
Truthful Fair Mechanisms for Allocating Mixed Divisible and Indivisible Goods

Zihao Li1 , Shengxin Liu2 , Xinhang Lu3 and Biaoshuai Tao4

1Nanyang Technological University
2Harbin Institute of Technology, Shenzhen

3UNSW Sydney
4Shanghai Jiao Tong University

zihao004@e.ntu.edu.sg, sxliu@hit.edu.cn, xinhang.lu@unsw.edu.au, bstao@sjtu.edu.cn

Abstract
We study the problem of designing truthful and fair
mechanisms when allocating a mixture of divisible
and indivisible goods. We first show that there does
not exist an EFM (envy-free for mixed goods) and
truthful mechanism in general. This impossibility
result holds even if there is only one indivisible
good and one divisible good and there are only two
agents. Thus, we focus on some more restricted
settings. Under the setting where agents have bi-
nary valuations on indivisible goods and identical
valuations on a single divisible good (e.g., money),
we design an EFM and truthful mechanism. When
agents have binary valuations over both divisible
and indivisible goods, we first show there exist
EFM and truthful mechanisms when there are only
two agents or when there is a single divisible good.
On the other hand, we show that the mechanism
maximizing Nash welfare cannot ensure EFM and
truthfulness simultaneously.

1 Introduction
Fair allocation problem considers how to fairly allocate
scarce resources among interested agents (see excellent books
or surveys by, e.g., [Brams and Taylor, 1995; Robertson and
Webb, 1998; Moulin, 2019; Suksompong, 2021; Amanatidis
et al., 2022]). This problem has gained substantial attentions
in various fields including computer science, mathematics,
and economics, due to the ubiquity in numerous real-world
scenarios (e.g., school choices [Abdulkadiroğlu et al., 2005],
course allocations [Budish and Cantillon, 2012], and allocat-
ing computational resources [Ghodsi et al., 2011]).

The literature of fair allocation problem can be categorized
by the type of resources being allocated. The first line of
work studies the allocation of divisible goods, where the fa-
mous fairness criterion envy-freeness has been extensively
studied [Foley, 1967; Aziz and Mackenzie, 2016]. In an
envy-free allocation, each agent weakly prefers her own bun-
dle than any other agent’s bundle. The second group stud-
ies the allocation of indivisible goods, in which an envy-free
allocation may fail to exist. A common practice to circum-
vent the issue is to consider relaxed notions such as envy-
freeness up to one good (EF1) in which agent i’s envy to-

wards agent j could be eliminated if we (hypothetically)
remove a good in agent j’s bundle [Lipton et al., 2004;
Budish, 2011].

In addition to fairness, truthfulness is an important con-
sideration, given that agents report their private preferences
over the resources. Roughly speaking, a mechanism is said
to be truthful if each agent cannot benefit by misreporting
her preference. The truthfulness aspect of fair allocation has
been addressed in a number of recent papers, e.g., [Bogomol-
naia and Moulin, 2004; Caragiannis et al., 2009; Mossel and
Tamuz, 2010; Maya and Nisan, 2012; Kurokawa et al., 2013;
Aziz and Ye, 2014; Brânzei and Miltersen, 2015; Li et al.,
2015; Amanatidis et al., 2016; Menon and Larson, 2017;
Bei et al., 2017; Bei et al., 2020]. When the resource to
be allocated is a cake (i.e., a heterogeneous divisible good),
the seminal work by [Chen et al., 2013] designed the first
truthful envy-free mechanism when each agent’s valuation is
piecewise-uniform. On the other hand, very recently, [Bu
et al., 2023] showed that for piecewise-constant valuations
(which is a more general type of valuation functions than
piecewise-uniform functions), there does not exist a (deter-
ministic) truthful and envy-free mechanism. For indivisible
goods setting, [Amanatidis et al., 2017] provided a charac-
terization of truthful mechanisms for two agents, and further
showed that truthfulness and EF1 are incompatible even for
two agents and five indivisible goods. This negative result,
however, does not hold any more for some restricted cases.
With binary valuations, [Halpern et al., 2020] and [Babaioff
et al., 2021] independently designed truthful and EF1 mech-
anisms by using maximum Nash welfare with lexicographic
tie-breaking.

The aforementioned results paved the way for understand-
ing the interplay between truthfulness and fairness for the fair
allocation problem with either divisible or indivisible goods.
However, when the resources contain a mixture of both, the
study of designing truthful and fair allocation mechanisms is
mostly absent, which is our focus in this paper. The only ex-
ception we know of is the work by [Goko et al., 2022]. They
concerned indivisible goods allocation and designed a truth-
ful and fair mechanism that achieves envy-freeness by sub-
sidizing each agent with at most 1, the maximum marginal
value of each good for each agent.

We adopt a different perspective than that of [Goko et al.,
2022]. To be more specific, in our setting, the divisible and in-
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divisible goods to be allocated are both fixed in advance [Bei
et al., 2021a; Bei et al., 2021b; Bhaskar et al., 2021;
Lu et al., 2023; Nishimura and Sumita, 2023]. In a setting
with mixed divisible and indivisible goods (mixed goods for
short), [Bei et al., 2021a] proposed a new fairness notion
called envy-freeness for mixed goods (EFM) that generalizes
both envy-freeness and EF1, and showed constructively that
an EFM allocation always exists for any number of agents.
Can we go one step further by designing truthful and EFM
mechanisms when allocating mixed goods?

1.1 Our Results
We study the problem of designing truthful and EFM mecha-
nisms when allocating mixed divisible and indivisible goods
to agents who have additive valuations over the goods. To
the best of our knowledge, this is the first work examining
the compatibility of truthfulness and EFM. Two variants of
EFM are considered in this paper, and we use EFM≥0 and
EFM>0 to distinguish them (see Section 2 for their formal
definitions). Intuitively speaking, EFM≥0 requires that the
envy-free criterion is imposed even if the envied bundle con-
tains a positive amount of divisible goods and the EF1 cri-
terion is used otherwise. Slightly differently, EFM>0 only
requires to impose the envy-free criterion if the envied bun-
dle contains divisible goods with positive value. It can be
verified that EFM≥0 implies EFM>0. While in the following
we mostly present our results regarding to EFM>0, some of
the results can be extended to the case of EFM≥0.

We start by giving in Section 3 a strong impossibility result
showing that truthfulness and EFM>0 are incompatible even
if there are only two agents and there are a single indivisible
good and a single divisible good. Since we can normalize the
valuations so that agents’ valuations on the indivisible good
are 0 or 1, as a corollary to the impossibility result, truthful-
ness and EFM>0 are incompatible for two agents with binary
valuations on indivisible goods. Truthfulness and EFM>0,
however, are compatible if we further restrict the expressive-
ness of agents’ valuations on the divisible goods.

First, in Section 4, we design a truthful and EFM>0 mech-
anism when agents have binary valuations over indivisible
goods and an identical valuation (not necessarily binary) over
a single divisible good. In addition, the allocations output
by our mechanism satisfy some nice efficiency properties in-
cluding leximin and Maximum Nash welfare (MNW). Next,
in Section 5, we consider the case where agents have binary
valuations over all the goods. Specifically, we design truthful
and EFM>0 mechanisms when (i) there are two agents (and
an arbitrary number of goods), or (ii) the mixed goods consist
of an arbitrary number of indivisible goods and a single divis-
ible good. Technically speaking, in general, our mechanisms
first make use of the truthful and EF1 mechanism of [Halpern
et al., 2020] to allocate the (binary) indivisible goods, and
next design different methods to allocate the divisible good(s)
in the three different scenarios described above.

2 Preliminaries
Let [s] := {1, . . . , s}. We use N = [n] to denote the set
of n agents. The set of the goods is denoted by (G,D),

where G = {g1, . . . , gm} is the set of m indivisible goods
and D = {d1, . . . , dm} is the set of m divisible goods.
Each divisible good is homogeneous, meaning that an agent’s
value on each divisible good only depends on the fraction
of this divisible good allocated to her. (We will formally
define the valuations of the agents later.) Denote by A =
(A1, . . . , An) an allocation, where we assign bundle Ai to
agent i. Each Ai is composed by a pair (Gi,xi), where Gi

is a subset of the indivisible goods allocated to agent i and
xi = (xi1, . . . , xim) specifies how divisible goods are allo-
cated to agent i—specifically, xik denotes the fraction of (ho-
mogeneous) divisible good dk allocated to agent i. Naturally,
an allocationA = ((G1,x1), . . . , (Gn,xn)) must satisfy that
(G1, . . . , Gn) is a partition of G and that

∑n
i=1 xik = 1 for

each k = 1, . . . ,m (in particular, we have assumed each di-
visible good has 1 unit of amount).

We assume that each agent i ∈ N has an additive val-
uation function vi and call (v1, . . . , vn) a valuation profile.
That is, agent i’s value on a bundle (Gj ,xj) is given by
vi(Gj ,xj) =

∑
gk∈Gj

vi(gk) +
∑m

k=1 xjk · vi(dk), where
vi(gk) is agent i’s value on the indivisible good gk and vi(dk)
is agent i’s value on the divisible good dk. We slightly
abuse the notation by letting vi(Gj) =

∑
gk∈Gj

vi(gk) and

vi(xj) =
∑m

k=1 xjk · vi(dk). We say that agents’ valuations
are binary if vi(gk) ∈ {0, 1} and vi(dk) ∈ {0, 1} for every
i, k and k. Correspondingly, we say that agents have binary
valuations on indivisible goods if vi(gk) ∈ {0, 1} for every i
and k and agents have binary valuations on divisible goods if
vi(dk) ∈ {0, 1} for every i and k.

An allocation is envy-free if each agent believes (based on
her own valuation) her allocated bundle is weakly more valu-
able than that of every other agent’s. In our case with mixed
goods, this means vi(Gi,xi) ≥ vi(Gj ,xj) holds for every
agents i and j. An envy-free allocation may not exist even
if there are only indivisible goods (i.e., D = ∅). For allocat-
ing only indivisible goods, a commonly adopted relaxation of
envy-freeness is envy-freeness up to one item (EF1), and it is
well-known that an EF1 allocation always exists [Lipton et
al., 2004; Budish, 2011].

Definition 2.1 (EF1). For D = ∅, given a valuation pro-
file (v1, . . . , vn), an allocation (G1, . . . , Gn) is EF1 if for
any pair of i, j ∈ N , there exists a good g ∈ Gj such that
vi(Gi) ≥ vi(Gj \ {g}).

With mixed goods, we adopt the fairness notion called
envy-freeness for mixed goods (EFM) [Bei et al., 2021a].
There are two variants of EFM, and we use EFM≥0 and
EFM>0 to distinguish them. As we will see shortly, EFM≥0

implies EFM>0. We start by presenting the intuition of
EFM>0: For any pair of agents i, j ∈ N , agent i should not
envy agent j, as stated in Point 2 of Definition 2.2 below,
with the exception that the divisible part allocated to agent j
is worthless to agent i, in which case the EF1 condition holds
for the indivisible part (see Point 1 of Definition 2.2).

Definition 2.2 (EFM>0). Given a valuation profile
(v1, . . . , vn), an allocation ((G1,x1), . . . , (Gn,xn)) is
EFM>0 if the followings hold for any pair of i, j ∈ N .
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1. If vi(xj) = 0 and Gj 6= ∅, then there exists a good
g ∈ Gj such that vi(Gi,xi) ≥ vi(Gj \ {g},xj).

2. Otherwise, vi(Gi,xi) ≥ vi(Gj ,xj).

EFM≥0, on the other hand, imposes envy-free condition as
long as agent j’s bundle has any positive amount of divisible
goods, even if agent i values the divisible part at 0:

Definition 2.3 (EFM≥0). Given a valuation profile
(v1, . . . , vn), an allocation ((G1,x1), . . . , (Gn,xn)) is
EFM≥0 if the followings hold for any pair of i, j ∈ N .

1. If xj = 0 and Gj 6= ∅, then there exists a good g ∈ Gj

such that vi(Gi,xi) ≥ vi(Gj \ {g},xj).

2. Otherwise, vi(Gi,xi) ≥ vi(Gj ,xj).

It is easy to see that EFM≥0 implies EFM>0. It also di-
rectly follows from the above definitions that when there are
only indivisible goods (i.e., D = ∅), EFM>0 and EFM≥0

reduce to EF1; when there are only divisible goods (i.e.,
G = ∅), EFM>0 and EFM≥0 reduce to envy-freeness.

A mechanism is a function M that maps the set
of n valuation functions (v1, . . . , vn) to an allocation
((G1,x1), . . . , (Gn,xn)). We only consider determinis-
tic mechanisms in this paper. In the game-theoretical set-
ting, each agent i submits a valuation v′i to M which
may or may not be her true valuation vi. A mecha-
nism M is EFM>0/EFM≥0 if, upon receiving every input
(v′1, . . . , v

′
n), it outputs an allocation that is EFM>0/EFM≥0

w.r.t. (v′1, . . . , v
′
n). A mechanismM is truthful if it is each

agent i’s dominant strategy to truthfully report her valuation
vi. Formally, let vi be the true valuation function of an arbi-
trary agent i and v′i be an arbitrary valuation function, for any
n−1 valuation functions v1, . . . , vi−1, vi+1, . . . , vn of the re-
maining n−1 agents, we have vi(Gi,xi) ≥ vi(G′i,x′i), where
(Gi,xi) is the bundle allocated to agent i byM when receiv-
ing the input (v1, . . . , vi−1, vi, vi+1, . . . , vn) and (G′i,x

′
i) is

the bundle allocated to agent i byMwhen receiving the input
(v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

We make the standard free-disposal assumption, see, e.g.,
[Chen et al., 2013; Bei et al., 2017; Halpern et al., 2020],
which assumes that a good gk (resp., dk) is discarded by the
mechanism if vi(gk) = 0 (resp., vi(dk) = 0) for all i ∈
N . Without this assumption, we may run into uninteresting
technicality. This discussion along with all ommitted proofs
can be found in the full version of our paper [Li et al., 2023].

2.1 Maximum Nash Welfare and Leximin
We now proceed to review the concepts and some properties
of Maximum Nash Welfare (MNW) allocations and leximin
allocations, which will be useful in our paper.

The definitions of MNW and leximin allocations apply to
general fair division settings. For each i ∈ [n], if we are only
allocating indivisible goods, then Ai = Gi; if we are only al-
locating divisible goods, then Ai = xi; for mixed indivisible
and divisible goods, Ai = (Gi,xi).

Definition 2.4 (MNW). Given a valuation profile
(v1, . . . , vn), an allocation (A1, . . . , An) is a Maximum
Nash Welfare (MNW) allocation if it first maximizes
the number of the agents receiving positive values, i.e.,

|{i ∈ [n] : vi(Ai) > 0}|, and, subject to this, maximizes the
product of the positive utilities, i.e.,

∏
i:vi(Ai)>0 vi(Ai).

When allocating only divisible goods, an MNW allocation
is always envy-free [Varian, 1974]. When allocating only
indivisible goods, an MNW allocation is always EF1 [Cara-
giannis et al., 2019]. However, with mixed goods, an MNW
allocation may not be EFM>0 [Bei et al., 2021a].
Definition 2.5 (Leximin). Given two vectors s1, s2 ∈ Rn,
let s′1 and s′2 be the vectors obtained by sorting s1 and s2

in ascending order respectively. We say that s1 leximin-
dominates s2 if there exists i ∈ [n] such that s′1 and s′2 are
identical for the first i − 1 entries and the i-th entry of s′1 is
greater than the i-th entry of s′2. Given a valuation profile
(v1, . . . , vn), an allocation (A1, . . . , An) is a leximin alloca-
tion if (v1(A1), . . . , vn(An)) is maximum in the total order
induced by leximin-domination among all allocations.

In other words, a leximin allocation maximizes the mini-
mum among the agents’ utilities; among all such allocations,
it considers those maximizing the second smallest utility, and
so on.

When allocating indivisible goods with binary valuations,
[Aziz and Rey, 2020] and [Halpern et al., 2020] showed the
equivalence of Maximum Nash Welfare (MNW) allocations
and leximin allocations. In addition, [Halpern et al., 2020]
showed that the mechanism that outputs the MNW/leximin
allocation with a consistent lexicographic tie-breaking rule is
truthful. For the purpose of our paper, we state Halpern et
al.’s mechanism (referred to as MNWtie) below.
Theorem 2.6 ([Halpern et al., 2020], MNWtie). For allocat-
ing only indivisible goods with binary valuations, there exists
a truthful mechanism that always outputs an allocation that
is both MNW and leximin.

3 General Impossibility Results
Unfortunately, truthfulness and EFM>0 are incompatible in
general. In this section, we prove that there does not exist
a truthful and EFM>0 mechanism even under the very re-
stricted settings where there are only one indivisible good and
one divisible good and there are only two agents.

Our impossibility result for mixed divisible and indivisible
goods holds for a minimum number of agents (which is 2) and
a minimum number of goods (which is 2). This is in contrast
with [Amanatidis et al., 2017]’s 2-agent-5-good impossibility
result for only indivisible goods.
Theorem 3.1. There does not exist a truthful and EFM>0

(and thus EFM≥0) mechanism even when there are only two
agents and the set of goods consists of one indivisible good
and one divisible good.

Proof. It suffices to prove the statement for EFM>0. Con-
sider the instance with two agents {1, 2}, one indivisible good
and one divisible good. Both agents have value 1 on the in-
divisible good, and have value a and b on the divisible good,
where b > a > 1.

Firstly, we prove that all the EFM>0 allocations must allo-
cate the indivisible good to agent 1. Suppose for the sake of
contradiction that the indivisible good is allocated to agent 2.
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To guarantee EFM>0, agent 2 must get at least a fraction b−1
2b

from the divisible good in order to not envy agent 1, and
agent 2 must get at most a fraction of a−1

2a from the divisi-
ble good in order to avoid that agent 1 envies agent 2. This is
impossible as a−1

2a < b−1
2b .

Therefore, the possible EFM>0 allocations can be de-
scribed as follows. Agent 1 receives the indivisible good and
a fraction x of the divisible good, and agent 2 receives a frac-
tion 1 − x of the divisible good. For the reasons similar as
above, we must have a−1

2a ≤ x ≤ b−1
2b to guarantee EFM>0.

If the mechanism outputs an allocation with x = a−1
2a , agent 1

can misreport her valuation by increasing a, which increases
agent 1’s received value as x increases. If the mechanism out-
puts an allocation with x > a−1

2a , agent 2 can misreport her
valuation by decreasing b so that a−1

2a < b−1
2b < x. In this

case, x will decrease and agent 2 receives more value.

When there is only one indivisible good and one divisible
good, we can assume w.l.o.g. that agents’ valuations on the
indivisible good are binary (as we did in the proof of Theo-
rem 3.1) or agents’ valuations on the divisible good are bi-
nary. This is because we can normalize the valuations of the
agents. Thus, Theorem 3.1 implies the following corollary.

Corollary 3.2. There does not exist a truthful and EFM>0

(and thus EFM≥0) mechanism even when there are two
agents and agents have binary valuations on either the in-
divisible goods or the divisible goods.

As a remark, although we focus on deterministic mecha-
nisms here, Theorem 3.1 and Corollary 3.2 continue to hold
for randomized mechanisms (that are universally EFM>0 and
truthful in expectation).1 The proof is almost the same: We
must allocate the indivisible good to agent 1 in order to guar-
antee universally EFM>0, and x in the proof becomes the
expected fraction of the divisible good allocated to agent 1.

The strong impossibility results suggest that truthfulness
and EFM>0 may only be compatible in more restrictive set-
tings. We confirm our intuitions in the affirmative in the fol-
lowing sections by considering (1) the setting with a single
divisible good of identical value to all agents and multiple in-
divisible goods on which agents have binary valuations (Sec-
tion 4), and (2) the setting where agents’ valuations are binary
for both indivisible and divisible goods (Section 5).

4 Binary Valuations on Indivisible Goods and
Identical Valuation on Single Divisible Good

This section considers the setting where agents’ valuations on
indivisible goods are binary and there is one divisible good on
which agents have an identical valuation. This describes the
natural scenario where we are allocating a set of indivisible
goods and some amount of money. Here, the divisible good is
just a sum of money, and an agent’s value on each indivisible
good is described by the amount of money the agent is willing

1Loosely speaking, universally EFM>0 mechanisms randomize
over deterministic EFM>0 mechanisms. A randomized mechanism
is said to be truthful in expectation if misreporting a valuation func-
tion cannot increase the expected utility of an agent.

Mechanism 1 A truthful EFM≥0 mechanism for binary valu-
ations on indivisible good and identical valuation on a single
divisible good

1: use MNWtie (Theorem 2.6) to compute an
MNW/leximin allocation (G1, . . . , Gn) of G

2: initialize xi ← 0 for each agent i
3: while y := 1−

∑n
i=1 xi > 0:

4: let T1 = arg mini∈[n]{vi(Gi, xi)}
5: ∆←∞
6: if T1 6= [n] then
7: let T2 = arg mini∈[n]\T1

{vi(Gi, xi)}
8: ∆← vj(Gj , xj)− vi(Gi, xi) for i ∈ T1, j ∈ T2

9: for each i ∈ T1, xi ← xi + min{∆
u ,

y
|T1|}

10: return allocation ((G1, x1), . . . , (Gn, xn))

to pay for the good. We will see that there exists a truthful and
EFM≥0 (and thus EFM>0) mechanism under this setting.

For the ease of notation, we will use x1, . . . , xn to denote
the fractions of the (unique) divisible good allocated to the
n agents. Thus, each agent’s allocated share is denoted by
(Gi, xi). We will use u to denote each agent’s value on the
(unique) divisible good.

Our mechanism is shown in Mechanism 1. The mecha-
nism first allocates the indivisible goods using MNWtie (The-
orem 2.6) and then iteratively allocates the divisible good. In
each iteration, the mechanism identifies a set T1 of agents
who receive minimum values in the current partial alloca-
tion. The mechanism then attempts to compensate agents in
T1 with some fraction of the unallocated divisible good. This
is done by a “water-filling” process: We allocate the divisible
good to the agents in T1 at an equal rate, until the divisible
good is fully allocated, in which case the mechanism termi-
nates, or until the value received by each agent in T1 reaches
the second minimum value received among all agents (i.e.,
the value received by an agent in T2), in which case the mech-
anism proceeds to the next iteration.

Theorem 4.1. Mechanism 1 is EFM≥0 and truthful. More-
over, it always outputs allocations that are leximin and MNW.

The following three subsections aim to prove this theorem.

4.1 Mechanism 1 Is EFM≥0

We first present some simple yet important observations.

Proposition 4.2. Let ((G1, x1), . . . , (Gn, xn)) be the alloca-
tion output by Mechanism 1. The followings hold.

1. For any agent i, vi(Gi, xi) = |Gi|+ u · xi.
2. For any agents i and j, vi(Gi, xi) ≥ vj(Gi, xi).

Proof. Since agents have binary valuations on indivisible
goods and the identical valuation u on the unique divisible
good, we have vj(Gi, xi) ≤ |Gi|+u ·xi for any agents i and
j. Therefore, Point 1 implies Point 2, and it remains to show
Point 1. To show Point 1, notice that vi(Gi, xi) 6= |Gi|+u·xi
is only possible when there exists g ∈ Gi such that vi(g) = 0.
Suppose this is the case for the sake of contradiction. If there
exists another agent j with vj(g) = 1, then moving g from i’s
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bundle to j’s increases the Nash welfare, which contradicts to
that (G1, . . . , Gn) is an MNW allocation. If the good g is
worth 0 to all agents, then g is discarded by the free-disposal
assumption, which contradicts to g ∈ G1.

Lemma 4.3. Mechanism 1 always outputs EFM≥0 (and thus
EFM>0) allocations.

Proof. We will prove by induction that the partial allocation
is EFM≥0 after each while-loop iteration. For the base step,
the MNW allocation (G1, . . . , Gn) for the indivisible goods
is EF1 by [Caragiannis et al., 2019], and EFM≥0 is satisfied
since the allocation of the divisible good has not been started.

For the inductive step, suppose the partial allocation
((G1, x1), . . . , (Gn, xn)) is EFM≥0 before a while-loop it-
eration. After one while-loop iteration, each agent in T1 re-
ceives an extra fraction z := min{∆

u ,
y
|T1|} of the divisible

good. It suffices to show that j does not envy i for any agent
i ∈ T1 and any other agent j. We discuss two cases: j ∈ T1

and j /∈ T1.
If j ∈ T1, we have vj(Gj , xj) = vi(Gi, xi) ≥ vj(Gi, xi)

before the execution of this while-loop iteration, where the
first equality is due to our definition of T1 in Mechanism 1
and the second inequality is due to Point 2 of Proposition 4.2.
This implies that agent j does not envy agent i before the
while-loop iteration. Agent j will not envy agent i after the
while-loop iteration, as both agents receive the same amount
z of the divisible good, which is worth the same value u · z to
both agents.

If j /∈ T1, we have vj(Gj , xj) ≥ ∆ + vi(Gi, xi) ≥ ∆ +
vj(Gi, xi) before the execution of this while-loop iteration,
where, again, the first equality is due to our definition of T1

in Mechanism 1 and the second inequality is due to Point 2 of
Proposition 4.2. This implies that agent j will not envy agent
i after the while-loop iteration if the portion of the divisible
goods allocated to agent i is worth at most ∆. This is true as
u · z ≤ u · ∆

u = ∆.

4.2 Mechanism 1 Is Truthful
We first define a type of mechanisms called water-filling
mechanisms. A water-filling mechanism starts from an allo-
cation (G1, . . . , Gn) of the indivisible goods and then pro-
ceeds to allocate the unique divisible good by the “water-
filling process” defined by the while-loop in Mechanism 1.
Our Mechanism 1 is a particular water-filling mechanism
by specifying that the allocation of the indivisible goods
(G1, . . . , Gn) is output by MNWtie.

Definition 4.4. Given a valuation profile (v1, . . . , vn), an al-
location ((G1, x1), . . . , (Gn, xn)) satisfies the water-filling
property if

1. for any two agents i and j with xi > 0 and xj > 0, we
have vi(Gi, xi) = vj(Gj , xj), and

2. for any two agents i and j with xi = 0 and xj > 0, we
have vi(Gi, xi) ≥ vj(Gj , xj).

It is straightforward to check that the allocation output
by any water-filling mechanism satisfies the water-filling
property. Given a valuation profile v = (v1, . . . , vn) and
an allocation A = ((G1, x1), . . . , (Gn, xn)) satisfying the

water-filling property, we define the potential φ(A,v) by the
“height of the water level”: φ(A,v) = vi(Gi, xi), where i is
an arbitrary agent with xi > 0. When xi = 0 for all i ∈ [n],
φ(A,v) = mini∈[n] vi(Gi).

We will first prove a proposition, Proposition 4.7, which
follows from that an MNW allocation of indivisible goods
with binary valuations is always Lorenz dominating [Babaioff
et al., 2021]. Before stating the proposition, we will first state
Babaioff et al.’s result.
Definition 4.5. Given a valuation profile (v1, . . . , vn), an al-
location (A1, . . . , An) is Lorenz dominating if, for any k ∈
[n], the sum of the k smallest values of v1(A1), . . . , vn(An)
is weakly larger than the sum of the k smallest values of
v1(A′1), . . . , vn(A′n) for any allocation (A′1, . . . , A

′
n).

A Lorenz dominating allocation may not exist. However,
if it does, it is easy to see that a Lorenz dominating allocation
is always leximin. [Babaioff et al., 2021] (implicitly) proved
the following theorem.
Proposition 4.6 ([Babaioff et al., 2021]). Consider the al-
location of indivisible goods (i.e., D = ∅). For any binary
valuation profile on indivisible goods, an MNW/leximin allo-
cation is Lorenz dominating.

In particular, Halpern et al.’s mechanism MNWtie always
outputs Lorenz dominating allocations. We then get the fol-
lowing proposition from the Lorenz domination.
Proposition 4.7. Fix a valuation profile (v1, . . . , vn). Mech-
anism 1 outputs an allocation A that maximizes the poten-
tial φ(A,v) among all allocation satisfying the water-filling
property.

Lemma 4.8. Mechanism 1 is truthful.

Proof. LetM be Mechanism 1. Consider a valuation profile
v = (v1, . . . , vn) and suppose agent 1 misreports her valua-
tion to v′1. Let v′ be the valuation profile (v′1, v2, . . . , vn).
Let A = ((G1, x1), . . . , (Gn, xn)) be the allocation out-
put by M when agent 1 reports truthfully, and let A′ =
((G′1, x

′
1), . . . , (G′n, x

′
n)) be the allocation output by M

when agent 1 reports v′1. By the truthfulness of MNWtie, we
have v1(G1) ≥ v1(G′1). Let A† = ((G′1, x

†
1), . . . , (G′n, x

†
n))

be the allocation obtained by applying the water-filling
process (the while-loop in M) to the start-up allocation
(G′1, . . . , G

′
n) with the true valuation profile v considered.

Both A and A† satisfy the water-filling property w.r.t. v, and
A′ satsifies the water-filling property w.r.t. v′.

If x′1 = 0, we have v1(G1, x1) ≥ v1(G1) ≥ v1(G′1) =
v1(G′1, x

′
1), and the truthfulness ofM holds trivially. Thus,

we assume x′1 > 0 from now on.
By Proposition 4.7, φ(A,v) ≥ φ(A†,v). We have

v1(G1, x1) ≥ φ(A,v) according to the definition of the po-
tential function φ. To conclude thatM is truthful, it suffices
to show that φ(A†,v) ≥ v1(G′1, x

′
1).

Since we have assumed x′1 > 0, v′1(G′1, x
′
1) = φ(A′,v′).

Let δ = v′1(G′1, x
′
1) − v1(G′1, x

′
1). It then remains to show

that φ(A†,v) + δ ≥ φ(A′,v′).
By Point 1 of Proposition 4.2, we have v′1(g) = 1 for each

g ∈ G′1. Moreover, it is clear that δ equals to the num-
ber of goods g in G′1 with v1(g) = 0 and v′1(g) = 1. In
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particular, δ ≥ 0. Now, consider the two water-filling pro-
cesses corresponding to φ(A†,v) and φ(A′,v′). When the
“height of the water level” reaches φ(A†,v), the first pro-
cess terminates, while an additional amount δ of water is
yet to be split among one or more agents in the second pro-
cess. Thus, the “height of the water level” for the second
process can be further increased by at most δ. Therefore,
φ(A†,v) + δ ≥ φ(A′,v′).

4.3 Leximin and MNW
We show that the allocation output by Mechanism 1 is Lorenz
dominating.
Proposition 4.9. Given a valuation profile v = (v1, . . . , vn),
the allocation A = ((G1, x1), . . . , (Gn, xn)) output by
Mechanism 1 is Lorenz dominating.

Proof. Suppose there is an allocation A′ =
((G′1, x

′
1), . . . , (G′n, x

′
n)) such that A does not Lorenz

dominate A′. Let a1, . . . , an and b1, . . . , bn be orderings of
the n agents such that va1

(Ga1
, xa1

) ≤ · · · ≤ van
(Gan

, xan
)

and vb1(G′b1 , x
′
b1

) ≤ · · · ≤ vbn(G′bn , x
′
bn

), respectively. Let
k be the smallest index such that

k∑
i=1

vai
(Gai

, xai
) <

k∑
i=1

vbi(G
′
bi , x

′
bi). (1)

We can first assume w.l.o.g. that A′ satisfies the water-
filling property. If not, we can adjust A′ by applying the
water-filling process to the start up allocation (G′1, . . . , G

′
n).

It is easy to see that the adjusted allocation Lorenz dominates
the original allocation.

By Proposition 4.7, we have φ(A,v) ≥ φ(A′,v). Let
` and `′ be the numbers of agents with xi > 0 and
x′i > 0, respectively. We must have k > `′. Otherwise,∑k

i=1 vbi(G
′
bi
, x′bi) = k · φ(A′,v) ≤ k · φ(A,v). Since

φ(A,v) is a lower bound to each vi(Gi, xi), Equation (1)
cannot be true. Since k > `′, we have

k∑
i=1

vbi(G
′
bi , x

′
bi) = u+

k∑
i=1

vbi(G
′
bi). (2)

We consider two cases: ` ≤ k and ` > k. If ` ≤ k, we must
have

∑k
i=1 vai

(Gai
, xai

) = u +
∑k

i=1 vai
(Gai

). This, to-
gether with Equations (1) and (2), implies

∑k
i=1 vai

(Gai
) <∑k

i=1 vbi(G
′
bi

). However, this contradicts to Proposition 4.6.
If ` > k, we have vai

(Gai
, xai

) = φ(A,v) =
vak

(Gak
, xak

) < vbk(G′bk , x
′
bk

) ≤ vbi(G
′
bi
, xb′i) for each

i = k + 1, . . . , `, where the only strict inequality in the mid-
dle is due to our assumption that k is the smallest index. This
implies Equation (1) continues to hold if we summing over
the first ` terms instead of the first k terms:∑̀

i=1

vai
(Gai

, xai
) <

∑̀
i=1

vbi(G
′
bi , x

′
bi). (3)

Since ` > k > `′, we have
∑`

i=1 vai
(Gai

, xai
) =

u +
∑`

i=1 vai
(Gai

) and
∑`

i=1 vbi(G
′
bi
, x′bi) = u +∑`

i=1 vbi(G
′
bi

). These, together with Equation (3), give a
contradiction to Proposition 4.6 again.

Mechanism 2 A truthful EFM>0 mechanism for binary valu-
ations on both divisible and indivisible goods with two agents

1: use MNWtie (Theorem 2.6) to compute an
MNW/leximin allocation (G1, G2) of G

2: initialize xi ← 0 for each agent i ∈ {1, 2}
3: if v1(G1) 6= v2(G2) then
4: let i∗ = arg mini∈{1,2}{vi(Gi)}
5: if ∃k̄∗ ∈ [m̄] s.t. vi∗(dk̄∗) = 1 then xi∗k̄∗ ← 1
6: for each k̄ = 1 to m̄ with k̄ 6= k̄∗ do
7: if v1(dk̄) = v2(dk̄) = 1 then x1k̄ ← 0.5, x2k̄ ← 0.5
8: else
9: if v1(dk̄) = 1 then x1k̄ ← 1

10: if v2(dk̄) = 1 then x2k̄ ← 1
11: return allocation ((G1,x1), (G2,x2))

Lorenz domination leads to the following lemma.
Lemma 4.10. Mechanism 1 always outputs allocations that
are both leximin and MNW.

5 Binary Valuations for Both Divisible and
Indivisible Goods

In this section, we focus on the setting where agents’ valua-
tions on mixed goods are binary. We start from the simplest
case where there are only two agents. We first show that no
deterministic mechanism can ensure truthfulness and always
output an MNW/leximin allocation. We illustrate this by Ex-
ample 5.1. This is in sharp contrast to Halpern et al.’s mech-
anism MNWtie and Mechanism 1.
Example 5.1. Consider the instance with 2 agents and an
indivisible good g1 and two divisible goods d1 and d2. We
have v1(g1) = v2(g1) = 1. For d1, let v1(d1) = 1 and
v2(d1) = 0; for d2, let v1(d2) = 0 and v2(d2) = 1.

In the allocation returned by a mechanism that can always
output an MNW/leximin allocation, each agent i receives the
corresponding divisible good di and one of them also receives
the indivisible good g1. Without loss of generality, we assume
agent 1 receives g1 and d1. If the actual valuation of agent 1 is
positive towards all three goods and she reports her valuation
truthfully, she will only receive d1 and a half of d2 to achieve
an MNW/leximin allocation. Thus, she has an incentive to
misreport the valuation we stated in the table to earn a benefit.
Remark 5.2. Even when allowing randomized mechanisms,
we can also show there is no truthful mechanism that always
outputs an MNW/leximin allocation with a general number
of agents (where the proof can be found in the full version).

Such an example shows that directly returning an MNW
allocation cannot work for our setting. Instead, we adopt
the mechanism MNWtie (Theorem 2.6) for only indivisible
goods and design a truthful mechanism which can always out-
put an EFM>0 allocation when there are only two agents.

Mechanism 2 first allocates indivisible goods according to
MNWtie. If the valuations of two agents over their own bun-
dles are different, we can allocate one valuable divisible good
to the one with a smaller value to eliminate the possible envy,
if such a divisible good exists. Each remaining divisible good
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Mechanism 3 A truthful EFM>0 mechanism for binary val-
uations on indivisible goods and a single divisible good

1: use MNWtie (Theorem 2.6) to compute an
MNW/leximin allocation (G1, . . . , Gn) of G

2: initialize xi ← 0 for each agent i ∈ [n]
3: let T = arg mini∈[n]{vi(Gi)}
4: for each i ∈ T do
5: xi1 ← 1

|T |
6: return allocation ((G1,x1), . . . , (Gn,xn))

is allocated evenly to all the agents who value it positively.
We have the following result for Mechanism 2:

Theorem 5.3. Mechanism 2 is EFM>0 and truthful.

Proof. We first show the output allocation A = (A1, A2) is
EFM>0. Since the allocation (G1, G2) output by MNWtie

is EF1, so it is also EFM>0. If v1(G1) = v2(G2), such an
allocation is envy-free. If v1(G1) 6= v2(G2), after Steps 4-
5, either the present allocation is envy-free, or vi∗(D) = 0,
which means the output allocation is always EFM>0 for agent
vi∗ no matter how divisible goods are allocated. In the re-
maining steps, each divisible good is allocated evenly to the
agents who positively value them, which will not destroy the
envy-freeness. Hence the final allocation is EFM>0.

We next show Mechanism 2 is truthful. We assume we
receive the allocation A = (A1, A2) given the true valuation
profile (v1, v2) and the allocation A′ = (A′1, A

′
2) when agent

1 misreports her valuation to v′1.
Since the allocation of divisible goods after Step 6 is to

evenly allocate all goods to the agents who value them, mis-
reporting can make no benefit in this part. For Steps 4-5,
the decision depends only on the valuations of the indivisible
goods, there is also no gain from misreporting the valuations
on divisible goods. So the only possible way to benefit is to
misreport the valuations on indivisible goods.

As MNWtie is truthful, we get v1(G1) ≥ v1(G′1). The
first case is when v1(G1) ≥ v1(G′1) + 1. By misreporting,
the largest benefit is from the change of i∗ from 2 to 1 during
Steps 4-5. Such benefit is upper bounded by 2 × 0.5 = 1,
since agent 1 will receive half of this good if she values the
allocated good positively and such a good is allocated after
Step 6. Hence there is no need to misreport in this case.

For the second case where v1(G1) = v1(G′1), we first
have v′1(G′1) ≥ v1(G′1) since the leximin allocation with bi-
nary valuations. The benefit of the misreporting is also from
the change of i∗ during Steps 4-5. If i∗ is 2 under (v1, v2)
and does not exist under (v′1, v2), then v2(G′2) = v′1(G′1) ≥
v1(G′1) = v1(G1) > v2(G2), this violates the leximin prop-
erty of (G1, G2) under (v1, v2). If i∗ is 2 under (v1, v2)
and 1 under (v′1, v2), the leximin property of (G1, G2) under
(v1, v2) is also violated from the similar argument. Similar
analysis also holds for the case where i∗ does not exist under
(v1, v2) and is 1 under (v′1, v2). Since all three cases which
can benefit agent 1 cannot occur, misreporting the valuations
has no benefit. Thus, this mechanism is truthful.

If we consider the setting with more than two agents, we

can also design an EFM>0 and truthful mechanism for allo-
cating indivisible goods and a single divisible good, which is
shown in Mechanism 3. It is worth noting that, in this set-
ting, agents value the divisible good at either 1 or 0, which
is different from the setting in Section 4 where all agents
have an identical value over the single divisible good. In this
mechanism, after allocating all indivisible goods according
to MNWtie, we allocate the only divisible good evenly to all
agents with the smallest vi(Gi).
Theorem 5.4. Mechanism 3 is EFM≥0 and truthful.

Proof. Since MNWtie returns an EF1 allocation and the re-
maining of our mechanism is just to allocate the single divis-
ible good evenly to agents with the smallest vi(Gi), no agent
in T will envy others in T . Because there is only one divisi-
ble good, no agent in [n] \ T will envy the agents in T after
allocating this good. Thus, the output allocation is EFM≥0.

We then prove Mechanism 3 is truthful. We assume we
get the allocation A = (A1, . . . , An) given the true valuation
profile (v1, . . . , vn), and the allocation A′ = (A′1, . . . , A

′
n)

when agent 1 misreports her valuation to v′1.
From the truthfulness of MNWtie, we have v1(G1) ≥

v1(G′1). Since there is only one divisible good, there is no
incentive to misreport if v1(G1) ≥ v1(G′1) + 1. We then con-
sider the case where v1(G1) = v1(G′1). If agent 1 can benefit
from misreporting, this means that after misreporting, agent
1 is in the set T at Step 3, and when agent 1 truthfully reports
v1, either she is not in the set T or the size of the set T is
larger than that after misreporting.

Since MNWtie is leximin, under binary valuations, we
have v′1(G′1) ≥ v1(G′1) = v1(G1). Because, after misre-
porting the valuation, agent 1 is in the set T which contains
all agents with the smallest vi(Gi). Both two cases men-
tioned above violate the leximin property of the allocation
(G1, . . . , Gn) of G under the valuation (v1, . . . , vn). Thus,
this mechanism is truthful.

Remark 5.5. This mechanism is no longer EFM≥0 and
EFM>0 when there is more than one divisible good, because
some envy may occur from the agent outside the set T to the
agent in T after allocating multiple divisible goods.

6 Conclusion
In this paper, we have studied truthful and fair (i.e., EFM)
mechanisms when allocating mixed divisible and indivisible
goods. Our strong impossibility result shows that truthfulness
and EFM are incompatible even if there are only two agents
and two goods. We then designed truthful and EFM mecha-
nisms in various restricted settings.

In future research, it would be intriguing to completely
determine the compatibility between truthfulness and EFM
when agents have binary valuations over all goods. Given
by our impossibility result, another future direction is to con-
sider weaker notions of truthfulness, e.g., maximin strategy-
proofness [Brams et al., 2006], not obviously manipulation
(NOM) [Troyan and Morrill, 2020; Ortega and Segal-Halevi,
2022], and risk-averse truthfulness [Bu et al., 2023].
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