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Abstract
We study the problem of fair allocation of indivis-
ible goods that form a graph and the bundles that
are distributed to agents are connected subgraphs
of this graph. We focus on the maximin share and
the proportional fairness criteria. It is well-known
that allocations satisfying these criteria may not ex-
ist for many graphs including complete graphs and
cycles. Therefore, it is natural to look for approxi-
mate allocations, i.e., allocations guaranteeing each
agent a certain portion of the value that is satisfac-
tory to her. In this paper we consider the class of
graphs of goods which do not contain a star with
d + 1 edges (where d > 1) as an induced sub-
graph. For this class of graphs we prove that there
is an allocation assigning each agent a connected
bundle of value at least 1

d of her maximin share.
Moreover, for the same class of graphs of goods,
we show a theorem which specifies what fraction
of the proportional share can be guaranteed to each
agent if the values of single goods for the agents are
bounded by a given fraction of this share.

1 Introduction
The problem of fair allocation of indivisible goods is a fun-
damental problem in social choice theory [Brams and Taylor,
1996; Bouveret et al., 2016]. We assume that we have a set of
items that we call goods and a set of agents, each with her own
utility function, which assigns some values to all subsets of
goods (called bundles). The utility functions are commonly
assumed to be additive and so we need to specify their values
on individual goods only. We make this assumption in this
paper, too. The objective is to assign the goods to the agents
so that some fairness criterion is satisfied. Some of these cri-
teria like proportionality or envy-freeness originate from the
problem of fair allocation of divisible goods which is known
as the cake cutting problem [Brams and Taylor, 1996; Procac-
cia 2016]. Unlike in the case of allocation of divisible goods
where proportional and envy-free allocations always exist, for
indivisible goods it is very easy to construct examples when
no allocations satisfying these criteria exist.

[Budish, 2011] proposed a new fairness criterion for indi-
visible goods called the maximin share fairness criterion. It is

based on the well-known cut and choose protocol in the cake
cutting problem. Each of n agents first finds a partition of the
set of goods into n bundles such that the least-valued bundle
is maximized. The maximin share for this agent is equal to
the value of this least-valued bundle. An allocation satisfies
the maximin criterion if each agent receives a set of goods of
value not smaller than her maximin share. We call such al-
locations mms-allocations. There are examples which show
that an mms-allocation may not exist [Procaccia and Wang,
2014; Kurokawa et al., 2016]. Nevertheless such examples
are quite intricate. To get around the difficulty of construct-
ing mms-allocations, several researchers proposed to relax
the maximin share criterion by requiring that the value of each
agent’s share in an allocation be at least equal to some positive
fraction of the maximin share [Procaccia and Wang, 2014;
Amanatidis et al., 2017; Barman and Murthy, 2017; Garg et
al., 2019; Ghodsi et al., 2018]. Currently, the strongest result
of this kind shows that a 3/4-approximating mms-allocation
always exists and can be found in polynomial-time [Garg and
Taki, 2021].

In this paper we study the problems of proportional and
maximin share allocations in the setting proposed by [Bou-
veret et al., 2017]. In that setting the goods are vertices of
an undirected graph (that we call the graph of goods) and
the bundles to be assigned to the agents, as well as those in
the definition of the maximin share, induce connected sub-
graphs of the graph of goods. This setting captures constraints
that appear in some applications by excluding certain undesir-
able sets of goods. Typical examples of such applications in-
clude problems of consolidating land plots [King and Burton,
1982], or allocating rooms in a building to research groups
[Bouveret et al., 2017]. In these applications agents might re-
quire that the sets of goods (rooms or plots of land) allocated
to them form a connected subgraph of the graph of goods de-
scribing the neighborhood relation between the goods. The
original problem of fair allocation of indivisible goods is now
a special case of this generalization when the graph of goods
is complete.

[Bouveret et al., 2017] showed several complexity and
algorithmic results on envy-free, proportional and mms-
allocations for different graphs of goods. Among others, they
proved that if the graph of goods is a tree then an mms-
allocation always exists and can be computed in polynomial
time. Moreover, they gave an example demonstrating that
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for some choice of utility functions of the agents an mms-
allocation does not exist when the graph of goods is a cycle.

The case of cycles as graphs of goods was thoroughly stud-
ied by [Lonc and Truszczynski, 2020]. They proved that in
this case it is possible to guarantee to each agent the fraction√

5−1
2 ≈ 0.62 of her maximin share. They also found an ex-

ample showing that if the graph of goods is a cycle then for
some choice of the utility functions of the agents in any allo-
cation some agent receives at most 3

4 of her maximin share.
For arbitrary graphs of goods it is not known whether a

positive fraction of the maximin share can be guaranteed. In
this paper we prove that for a large class of graphs (includ-
ing graphs with vertex degrees bounded by a constant) such
guarantee indeed exists.

We focus on a wide class of graphs of goods called d-claw-
free graphs. These are graphs that do not contain a d-edge
star K1,d as an induced subgraph. Obviously, all graphs with
maximum degree at most d are (d + 1)-claw-free. Proba-
bly the most interesting case concerns 3-claw-free graphs for
which the approximation ratios that we prove are the largest.
The class of 3-claw-free graphs (also called just claw-free
graphs) is a large and important class of graphs widely stud-
ied in graph theory [Faudree et al., 1997; Chudnovsky and
Seymour, 2010].

The problem of fair allocation for 3-claw-free graphs of
goods is closely related to the following “edge variant” pro-
posed by [Truszczynski, 2021]: Given a connected graph G,
where edges represent goods, and a set of agents with utilities
on edges, find a fair allocation of connected bundles of edges
to agents. This problem is equivalent to the problem where
vertices of a graph represent goods, considered for the graph
of goods L(G) being the line graph of G. (In the line graph
L(G) the edges ofG are vertices and two vertices ofL(G) are
adjacent if the corresponding edges in G have a common ver-
tex.) It is well-known that line graphs are 3-claw-free, which
provides additional motivation to consider fair allocations for
3-claw-free graphs of goods.

The “edge variant” described above has the following nat-
ural interpretation: Several air carriers (agents) want to offer
service between some cities. Connections (goods) between
some pairs of cities, to be distributed among carriers, are
edges of a graph whose vertices represent cities. The goal
for each carrier is to have its connections form a connected
subgraph of this graph. The goal of the authority construct-
ing an allocation is to cover all edges by distributing them to
carriers according to some fairness criterion.

Our contribution Intuitively, for proportional allocations,
the smaller the values of goods relative to the agent’s propor-
tional share, the closer to the proportional allocation we can
get. Our first main contribution quantifies this intuition for
connected (d + 1)-claw-free graphs of goods, where d ≥ 2
(Theorem 1). More precisely, let Si be the total value to agent
i of all vertices of the graph of goods. For every 0 < α ≤ 1
we find the largest value of β = β(α) such that for any con-
nected (d+ 1)-claw-free graph of goods and any n agents for
whom the values of single vertices are bounded by αSi

n , there
exists an allocation which assigns every agent i a connected
bundle of value at least β Si

n .

For mms-allocations, we prove that for any (d + 1)-claw-
free graph of goods, any set of agents and d ≥ 2, there exists
an allocation that guarantees each agent a bundle of value at
least 1

d of her maximin share (Theorem 2). In contrast to
Theorem 1 for which we provide examples showing that the
results are tight, we do not have a tightness result for Theorem
2.

Theorem 1 is a crucial ingredient of the proof of Theorem
2. We also use in this proof another result (Lemma 2) that
allows us to reduce the problem of existence of an alloca-
tion assigning each agent a c fraction of her maximin share
value when the agents are arbitrary, to the analogous problem
when the agents are not arbitrary but their utility functions
are bounded by the product of c and the maximin share value.
Lemma 2, which is perhaps of an independent interest, ap-
plies not only to the class of (d + 1)-claw-free graphs but to
any hereditary class of graphs.

Proofs of Theorem 2 and Lemma 2 require an extension of
the problem of approximation of mms-allocations to discon-
nected graphs of goods. Therefore, we formulate and prove
these results in this more general setting. In this extension we
still require that bundles are sets of vertices of connected sub-
graphs of the graph of goods. However, we do not require that
all vertices of the graph of goods are distributed to agents.

Even though mms-allocations for disconnected graphs of
goods play an auxiliary role in this paper, we believe that
studying such allocations is a natural and interesting direc-
tion for future research.

Related work The subject of fair division of a graph into
connected bundles received a considerable attention in re-
cent years (see a survey paper by [Suksompong, 2021]). We
have already mentioned the papers by [Bouveret et al., 2017],
which initiated research in this direction, and by [Lonc and
Truszczynski, 2020] who examined the case when the graph
of goods is a cycle. [Bei et al., 2022] studied the concept of
price of connectivity for a graph G which they defined as the
worst-case ratio between the maximin share computed with
the restriction that all bundles are connected in G and with-
out this restriction. Their result most closely related to the
problems considered in this paper [Bei et al., 2022, Theorem
3.14] implies that for every graph of goods G there exists
an allocation that guarantees each agent a bundle of value at
least 1

m−n+1 of her maximin share, where n is the number
of agents, m is the number of vertices in G and m ≥ n.
This guarantee becomes, however, very weak when the size
of the graph grows. Our Theorem 2 guarantees that, for a
large class of graphs, a fraction of the maximin share indepen-
dent on the size of the graph can be assigned to each agent.
[Bilò et al., 2022] and [Bei et al., 2022] proved several results
on some relaxations of envy-free allocations with connected
bundles. [Suksompong, 2019] showed several approximation
results on envy-freeness, proportionality and equitability fair-
ness criteria when the graph of goods is a path. [Igarashi and
Peters, 2019] studied the problem of allocation of connected
bundles that are Pareto optimal. [Bouveret et al., 2019] ex-
amined the problem of connected fair allocation of indivisible
chores (i.e., items that yield disutility to the agents). [Greco
and Scarcello, 2020] and [Deligkas et al., 2021] studied com-
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putational complexity issues pertaining to fair allocation on
graphs.

2 Preliminaries
Let N = {1, . . . , n} be a set of agents and let V be a set of
goods. We assume that the set of goods V is the vertex set
of some undirected (and not necessarily connected) graph G
called the graph of goods. Every subset of V inducing in G a
connected subgraph is called a G-bundle (or just a bundle if
the graph G is clear from the context).

For each agent i ∈ N there is a utility function ui which
assigns non-negative real numbers to goods in V . We extend
utility functions to subsets of V by assuming additivity, i.e.,
for a utility function ui defined on V and for every X ⊆ V ,
we define ui(X) :=

∑
v∈X ui(v). We say that a good v ∈ V

(respectively, a set of goods X ⊆ V ) is of value x to agent i
if ui(v) = x (resp. ui(X) = x).

In our setting by an allocation we mean an assignment of
pairwise disjoint G-bundles to the agents in N . We do not
assume here that every good of V is assigned to some agent.
If it is then we call such an allocation complete. We represent
allocations by sequences (A1, . . . , An), where each set Ai ⊆
V is a G-bundle assigned to agent i ∈ N .

Any family {P1, . . . , Pn} of pairwise disjoint G-bundles
is called a (G,n)-packing. If, in addition,

⋃n
i=1 Pi = V then

such a (G,n)-packing is called a (G,n)-split of G. For an
agent with utility function u we define the maximin share as

mms(n)(G, u) := max
{P1,...,Pn}

min
j=1,...,n

u(Pj),

where the maximum is computed over all (G,n)-splits
{P1, . . . , Pn} ofG. We call a (G,n)-split for which the max-
imum is attained an mms-split.

If the graph of goods G is disconnected and has more
than n components then no (G,n)-split exists so the maximin
share is undefined. However, if we replace in the definition
of the maximin share (G,n)-splits by (G,n)-packings then
we get a parameter which is defined for every (not necessar-
ily connected) graph G. Formally, for an agent with utility
function u, the packing maximin share is:

pmms(n)(G, u) := max
{P1,...,Pn}

min
j=1,...,n

u(Pj),

where the maximum is computed over all (G,n)-packings
{P1, . . . , Pn} of G.1 We call a (G,n)-packing for which
the maximum is attained an mms-packing. Obviously,
pmms(n)(G, u) ≥ mms(n)(G, u) for every graph for which
mms(n)(G, u) is defined.

An allocation (A1, . . . , An) is an mms-allocation (resp.
packing mms-allocation) if

ui(Ai) ≥ mms(n)(G, ui)(
respectively, ui(Ai) ≥ pmms(n)(G, ui)),

1The abbreviation PMMS has already been used in the literature
for ‘pairwise maximin share fairness’ (e.g., see [Amanatidis et al.,
2022]). These two meanings of this abbreviation should not be con-
fused.

for every agent i ∈ N . For any c > 0, an allocation
(A1, . . . , An) is a c-mms allocation (resp. c-pmms alloca-
tion) if

ui(Ai) ≥ c ·mms(n)(G, ui)(
respectively, ui(Ai) ≥ c · pmms(n)(G, ui)),

for every agent i ∈ N with utility function ui.
For a connected graph of goods, we call an allocation

(A1, . . . , An) proportional (resp. c-proportional) if

ui(Ai) ≥
ui(V )

n

(
respectively, ui(Ai) ≥ c ·

ui(V )

n
),

for every agent i ∈ N with utility function ui.
Every c-proportional allocation is both a c-mms and a

c-pmms allocation. Indeed, let {P1, . . . , Pn} be an mms-
packing for a connected graph G and agent i. Then,

ui(V ) ≥
n∑
j=1

ui(Pj) ≥ n · pmms(n)(G, ui)

≥ n ·mms(n)(G, ui). (1)

Let G be a connected graph of goods and let c > 0.
An agent i ∈ N with utility function ui is c-proportionally
bounded (resp. c-mms bounded) if

ui(v) ≤ c · ui(V )

n

(
resp., ui(v) < c ·mms(n)(G, ui)),

for every vertex v ∈ V (G).
Clearly, by the inequalities (1), every c-mms bounded

agent is c-proportionally bounded.
To illustrate some of the concepts introduced above, let

us consider the graph, say G, in Figure 1. The graph de-
fines the set of goods V = {v1, . . . , v6} and their ad-
jacency relation. The table in the figure shows two util-
ity functions u1 and u2 of two different agents on the set
of goods. By checking all (G, 2)-splits one can easily
show that the family {{v1, v2}, {v3, v4, v5, v6}} is a (G, 2)-
mms split for the utility function u1 with its bundles hav-
ing values 8 and 10, respectively. Thus, mms(2)(G, u1) =
8. Similarly, mms(2)(G, u2) = 3, so the sequence
({v1, v2, v3}, {v4, v5, v6}) is an mms-allocation because
u1({v1, v2, v3}) = 12 ≥ 8 and u2({v4, v5, v6}) = 3.

Since u1(V ) = 18 and u2(V ) = 10, the sequence
({v4, v5, v6}, {v1, v2, v3}) is a 2

3 -proportional allocation be-
cause u1({v4, v5, v6}) = 6 ≥ 2

3 ·
18
2 and u2({v1, v2, v3}) =

v1 v2 v3 v4 v5 v6
u1 4 4 4 2 2 2
u2 1 1 5 1 1 1

Figure 1: A graph of goods and two utility functions.
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7 ≥ 2
3 ·

10
2 . The agent 1 is 1

2 -proportionally bounded because
the lagest value of a single vertex for this agent is 4 ≤ 1

2 ·
18
2 .

In this paper we use standard graph theoretic definitions
and notation. In particular, we write V (G) for the set of ver-
tices of a graph G. A subgraph H of a graph G is induced by
a set of vertices X ⊆ V (G) if V (H) = X and a pair of ver-
tices x, y ∈ V (H) is an edge inH if and only if xy is an edge
in G. For any Y ⊆ V (G) we denote by G− Y the subgraph
of G induced by the set of vertices V (G)− Y . If Y has only
one vertex, say x, then we write G − x instead of G − {x}.
A subgraph H of a graph G is spanning if V (H) = V (G).

By K1,m we denote a star with m edges. We say that a
graph G is m-claw-free if G does not contain a copy of K1,m

as an induced subgraph. A family of graphs G is hereditary if
any induced subgraph of a graph in G is in G, too.

For connected graphs of goods the relationship between
pmms-allocations and mms-allocations is very close. The
proposition below explains this relationship.

Proposition 1. Let G be a connected graph of goods.
(i) For any utility function u defined on V (G) and a positive
integer n, pmms(n)(G, u) = mms(n)(G, u).
(ii) For any c > 0 and any collection of n ≥ 1 agents a
complete c-mms allocation exists if and only if a c-pmms al-
location exists.
(iii) For any utility function u defined on V (G) and posi-
tive integers m,n such that m ≤ n, pmms(m)(G, u) ≥
pmms(n)(G, u). �

Simple proofs of parts (i) and (ii) base on an observation
that for a connected graph G, every (G,n)-packing extends
to a (G,n)-split. Part (iii) follows from the fact that by re-
moving any n −m bundles from an mms-packing for G and
n agents we get a (G,m)-packing with the value of every
bundle at least pmms(n)(G, u).

3 Approximate Proportional Allocations
In this section we will show the following result.

Theorem 1. Let d ≥ 2 be an integer and 0 < α ≤ 1. Define

β = β(α) =

{
1−α
d−1 if d ≥ 3 or d = 2 and α ≥ 1

2 ;
1
2 if d = 2 and α < 1

2 .
(2)

For every connected (d + 1)-claw-free graph of goods and
every set of α-proportionally bounded agents there exists a
β-proportional allocation.

Before we prove this theorem let us recall some basic def-
initions and facts from graph theory. A cut vertex of a con-
nected graph is any vertex whose removal makes the graph
disconnected. A connected graph is biconnected if it has no
cut vertices. A block of a graph G is a maximal biconnected
subgraph ofG. It is easy to observe [Bondy and Murty, 2008,
Proposition 5.3] that each two blocks of a graph G have at
most one vertex in common and this vertex, if it exists, is a
cut vertex of G.

Following the terminology introduced in [Bondy and
Murty, 2008], for a connected graph G, we define B(G) to
be a bipartite graph with bipartition (B, C), where B is the

set of blocks of G and C is the set of cut vertices of G. A
block B and a cut vertex v are adjacent in B(G) if B con-
tains v. It is easy to observe that the graph B(G) is a tree.
The blocks corresponding to the leaves of the tree B(G) are
called end blocks of G. If G is not biconnected then it has at
least two end blocks. Clearly, each end block contains exactly
one cut vertex of G.

Every tree with more than one vertex contains a vertex
whose all neighbors except for possibly one, are leaves. If
G is not biconnected then B(G) has more than one vertex so
it contains such a vertex, say v. Since leaves in B(G) are end
blocks in G, the vertex v is a cut vertex of G such that all
blocks containing v except for possibly one, are end blocks.
We call such a cut vertex of G terminal.

A bipolar ordering of a graph G is an ordering v1, . . . , vm
of all vertices ofG such that for each i ∈ {1, . . . ,m−1} both
the graph induced in G by the set of vertices {v1, . . . , vi} and
the graph induced in G by the set of vertices {vi+1, . . . , vm}
are connected. This concept as well as the concepts of a block
and a block decomposition were already used before in the
context of fair division [Bei et al., 2022; Bilò et al., 2022].

In the proof of Theorem 1 we apply the following lemma.
A somewhat stronger version of this lemma, formulated in a
different terminology, was proved by [Lempel et al., 1967].

Lemma 1. If G is a biconnected graph then for every vertex
v of G there exists a bipolar ordering starting with v. �

We are ready to prove the main result of this section.
Proof of Theorem 1. We will prove this theorem here for 1

d ≤
α ≤ 1. For this range of α, we have β = 1−α

d−1 for every
integer d ≥ 2. The proof for 0 < α < 1

d is similar but differs
by some details.

Our assumption that α ≥ 1
d implies that 0 ≤ β ≤ 1

d . In
particular, β ≤ α.

The theorem is obviously true for one agent so we assume
that there are at least two agents.

Suppose the theorem is false and let n ≥ 2 be the small-
est number of agents such that for some connected (d + 1)-
claw-free graph G of goods and a set N = {1, . . . , n} of
α-proportionally bounded agents, a β-proportional allocation
does not exist. Assume additionally that the graph G has the
smallest number of vertices among such graphs.

For every agent i ∈ N , let ui be her utility function. To
simplify notation, we define Si := ui(V (G)).

Let B be the set of blocks of G and let C be the set of its
cut vertices. If G is not biconnected then it contains a termi-
nal cut vertex, say v. Let B0, B1, . . . , Bs be the blocks in G
containing v indexed so that B1, . . . , Bs are end blocks (B0

may but does not have to be an end block). Obviously, v is
the only cut vertex contained in the blocks B1, . . . , Bs. Let
B = V (B1)∪ . . .∪V (Bs). Clearly, s+1 ≤ d because other-
wise v is the center of an induced starK1,d+1, a contradiction
as G is (d + 1)-claw-free. Moreover, by the definition of v,
the graph G−B is connected.

We consider three cases.
Case 1. G is biconnected or G is not biconnected but for
some terminal cut vertex v, some end block Br containing v
and some agent i, we have ui(V (Br − v)) > β · Si

n .
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IfG is biconnected then we defineH := G, i is an arbitrary
agent and v is an arbitrary vertex ofG. IfG is not biconnected
then we defineH := Br. In the former case, ui(V (H−v)) =
Si − ui(v) ≥ Si − αSi

n = (n − α)Si

n > (1 − α)Si

n =

β(d − 1)Si

n ≥ β Si

n because the agents are α-proportionally
bounded and d ≥ 2.

By Lemma 1, there exists a bipolar ordering
v1, v2, . . . , vm, where m = |V (H)|, of vertices of H
such that v1 = v.

Let ` > 1 be the largest t such that there is an agent, say
k ∈ N , for whom the value of the set {vt, vt+1, . . . , vm} is
at least β Sk

n . Clearly, ` is well-defined because the value for
the agent i of the set {v2, v3, . . . , vm} = V (H − v) is larger
than β Si

n . By the definition of a bipolar ordering, the graph
induced in G by the set of vertices L = {v`, v`+1, . . . , vm} is
connected. We assign this set to the agent k.

By the definition of ` the value of the set
{v`+1v`+2, . . . , vm} for each agent j ∈ N is smaller
than β Sj

n . Since uj(v`) ≤ α
Sj

n for every agent j, we have
uj(L) < (β + α)

Sj

n = (1 − β(d − 2))
Sj

n ≤
Sj

n as d ≥ 2.
By the definition of a bipolar ordering, the graph G − L is
connected.

Let G′ = G − L and N ′ = N − {k}. For every agent
j ∈ N ′ the total value of all vertices of G′ is S′j = Sj −
uj(L) > Sj − Sj

n =
(n−1)Sj

n , so for each vertex x ∈ V (G′),

we have uj(x) ≤ α
Sj

n ≤ α
S′
j

n−1 . Thus, the utility functions
uj restricted to the set of vertices of G′ are α-proportionally
bounded for each agent j ∈ N ′. By minimality of n there
exists a β-proportional allocation for the graph of goods G′
and the set of agentsN ′. In this allocation every agent j ∈ N ′

receives a bundle of goods of value at least β
S′
j

n−1 ≥ β
Sj

n .
This allocation together with the set L assigned to the agent
k defines a β-proportional allocation of the vertices of G to
the agents ofN , a contradiction which completes the proof in
this case.
Case 2. G is not biconnected and for each agent i ∈ N ,
ui(B) ≤ αSi

n .
Let G′ be the graph obtained from G by removing the

vertices of B − {v}. Clearly, the graph G′ is connected.
For each agent i ∈ N we define a new utility function u′i
on the set V (G′) as follows: u′i(v) := ui(B) ≤ αSi

n and
u′i(x) := ui(x) for all x 6= v.

By the minimality ofG, there is a β-proportional allocation
(A1, . . . , An) for the graph of goods G′ and the agents of
N with the utility functions u′i which assigns the bundle Ai
to agent i, for each i ∈ N . We add to the bundle, say Aj ,
containing v the vertices of B − {v}. This way we get a
β-proportional allocation for the graph of goods G and the
agents of N with the utility functions ui, a contradiction with
the definition of G.
Case 3. G is not biconnected and there is an agent k ∈ N
with uk(B) > αSk

n .

Clearly, uk(B) > β Sk

n because α ≥ β.
We can assume that for every agent i ∈ N and every r ∈

{1, . . . , s}, we have ui(V (Br−v)) ≤ β Si

n because otherwise

Figure 2: The graph G for d = 4, p = 4 and k = 3.

the condition in Case 1 is satisfied.
Thus, for every agent i

ui(B) = ui(v) +
s∑
r=1

ui(V (Br − v)) ≤ αSi
n

+ s · βSi
n

≤ αSi
n

+ (d− 1)β
Si
n

=
Si
n

because s+ 1 ≤ d.
We assign the set B to the agent k.
Let G′ be the graph obtained from G by removing the set

of vertices B and let N ′ = N − {k}. By the definition of B,
the graph G′ is connected. For every agent i ∈ N ′ the total
value of all vertices of G′ is S′i = Si − ui(B) ≥ Si − Si

n =
(n−1)Si

n so for each vertex x ∈ G′, we have ui(x) ≤ αSi

n ≤
α

S′
i

n−1 . By the minimality of n, there exists a β-proportional
allocation for the graph of goods G′ assigning each agent i ∈
N ′ = N − {k} a bundle of value at least β S′

i

n−1 ≥ β
Si

n . This
allocation together with the set B assigned to agent k defines
a β-proportional allocation for the graph of goods G and the
agents of N , a contradiction with the definition of G. �

Theorem 1 is sharp. More precisely, for every d ≥ 2, 0 <
α ≤ 1 and ε > 0, there is an example of a (d + 1)-claw-free
graph G = G(d, α, ε) and a set of α-proportionally bounded
agents such that there is no (β + ε)-proportional allocation,
where β is defined by the equality (2). The example described
below shows this sharpness when β = 1−α

d−1 , i.e., for d ≥ 3

and 0 < α ≤ 1 and for d = 2 and 1
2 ≤ α ≤ 1. We also have

an example demonstrating sharpness of Theorem 1 for d = 2
and α < 1

2 but we do not present it here.
We construct the graph G in the following way. Let T be a

tree consisting of d−1 paths, each with p = d(β + ε/2)/αe+
1 vertices, sharing one common vertex which is an end of
each path. We call this vertex the center of T . We define
G to be the tree obtained from k ≥ max

(
2

(d−1)ε ,
2(β+ε)

ε

)
disjoint copies T1, . . . , Tk of the tree T by joining with an
edge the center of Ti+1 with one of the leaves of Ti, for each
i = 1, . . . , k − 1 (see Figure 2). Clearly, the graph G is
connected and (d+ 1)-claw-free.

There are n = k + 1 agents with the same utility function
assigning the value α to the k vertices which are centers of
the trees Ti and the value β+ε/2

p−1 = β+ε/2
d(β+ε/2)/αe ≤ α to the

remaining k(p − 1)(d − 1) vertices of G. The total value of
all vertices of G is equal to S = kα + k(d− 1)(β + ε/2) =
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k(α + (d − 1)β) + k(d − 1)ε/2 = k + k(d − 1)ε/2 ≥ k
for each agent. By the inequality k ≥ 2

(d−1)ε , it follows that
β+ε/2
p−1 ≤ α = αk+1

n ≤ αk+k(d−1)ε/2n = αSn so the agents
are α-proportionally bounded.

To show that there is no (β+ε)-proportional allocation for
our n agents and the graph G we observe that the total value
of every connected subgraph of G which does not contain
the center of any tree Ti is at most β + ε/2. Since there are
k = n − 1 centers only, in any allocation of bundles of G to
n agents there is an agent who does not receive the center of
any tree Ti. Thus, this agent gets a bundle of value at most
β + ε/2. Since n = k + 1 > 2(β+ε)

ε and S ≥ k, we have
β + ε/2 < (β + ε)(1 − 1

n ) = (β + ε) kn ≤ (β + ε)Sn . Thus,
no (β + ε)-proportional allocation exists.

We will now extract from Theorem 1 several corollaries,
including the result that will be of use when dealing with
mms-allocations in Section 4.

Applying Theorem 1 for α = 1
d we get the following state-

ment.

Corollary 1. Let d ≥ 2 be an integer. For every con-
nected (d + 1)-claw-free graph of goods and every set of 1

d -
proportionally bounded agents there exists a 1

d -proportional
allocation. �

It follows easily from Theorem 1 that Corollary 1 is best
possible in the sense that there is no constant c > 1

d such
that for every connected (d + 1)-claw-free graph of goods
and any set of c-proportionally bounded agents there exists a
c-proportional allocation.

Theorem 1 can be generalized in the following way.

Corollary 2. Let d ≥ 2 be an integer and 0 < α ≤ 1.
Moreover, let β be defined by the equality (2). If a graph G
has a (d + 1)-claw-free connected spanning subgraph then,
for any set of α-proportionally bounded agents, there exists a
β-proportional allocation for the graph of goods G.

Proof. This corollary follows immediately from Theorem 1
and the observation that for any β ≥ 0 a β-proportional
allocation for a spanning connected subgraph of G is a β-
proportional allocation for the graph G.

In Corollary 2 the largest value of the approximation factor
is achieved for d = 2 and it is equal to 1

2 . Since a path is
obviously 3-claw-free, we have the following corollary which
can also be easily proved directly.

Corollary 3. If the graph of goods G has a Hamilton path
then for any set of 1

2 -proportionally bounded agents there ex-
ists a 1

2 -proportional allocation. �

4 Approximate Mms-Allocations
The following theorem is the main result of this section.

Theorem 2. Let d ≥ 2 be an integer. For every connected
(d+ 1)-claw-free graph of goods and any set of agents there
exists a complete 1

d -mms allocation.

In fact, we will prove a stronger version of this theorem for
graphs which do not have to be connected.

Theorem 2’. Let d ≥ 2 be an integer. For every (d + 1)-
claw-free graph of goods and any set of agents there exists a
1
d -pmms allocation.

Theorem 2 follows immediately from Theorem 2’ by
Proposition 1 (i) and (ii).

We first prove a general lemma which reduces the problem
of the existence of a c-pmms allocation for arbitrary agents
to the existence of a c-mms allocation for c-mms bounded
agents, if the graphs of goods belong to a hereditary class of
graphs. We will apply this lemma in the proof of Theorem 2’
for the class of (d+ 1)-claw-free graphs which is, obviously,
hereditary. However, it is worth noting that there are many
other important hereditary classes of graphs (e.g., the class
of all graphs, the class of planar graphs, the class of bipartite
graphs, the class of perfect graphs).
Lemma 2. Let G be a fixed hereditary class of graphs and
let c > 0 be a fixed real. If there exists a c-mms allocation
for any connected graph in G and any set of c-mms bounded
agents then there exists a c-pmms allocation for any graph of
goods in G and any set of agents.

Proof. Consider an arbitrary graph of goods G ∈ G and
an arbitrary set N = {1, . . . , n} of agents. Let, for each
agent i ∈ N , ui be the utility function of i and let Πi be an
mms-packing for this agent. To simplify notation we define
pmmsi := pmms(n)(G, ui) for every agent i ∈ N . We need
to construct an allocation assigning each agent i a bundle of
value at least c · pmmsi to this agent.

We define X := {x1, . . . , x`} to be a maximal with re-
spect to inclusion (and possibly empty) set of pairwise dif-
ferent vertices of G such that every vertex xj is of value at
least c · pmmsij to some agent ij and the agents i1, . . . , i`
are pairwise different. Every agent ij receives the vertex xj
in our allocation.

It remains to show that there is an allocation assigning to
each agent i ∈ N ′ = N − {i1, . . . , i`} a bundle inducing
a connected subgraph of G − X which is of value at least
c · pmmsi to this agent. By the maximality of X , for every
vertex v ∈ V (G−X) and every agent i ∈ N ′,

ui(v) < c · pmmsi. (3)

Since |X| = `, for every agent i ∈ N ′ there are at least n− `
bundles in Πi which do not intersect X .

Let G1, . . . , Gs be the components of G − X . Let Πj
i

be the set of bundles in Πi that are contained in V (Gj) and
let f(i, j) be the number of such bundles. Clearly, Πj

i is a
(Gj , f(i, j))-packing. Moreover,

∑s
j=1 f(i, j) ≥ n − ` for

each agent i ∈ N ′. We observe that, by Proposition 1 (i) and
the fact that the value of each of f(i, j) bundles in Πj

i is at
least pmmsi for agent i, we have

mms(f(i,j))(Gj , ui) = pmms(f(i,j))(Gj , ui) ≥ pmmsi
(4)

for every agent i ∈ N ′ and every j ∈ {1, . . . , s}.
Claim. Let Ij ⊆ N ′ be a set of agents such that f(i, j) ≥ |Ij |
for each agent i ∈ Ij . Then, there is a c-mms allocation for
the graph of goods Gj and the set of agents Ij .
Proof of the Claim. We observe that the agents of Ij are c-
mms bounded with respect to the graph of goods Gj and the
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Algorithm 1 allocate(N ′, G−X, c)
1 T := N ′;
2 for j = 1, 2, . . . , s do
3 sort the agents i ∈ T non increasingly according to

the key f(i, j): ij1, i
j
2, . . . , i

j
|T |;

4 kj := the largest p such that f(ijp, j) ≥ p;
5 Ij := {ij1, i

j
2, . . . , i

j
kj
};

6 agents in Ij distribute the vertices of V (Gj) among
themselves according to the allocation A(Ij , Gj);

7 T := T − Ij ;
8 if T = ∅ then
9 return

utility functions restricted to V (Gj). Indeed, applying in turn
the inequalities (3), (4) and Proposition 1 (iii), for every ver-
tex v ∈ V (Gj) we get

ui(v) < c · pmmsi ≤ c ·mms(f(i,j))(Gj , ui)

≤ c ·mms(|Ij |)(Gj , ui).
Since G is a hereditary class of graphs, Gj ∈ G. Thus,

by our lemma assumption, there is a c-mms allocation for the
graph of goods Gj and the set of agents Ij . �

We denote by A(Ij , Gj) the allocation whose existence is
guaranteed by the Claim.

We shall prove that the algorithm allocate shown in the
figure Algorithm 1 produces the required c-pmms allocation
of the vertices of G − X to the agents of N ′. In the jth
pass of the loop of this algorithm bundles of vertices of the
component Gj of G −X are distributed to agents. First, we
sort (line 3) the agents i which have not got their bundles yet
non increasingly according to the number f(i, j) of bundles
in their mms-packings Πi which are contained in Gj . We
denote the `th agent in this sorting by ij` . Next, we define the
set Ij which consists of kj initial agents in the sorting (line 5),
where kj is the largest p such that f(ijp, j) ≥ p (line 4) . We
observe that, by the definition of kj , f(i, j) ≥ kj = |Ij | for
every agent i ∈ Ij . Thus, it follows from the Claim that there
is an allocation A(Ij , Gj) assigning to each agent i ∈ Ij a
bundle of value at least

c ·mms(kj)(Gj , ui) = c · pmms(kj)(Gj , ui)

≥ c · pmms(f(i,j))(Gj , ui) ≥ c · pmmsi.
We applied here, in turn, Proposition 1 (i), (iii) and the in-
equality (4). We distribute the vertices of Gj to agents of Ij
according to the allocation A(Ij , Gj) (line 6) and the agents
of Ij quit the game (line 7).

It remains to show that when the algorithm stops, the set
T is empty, i.e., all agents received their bundles. Suppose
otherwise. Let i be an agent who is still in the set T when
the algorithm stops. Let Tj be the set T at start of the jth
pass of the loop of our algorithm. By the definition of kj , for
all agents t ∈ Tj , which are not included in the set Ij (so
do not receive a bundle) in the jth pass of the loop, we have
f(t, j) < kj + 1, i.e., f(t, j) ≤ kj . Since the agent i was not

allocated a bundle in any pass of the loop, we have f(i, j) ≤
kj for all j’s. Clearly,

∑s
j=1 kj is the total number of agents

who received their bundles when the algorithm stops. Hence,

n− ` ≤
s∑
j=1

f(i, j) ≤
s∑
j=1

kj < n− `,

a contradiction. Thus, all agents received their bundles when
the algorithm stops.

Theorem 2’ follows now from Lemma 2 and Corollary 1.

Proof of Theorem 2’. Let G be the class of (d + 1)-claw-free
graphs. Since G is hereditary, by Lemma 2, it suffices to show
our theorem for connected (d+ 1)-claw-free graphs of goods
G and 1

d -mms bounded agents.
By Corollary 1, for every connected (d + 1)-claw-free

graph of goods G and any set of 1
d -proportionally bounded

agents, there exists a 1
d -proportional allocation. Since c-mms

bounded agents are c-proportionally bounded for any c > 0,
a 1
d -proportional allocation exists for 1

d -mms bounded agents
and the graph of goodsG. Our theorem follows now from the
fact that a c-proportional allocation is a c-mms allocation, for
any c > 0. �

5 Final Remarks and Open Problems
As we mentioned in the Introduction, we do not know if the
approximation ratio 1

d in Theorem 2 can be improved, even
in the case of 3-claw-free graphs, i.e., for d = 2.
Problem 1. What is the largest constant c such that for each
3-claw-free graph of goods and any set of agents there exists
a c-mms allocation?

It was shown [Lonc and Truszczynski, 2020, p. 639] that
if the graph of goods is a cycle with 12 vertices (which is
obviously 3-claw-free) then for some 6 agents no c-mms al-
location exists for any c > 3

4 . This statement and Theorem 2
imply that the constant c in Problem 1 satisfies the inequali-
ties 1

2 ≤ c ≤
3
4 .

A similar question as the one in Problem 1 can be asked for
arbitrary graphs. In this case, however, we do not even know
whether c > 0.
Problem 2. Is there an absolute constant c > 0 such that
for each graph of goods and any set of agents there exists a
c-mms allocation?

We do not know any example of a graph and a collection
of agents such that for this graph and these agents no 3

4 -mms
allocation exists. Thus, it is conceivable that the constant c in
Problem 2 can be as large as 3

4 .
Finally, there are some computational complexity issues

related to the subject of this paper. While the proof of Theo-
rem 1 can be easily turned into a polynomial time algorithm
constructing a β-proportional allocation for α-proportionally
bounded agents, it is not the case for the proof of Theorem
2. In the latter proof we use the value of packing maximin
share which is NP-hard to compute even for complete graphs
[Bouveret and Lemaı̂tre, 2016]. Finding a polynomial time
algorithm for constructing a 1

d -mms allocation for (d + 1)-
claw-free graphs of goods will be a subject of our future re-
search.
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