈ C̄ then
9: i∗ := max{i ∈ [n] : ▷i(1) ̸= c∗}

10: Ai∗ ← Ai∗ ∪ {c∗}
11: end if
12: return A

all items it considers as goods; otherwise its MMS is the set
of all items that it considers as a good without the first n− 1
goods according to its importance ordering (or the empty set
if its importance ordering contains fewer than n goods).
Proposition 1. [Hosseini et al., 2023b] Given a mixed in-
stance (N,M,G,▷), for every agent i ∈ N , if ▷i(1) ∈
Ci, it holds that MMSi = {▷i(1)} ∪ Gi. Otherwise, if
▷i(1) ∈ Gi, it holds that MMSi = ∅, if |Gi| < n, or
MMSi = Gi \

⋃
k∈[n−1]{▷i(k,Gi)}, if |Gi| ≥ n.

Algorithm 3. Fix any ordering of agents 1, . . . , n. We start
by allocating to each agent, in the ordering 1, . . . , n, all re-
maining unassigned items that it considers as goods (or noth-
ing if there are no such items left). The remaining items will
be common chores. We give all of them to agent n, with the
exception of the most important item for n, which we denote
by c∗. Now, the choice of which agent should receive c∗ de-
pends on whether c∗ is the most important item for all agents.
If it is the case, we give it to agent 1. Otherwise, i.e., if there
is at least one agent for which there is more important item
than c∗, we give it to the last such agent in the ordering.
Example 5. We revisit the instance given in Example 4.

1 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o−7 ▷ o+8

2 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o+7 ▷ o+8

3 : o−1 ▷ o−2 ▷ o−3 ▷ o+4 ▷ o−5 ▷ o+6 ▷ o−7 ▷ o+8

For this instance, the allocation returned by Algorithm 2
is not MMS. The outcome for agent 3 was {o−1 , o

−
5 },

to which agent 3 strictly prefers its MMS (MMS3 =
{o−1 , o

+
4 , o

+
6 , o

+
8 }). Suppose the ordering is (1, 2, 3). Algo-

rithm 3 starts by assigning {o+4 , o
+
6 , o

+
8 } and {o+7 } to agents

1 and 2, respectively. Then, agent 3 receives all common
chores, except its most important item c∗ = o−1 . Lastly, since
c∗ is the most important item for every agent, it is allocated
to the first agent. The final allocation is underlined.

Let us prove the correctness of our algorithm.
Theorem 4. Given a lexicographic mixed instance with ter-
rible chores, an MMS and PO allocation always exists and
can be computed in polynomial time.

Proof (sketch). Since (N,M,G,▷) is an instance with terri-
ble chores, by Proposition 1, maximin share of every agent

consists of its most important chore and all goods. The first
agent, agent 1, is the only one that can receive its most impor-
tant chore in our algorithm. However, since apart from that it
receives all of its goods, the output allocation is MMS.

For PO, consider two agents i < j ∈ [n]. Observe that j
does not have any item that i considers as a good. Hence, the
only Pareto improvement between these two agents is pos-
sible if i received c∗ (Pareto improvement can involve more
than two agents, but we do not consider such in this sketch).
Then, i can potentially offer c∗ to j, bundled with less impor-
tant for i goods. However, if i was assigned c∗, this means
that c∗ is the most important item for j. Hence, j would not
accept any exchange in result of which it gets c∗.

Combining Theorem 4 with the existence and computa-
tion results when there are no terrible chores [Hosseini et al.,
2023b], we obtain the following general conclusion.
Corollary 3. Given a lexicographic mixed instance, an MMS
and PO allocation always exists and can be computed in poly-
nomial time.

Corollary 3 ensures that an MMS and PO allocation al-
ways exists. From Corollary 1 we know however that if
we strengthen MMS to EFX, then an EFX and PO alloca-
tion may not exist and deciding if such an allocation exists is
computationally hard. A natural question is whether one can
strengthen the efficiency to rank maximality. We show that
deciding whether there exists an MMS and RM allocation is
computationally hard, which stands in sharp contrast to the
goods-only and chores-only settings.
Theorem 5. The problem of deciding whether there exists
an MMS and RM allocation for a given lexicographic mixed
instance is NP-complete.

The proof follows a reduction from SET COVER problem
and shares some similarities with the proof of Theorem 1 (in-
stance is objective and chores correspond to elements of the
universe, agents to subsets, and assignment of goods to sub-
sets chosen to the cover). However, there are important differ-
ences. For instance, more emphasis is put on the positions of
items in the importance orderings. To this end, we introduce
additional dummy goods and chores and two auxiliary agents
that restrict the set of possible rank maximal allocations.

6 Concluding Remarks
By focusing on the restricted domain of lexicographic prefer-
ences, we identified instances with terrible chores for which
EFX is hard to compute, thus, providing the first ever compu-
tational hardness result for EFX. Nonetheless, we identified a
natural class of separable lexicographic preferences for which
EFX and PO allocations are efficiently computable (and al-
ways exist). Moreover, we showed that MMS and PO allo-
cations always exist and can be computed efficiently for any
lexicographic mixed instance.

For EF1 and PO, the main remaining challenge is how to
deal with (possibly subjective) mixed instances that contain
fewer than n − 1 common terrible chores. Steps towards ad-
dressing this problem could potentially lead to novel tech-
niques for more general preferences, including and beyond,
the additive domain.
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