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Abstract

We study a variant of hedonic games, called hedo-
nic seat arrangements in the literature, where the
goal is not to partition the agents into coalitions but
to assign them to vertices of a given graph; their
satisfaction is then based on the subset of agents
in their neighborhood. We focus on ordinal hedo-
nic seat arrangements where the preferences over
neighborhoods are deduced from ordinal prefer-
ences over single agents and a given preference ex-
tension. In such games and for different types of
preference restrictions, we investigate the existence
of arrangements satisfying stability w.r.t. swaps of
positions in the graph or the well-known optimality
concept of popularity.

1 Introduction
Coalition formation [Drèze and Greenberg, 1980] is a very
important topic in algorithmic game theory and computa-
tional social choice for modeling the behavior of rational
agents when forming groups for, e.g., clubs, activities, or al-
liances. It has been mainly studied under the lens of hedonic
games [Aziz and Savani, 2016], where the goal is to partition
agents into disjoint coalitions according to their preferences
over the agents in their coalition. However, there exist many
real-world situations where agents have to be put in relation
with each other but not within separated groups. For example,
in a residential area along a street, one may have connections
with her two direct neighbors but they themselves are not di-
rectly connected. The same can happen for coworkers with
adjacent offices along a hallway or adjacent desks in open-
plan work environments. This configuration can also occur in
social events such as conference or wedding dinners, where
different conversations may take place at a table depending
on the position of the guests around the table. Beyond geo-
graphical configurations, it is very common that agents, e.g.,
workers, are involved in several tasks where they interact with
different collaborators that may not be in contact themselves.
Also think about workers who take their shifts in sequence,
and where only consecutive shifts overlap. This implies that
an employee working a given shift only meets those working
the shift just before and after hers. Such a temporal allocation

is sequential or even cyclic for some jobs that include day and
night shifts.

In the previous examples, agents have to be assigned a re-
source which is not important in itself but which induces re-
lations between owners of “adjacent” resources. This con-
figuration can be naturally modeled by a graph. The goal is
then to assign the agents to the vertices of the graph according
to their preferences for the agents assigned in their neighbor-
hood. This model is called hedonic seat arrangement and has
been introduced by Bodlaender et al. (2020).

This model is closely related to several others. In Schelling
games on graphs [Elkind et al., 2019], spatial segregation is
modeled via positioning on a graph of agents who are de-
fined by their type; their utility depends on the ratio of agents
of their own type in their neighborhood. Closely related to
Schelling games are topological distance games [Bullinger
and Suksompong, 2022], where agents are placed on vertices
of a graph and their utility depends on their valuations for the
other agents and their distance to them in the graph. There
also exist resource allocation models where both the valuation
for the assigned item and the local neighborhood of the as-
signed item matter in the utility function of the agents [Elkind
et al., 2020; Massand and Simon, 2019]. Hedonic games with
coalitions of fixed size (see, e.g., Cseh et al. [2019]; Bilò et al.
[2022]) form a subclass of hedonic seat arrangements where
the graph is a cluster, composed of disjoint cliques. Most
of these models assume cardinal preferences. However, the
choice of a precise value for the satisfaction of an agent can
highly influence the analysis of the game, while not being al-
ways easy to elicit or accurate. In this article, we thus focus
on ordinal hedonic seat arrangements, where the agents ex-
press ordinal preferences over the other single agents.

Consequently, preference extensions [Barberà et al., 2004]
are needed in order to compare subsets of agents given by dif-
ferent neighborhoods. We study some extensions on the basis
of their properties and focus in particular on three common
extensions that take into account all the agents of a subset
and give different visions of a good subset of agents: Fish-
burn’s [1972] and Gärdenfors’ [1976] extensions favor small
high quality subsets, while the responsive set extension [Roth,
1985] assumes independence of the agents and favors large
subsets. The first two extensions have been mainly used to
study manipulation in social choice (see, e.g., Brandt and
Brill [2011]), and the latter one has been introduced in the
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college admission setting and is especially used in resource
allocation (see, e.g., Aziz et al. [2019]).

The main goal for a central authority in hedonic seat ar-
rangement is to find a good assignment of agents to the ver-
tices of the graph according to the preferences of the agents,
so that the solution is durable (implementing another solu-
tion may be costly). We consider in this article the solution
concept of swap stability, where no two agents can bene-
fit from swapping their positions. This concept is relevant
here since a swap would not require a lot of coordination
for the agents. It has been primarily studied in resource al-
location (see, e.g., Damamme et al. [2015]; Gourvès et al.
[2017]) but has also been explored in coalition formation, for
the matching setting (called there exchange stability [Alcalde,
1994; Cechlárová and Manlove, 2005; Chen et al., 2021]), in
Schelling games [Agarwal et al., 2020] and hedonic games of
fixed sizes [Bilò et al., 2022]. While it has been investigated
in hedonic seat arrangement for cardinal preferences [Bod-
laender et al., 2020] or for graphs corresponding to match-
ings, swap stability has not been explored so far in more gen-
eral hedonic seat arrangements for the ordinal setting.

Another perturbation that a central authority would like to
avoid is the proposition of a new solution that more agents
prefer to the current one and that she would be obliged to im-
plement. The associated notion is popularity: an arrangement
is popular if there is no other arrangement that is preferred
by more agents. While swap stability focuses on local per-
turbations, popularity is an optimality concept which consid-
ers global perturbations, where the question is whether agents
would vote for another arrangement. Popular partitions have
been explored in hedonic games [Brandt and Bullinger, 2020;
Kerkmann et al., 2020] and matchings [Cseh, 2017], but have
not been investigated for hedonic seat arrangements with a
graph that may not be made of disjoint cliques.

Ordinal hedonic seat arrangements inherit from negative
results of roommate matchings (which correspond to arrange-
ments in cluster graphs made of disjoint cliques of size two)
for the existence of swap-stable [Cechlárová, 2002] or pop-
ular [Faenza et al., 2019; Gupta et al., 2021] matchings.
Therefore, in the line of the literature on restricted prefer-
ence domains [Elkind et al., 2016], we analyze swap stability
and popularity w.r.t. natural preference restrictions and fo-
cus on some that allow for positive results in stable matching
problems [Gudmundsson, 2013]. We take the occasion to re-
view some relevant preference restrictions and to enrich their
relations. The goal is to determine which restriction can en-
sure the existence of an arrangement satisfying the solution
concept. In the line of literature on graph assignment, we fo-
cus on natural and simple graph classes for representing real-
world configurations: path graphs (e.g., hallway, street), cycle
graphs (e.g., table, shifts) and cluster graphs (coalitions).

2 Model and Preliminaries
For an integer k, let [k] := {1, . . . , k}. We are given a set
of agents N = [n]. Each agent i ∈ N has strict ordinal
preferences over other agents which are represented by the
linear order �i over N \ {i}. A preference profile � denotes
the set of all linear orders �i for all agents i ∈ N . In hedonic

seat arrangement, the agents have to be placed on the vertices
of an undirected graph H = (V,E) such that |V | = n. An
arrangement is a bijection of the agents to the vertices of the
graph, i.e., an assignment σ : N → V such that σ(i) 6=
σ(j) for all agents i 6= j. Because of the hedonic flavor of
the model, the agents evaluate the quality of an arrangement
according to the neighborhood of their assigned position in
H . The set of neighbors for agent i ∈ N in arrangement σ is
N σ(i) := {j ∈ N : {σ(j), σ(i)} ∈ E}.

In this article, we will focus on the following well-
interpretable graph classes for the assignment of the agents:
• a path graph Pn := (V = {v1, v2, . . . , vn}, E =
{{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}),
• a cycle graph Cn := (V = {v1, v2, . . . , vn}, E =
{{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}),
• a cluster graph, which is a graph composed of disjoint

cliques (a k-cluster graph refers to a cluster graph where all
cliques have the same size k). Hedonic seat arrangements in
cluster graphs are equivalent to hedonic games with coalitions
of fixed size and, when the graph is a 2-cluster, it boils down
to the roommate matching setting [Irving, 1985].

2.1 Preference Extensions
Since the agents have ordinal preferences over single agents,
we need a preference extension to deduce their preferences
over neighborhoods in arrangements, which are subsets of
agents. A preference extension �ext defines the rules for ex-
tending the linear order �i over N \ {i} to the partial order
�exti over 2N\{i} \ {∅}, for every agent i ∈ N . We natu-
rally restrict to transitive preference extensions that also sat-
isfy the extension rule (for every i, x, y ∈ N , if x �i y then
{x} �exti {y}). We detail below several desirable proper-
ties [Barberà et al., 2004] that can be imposed on preference
extentions, and give them for any subsets of agents X and Y .
• Kelly’s dominance [Kelly, 1977]: [x �i y, ∀x ∈ X, ∀y ∈
Y ] implies X �exti Y ;
• Dominance or Gärdenfors principle: for each a ∈ N \{i},

– [a �i x, ∀x ∈ X] implies X ∪ {a} �exti X , and
– [x �i a, ∀x ∈ X] implies X �exti X ∪ {a};

This can be weakened into simple dominance by considering
singletons: x �i y implies {x} �exti {x, y} �exti {y};
• (Strict) independence: X �exti Y implies X ∪ {z} �exti
Y ∪ {z}, for every z ∈ N \ (X ∪ Y ∪ {i}); This can be
weakened into strict simple independence by considering sin-
gletons: x �i y implies that {x, z} �exti {y, z}, for every
z /∈ {x, y}; which can also be weakened into simple middle
independence: x �i y �i z implies {x, y} �exti {y, z}.
• Responsiveness: (X\{x})∪{y} �exti X iff y �i x, ∀x ∈
X and ∀y ∈ N \ (X ∪ {i});
• Monotonicity: X �exti X \ {x}, ∀x ∈ X .

We also introduce a weaker property called Best compati-
bility: [∃a ∈ Y s.t. a �i x, ∀x ∈ X] implies X 6�exti Y .
This axiom is implied by all dominance and independence
axioms, as well as responsiveness.

We present now three concrete extensions �ext, where
ext ∈ {F,G,RS}. For every two non-empty subsets of
agents X and Y such that X 6= Y , we consider:
• Fishburn’s preference extension �F [1972]:

X �Fi Y iff x′ �i y and x �i y′,
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∀x ∈ X, ∀x′ ∈ X \ Y, ∀y ∈ Y, ∀y′ ∈ Y \X , i.e.,
all X’s elements are preferred or equal to all Y ’s elements;
• Gärdenfors’ preference extension �G [1976]:

X �Gi Y iff{
X ⊂ Y and x �i y, ∀x ∈ X, ∀y ∈ Y \X, or
Y ⊂ X and x �i y, ∀x ∈ X \ Y, ∀y ∈ Y, or
X 6⊂ Y, Y 6⊂ X and x �i y, ∀x ∈ X \ Y, ∀y ∈ Y \X,

i.e., the elements not in the intersection are compared w.r.t.
�F , and a smaller (resp., larger) subset is better only if it
contains its best elements (resp., it adds better elements);
• Responsive set extension �RS [Roth, 1985]: which min-

imally satisfies responsiveness and monotonicity, i.e., it is
compatible with every positive additive utility function.

Gärdenfors’ extension is a refinement of Fishburn’s exten-
sion (less incomparabilities), i.e., �Fi ⊆�Gi or, equivalently,
if one set is Fishburn-preferred to another one, then it is also
Gärdenfors-preferred. In regular graphs (e.g., cycle graphs),
where all positions have the same neighborhood size, the re-
sponsive set extension is a refinement of Gärdenfors’ exten-
sion, i.e., �Gi ⊆�RSi . When the two sets to compare are dis-
joint, Fishburn’s and Gärdenfors’ extensions are equivalent.

While responsiveness and monotonicity are only satisfied
by �RS , Kelly’s dominance and best compatibility are satis-
fied by all extensions �F , �G, and �RS . Gärdenfors prin-
ciple is satisfied by �F and �G, and strict independence is
satisfied by �RS while �G only satisfies its strict simple ver-
sion and �F only satisfies its simple middle version.

2.2 Preference Restrictions
We consider several natural restrictions on the preference pro-
file over single agents, which mainly come from the matching
literature. They define different types of correlation between
agents’ preferences. A preference profile � is:
• single-peaked (SP) [Black, 1948] if there exists a linear

order< overN such that for each agent i ∈ N and each triple
of agents j, k, ` ∈ N \ {i} with j < k < ` or ` < k < j, we
have j �i k implies k �i `;
• narcissistically single-peaked (narSP) [Bartholdi III and

Trick, 1986; Bredereck et al., 2020]1 if it is single-peaked
w.r.t. axis < and, for every agent, her most preferred agent is
directly adjacent to her, on her left or her right, in axis <;
• iteratively mutual best (IMB) [Abizada, 2019] if there

exists a sequence of bn/2c pairs of different agents
({a11, a12}, . . . , {a

bn/2c
1 , a

bn/2c
2 }) such that for every t ∈

[bn/2c] and ` ∈ {1, 2}, we have at3−` �at` y for every
y ∈ N \

⋃
t′<t{at

′

1 , a
t′

2 }; i.e., there exists a decomposition
in a sequence of subprofiles (�1=�, . . . ,�[bn/2c], ∅) where
each subprofile �t contains a pair of agents who prefer each
other the most and �t+1 is obtained by removing this pair;
• globally-ranked (GR) [Abraham et al., 2007] if there ex-

ists a global order B over all possible pairs of distinct agents
such that for every i ∈ N and any j, k ∈ N \ {i}, we have
j �i k iff {i, j} B {i, k}; i.e., each agent prefers the agents

1Our definition differs from the one of Bartholdi III and Trick
because, in our setting, agents do not express preferences over them-
selves. Nevertheless, their definition is equivalent to ours when self-
preferences are omitted from their considered preference profiles.

IMB

SP

1-D

narSP

GR

Figure 1: Inclusion relations between preference domains.

with whom she forms an objectively better pair w.r.t. a given
global comparison of all pairs;
• 1-Euclidean (1-D) [Coombs, 1950] if there exists an em-

bedding E : N → R of the agents into the real line such that
for every agent i ∈ N and two agents j, k ∈ N \ {i}, j �i k
iff |E(i) − E(j)| < |E(i) − E(k)|; i.e., each agent prefers
the agents that are closer to her w.r.t. a given common scale.

All these preference restrictions are recognizable in poly-
nomial time (see Bartholdi III and Trick [1986]; Escoffier et
al. [2008] for (narcissistic) single-peakedness, Abraham et
al. [2007] for global-rankedness, and Doignon and Falmagne
[1994]; Knoblauch [2010]; Elkind and Faliszewski [2014] for
the 1-Euclidean property; for IMB preferences, it suffices
to iteratively remove mutual best pairs as long as it is pos-
sible). Observe that there is no inclusion relation between
IMB preferences and single-peakedness. Narcissistic single-
peakedness or global-rankedness implies IMB but the con-
verse is not true. Moreover, a 1-Euclidean preference profile
is globally-ranked and narcissistically single-peaked. How-
ever, a preference profile that is both narcissistically single-
peaked and globally-ranked may not be 1-Euclidean. All
these relations are presented in Figure 1.

2.3 Problems: Swap Stability and Popularity
In this article, we search for arrangements that are stable ac-
cording to different views: a local one based on swaps and a
global one based on the optimality concept of popularity.

First, we search for arrangements that are immune to ex-
changes of size two, i.e., swaps, which are reasonable de-
viations since they do not require much coordination. A
swap can be performed from an arrangement σ if there ex-
ist two agents i and j such that N σ′

(i) �exti N σ(i) and
N σ′

(j) �extj N σ(j) for a given preference extension �ext
and where arrangement σ′ is such that σ′(k) = σ(k) for ev-
ery agent k ∈ N \{i, j}, σ′(i) = σ(j), and σ′(j) = σ(i). An
arrangement σ is swap-stable if no swap can be performed
from σ w.r.t. extension �ext.

Moreover, we search for arrangements that are immune to a
global switch to another arrangement that more agents prefer.
Agent i prefers arrangement σ′ over arrangement σ w.r.t. ex-
tension �ext ifN σ′

(i) �exti N σ(i). Arrangement σ′ is more
popular than arrangement σ if the number of agents prefer-
ring σ′ over σ is strictly greater than the number of agents
preferring σ over σ′. Arrangement σ is popular if there is no
other arrangement σ′ that is more popular.

To summarize, we investigate the following problems:
Given an ordinal hedonic seat arrangement instance 〈N,�
, H,�ext〉, does there exist an arrangement that is swap-
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stable (resp., popular)? We focus on the construction of such
arrangements when they exist.

3 Swap Stability
Since deciding about the existence of an exchange-stable
matching is NP-complete in roommate markets [Cechlárová,
2002], deciding about the existence of a swap-stable arrange-
ment is NP-complete even in a 2-cluster graph. However, we
show that a swap-stable arrangement exists in every graph
when the preferences are globally-ranked. We prove an even
stronger statement by showing that every sequence of swaps
converges under such a preference restriction.
Theorem 1. The dynamics of swaps is guaranteed to con-
verge for every graph under globally-ranked preferences and
every preference extension for which all comparisons are
based on the extension rule, Kelly’s dominance, dominance,
independence, responsiveness, or monotonicity.

Proof. Consider an instance on a graph H = (V,E) with
globally-ranked preferences w.r.t. order B over all pairs of
agents, and preference extension �ext. We denote by Blex
the lexicographic relation w.r.t. B over vectors of agent pairs,
i.e., given two vectors µ and µ′ of agent pairs, µ Blex µ′ iff
when µ and µ′ are ordered w.r.t. B, there exists an index
` such that µ`′ = µ′`′ for all 1 ≤ `′ < ` and [µ` B µ′` or
|µ| = `− 1 < |µ′|]. Note that Blex is transitive.

For an arrangement σ, we denote by µσ its associated |E|-
vector composed of all pairs of agents that are neighbors in
σ. We denote by µσ(i) the vector composed of all the pairs
{i, k} where k is a neighbor of i in σ. For any swap between
agents i and j from an arrangement σ which transforms σ into
σ′, we will prove that µσ

′
Blex µσ , implying the convergence

of the swap dynamics, by a potential function argument.
The swap of agents i and j from σ to σ′ implies that

σ′(k) �extk σ(k) for each k ∈ {i, j}. By definition, µσ and
µσ

′
are the same on the pairs that are not part of µσ(i) or

µσ(j). Thus, to compare µσ and µσ
′

w.r.t. Blex, we need to
compare µσ(i) and µσ(j) with µσ

′
(i) and µσ

′
(j). We now

give axioms for subset comparison in�extk for k ∈ {i, j} that
guarantee Blex for the associated vectors of agent pairs.
• the extension rule: {x} �extk {y} because x �k y there-

fore ({k, x})Blex ({k, y});
• Kelly’s dominance: X �extk Y because x �k y for all
x ∈ X , y ∈ Y therefore ({k, x})x∈X Blex ({k, y})y∈Y ;
• dominance: X ∪ {z} �extk X because z �k x for all
x ∈ X therefore ({k, z}, {k, x})x∈X Blex ({k, x})x∈X , or
X �extk X ∪ {z} because x �k a for all x ∈ X therefore
({k, x})x∈X Blex ({k, z}, {k, x})x∈X ;
• independence: X∪{z} �extk Y ∪{z} becauseX �extk Y ,

therefore it suffices that X �extk Y is based on a com-
parison that guarantees ({k, x})x∈X Blex ({k, y})y∈Y for
({k, z}, {k, x})x∈X Blex ({k, z}, {k, y})y∈Y being true;
• responsiveness: (X \ {x}) ∪ {y} �extk X be-

cause y �k x therefore ({k, z}, {k, y})z∈X\{x,y} Blex
({k, z}, {k, x})z∈X\{x,y};
• monotonicity makes X ∪ {z} �extk X hold for all agents
k but it cannot be used by both agents i and j during a swap
because σ′(i) \ {j} = σ(j) \ {i} and vice versa.

1 2

3 4

1 3

2 4

2↔ 3

1↔ 4

(a) Cluster graph

1 2 3 4

1 3 2 4

2↔ 31↔ 4

(b) Path graph, strict
simple independence

1 2

34

1 3

24

2↔ 31↔ 4

(c) Cycle graph, strict
simple independence

Figure 2: Cycles in the swap dynamics for cases 1 and 2 of Prop. 1.
From the top arrangement, agents 2 and 3 swap, and from the bottom
one, agents 1 and 4 swap, forming a cycle.

By transitivity of Blex, any preference extension that is
based on the previous properties for subset comparison will
guarantee that µσ

′
(i)Blex µσ(i) and µσ

′
(j)Blex µσ(j).

However, this positive result for convergence does not hold
as soon as the preferences are not globally-ranked, even under
other strong preference restrictions, and for any preference
extension that satisfies very weak conditions (which hold,
e.g., for �F , �G, and �RS), as shown below.

Proposition 1. The dynamics of swaps can cycle even under
narcissistically single-peaked preferences,

1. in a 2-cluster graph for any preference extension, or
2. in a path or cycle graph for any preference extension

that satisfies strict simple independence, or
3. in a path graph for any preference extension that satis-

fies simple dominance, or
4. in a cycle graph for any preference extension that satis-

fies Kelly’s dominance.

Sketch of proof. We only present here cases 1 and 2. Take an
instance with four agents who have the following preferences,
narcissistically single-peaked w.r.t. axis 1 < 2 < 3 < 4.

1 : 2 � 3 � 4
2 : 3 � 4 � 1
3 : 2 � 1 � 4
4 : 3 � 2 � 1

A cycle in the swap dynamics is given for a 2-cluster
graph in Figure 2(a), for a path (resp., cycle) graph and
any extension that satisfies strict simple independence in
Figure 2(b) (resp., Figure 2(c)).

This negative result on convergence does not necessarily
exclude the existence of stable arrangements under the same
conditions. From now on, we focus on specific graphs to
determine whether preference restrictions other than global-
rankedness allow for the existence of stable arrangements.

3.1 Path Graph
Firstly, a swap-stable arrangement may not exist in — the
apparently very restricted class of — path graphs, even under
single-peaked preferences, and extensions that satisfy weak
conditions on dominance (that hold, e.g., for �F and �G).

Proposition 2. There are instances with no swap-stable ar-
rangement even under single-peaked preferences in a path,
for any preference extension that satisfies simple dominance.
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Proof. Take an instance with three agents. The preferences,
single-peaked w.r.t. axis 1 < 2 < 3, are depicted below (left).
There is a possible swap from each possible arrangement (up
to symmetries), as depicted below (right).

1 : 2 � 3
2 : 3 � 1
3 : 1 � 2

1 2 3 1 3 2

3 1 2

2↔ 3

1↔ 31↔ 2

The preference profile in the latter counterexample is not
narcissistically single-peaked. Indeed, this restriction guar-
antees the existence under�F and�G, and for�F even more
generally under IMB preferences, as stated below.

Theorem 2. There always exists a polynomial-time com-
putable swap-stable arrangement in a path graph under it-
eratively mutual best preferences and Fishburn’s extension.

Sketch of proof. Suppose that the sequence of mutual best
pairs induced by the preference profile is ({a11, a12}, . . . ,
{ab

n
2 c

1 , a
bn2 c
2 }). We consider the arrangement that assigns

this sequence of pairs in the same order to the path graph,
except potentially at the end. The idea of the proof is that no
agent at`, for ` ∈ {1, 2} and t ∈ [bn2 c], has an incentive to
swap with agents located at later positions in the path.

Theorem 3. There always exists a polynomial-time com-
putable swap-stable arrangement in a path under narcissisti-
cally single-peaked preferences and Gärdenfors’ extension.

Sketch of proof. Suppose that the preferences are narcissisti-
cally single-peaked w.r.t. axis 1 < · · · < n. Take the mutual
best pair {i∗, i∗ + 1} with the lowest indices. Initially, we
assign on graph Pn all i∗ + 1 “smallest” agents: agent i∗ + 1
first then i∗ and then all agents from i∗ − 1 to 1. Then we
iteratively complete the partial arrangement by inserting at
each step the agent, among the three next available ones,
who prefers the last assigned agent to the closest agents
from her right in the axis. If the chosen agent is not the
smallest available agent, we then insert after her the one or
two missing agents by decreasing order of indices. One can
prove, by induction over the first k assigned agents in the
path, that the resulting arrangement is swap-stable.

The question of the existence of a swap-stable arrangement
remains nevertheless open in a path graph under �RS .

3.2 Cycle Graph
Although path and cycle graphs seem similar, we observe sig-
nificant differences on swap stability, mainly due to the cho-
sen preference extension: while non-existence holds for dom-
inant extensions in paths, it holds for independent extensions
(such as �G and �RS) in cycles.

Proposition 3. There are instances with no swap-stable ar-
rangement even when the graph is a cycle, under single-
peaked and iteratively mutual best preferences for any pref-
erence extension that satisfies strict simple independence.

Proof. Take an instance with four agents. The preferences,
which are single-peaked w.r.t. axis 1 < 2 < 3 < 4 and
iteratively mutual best w.r.t. sequence ({2, 3}, {1, 4}), are
given below (left). There is a possible swap, only based on
strict simple independence, from each possible arrangement
(up to symmetries), as depicted below (right).

1 : 4 � 3 � 2
2 : 3 � 1 � 4
3 : 2 � 4 � 1
4 : 1 � 2 � 3

1 2

43

1 2

34

1 3

24

3↔ 4

1↔ 4

2↔ 3

Moreover, contrary to path graphs, a swap-stable arrange-
ment always exists in cycle graphs under �F .

Theorem 4. There always exists a polynomial-time com-
putable swap-stable arrangement in a cycle graph under
Fishburn’s extension.

Sketch of proof. We construct an initial arrangement σ0, based
on the idea of serial dictatorship, as follows. Consider an ar-
bitrary initial agent a1 and assign to her the position v1 in Cn.
Then, for each index ` ranging from ` = 1 to ` = n − 1, we
select the most preferred agent for agent a` who is still avail-
able, i.e., she has not been assigned to a position of the graph
yet. We call this agent a`+1 and assign to her the position
v`+1 in Cn. At the end of the loop, by construction, all the
agents have been assigned to a position in the cycle graph.

One can show that every agent ak, for k ∈ [n − 3], is
stable, in the sense that no agent ak has an incentive to
swap as long as the arrangement remains the same as σ0 for
positions v1, . . . , vk+1. Thus, a swap in arrangement σ0 can
involve only agents an, an−1, or an−2. Agent an−2 prefers
agent an−1 to an whereas a swap between an−1 and an−2
would imply that an−2 prefers an to an−1, a contradiction.
Hence, under �F , if σ0 is not swap-stable, then the only
possible swaps from σ0 are between agents an and an−1 or
between agents an and an−2. For each case, it is possible to
construct specific arrangements that are swap-stable.

It remains open if narcissistic single-peakedness allows for
the existence of stable arrangements under �G and �RS .

3.3 Cluster Graph
A swap-stable roommate matching may not exist, even under
single-peaked preferences [Alcalde, 1994], but always exists
under IMB preferences [Abizada, 2019]. Hence the same re-
sults hold for arrangements in 2-cluster graphs. We extend
the positive result under IMB preferences to all cluster graphs
that contain at most one disjoint clique of odd size. More pre-
cisely, we can iteratively assign the first pairs of agents in the
sequence of mutual best pairs to all even cliques. One can
prove that these agents will never swap no matter the rest of
the arrangement. Thus, we can remove them from our consid-
eration and focus only on odd cliques and remaining agents.

Corollary 1. There always exists a polynomial-time com-
putable swap-stable arrangement in a cluster graph with at
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most one odd-sized (non-singleton) clique under iteratively
mutual best preferences and every preference extension that
satisfies best compatibility.

This positive result can be extended to any cluster graph
when the preferences are slightly more restricted.
Theorem 5. There always exists a polynomial-time com-
putable swap-stable arrangement in a cluster graph under
narcissistically single-peaked preferences and every prefer-
ence extension that satisfies best compatibility.
Sketch of proof. Since narcissistically single-peaked prefer-
ences are iteratively mutual best, we can proceed to the pre-
viously described preprocessing on even cliques, and assume
that all cliques are of odd size greater than one (a swap can-
not involve alone agents). Consider the following algorithm
in order to assign the remaining agents (the agents who have
not been assigned yet) to a remaining position in a clique of
the cluster graph:

1. N ′ ← N \ {agents assigned in a clique entirely filled}.
2. If there are two remaining agents who prefer the most

each other within N ′:
• If there remains a clique that has not been filled yet,

then assign the two agents to this clique; Go to step 1.
• Otherwise, if there remain at least two positions in a

partially filled clique, then assign the two agents to this
clique. Go to step 1.

3. If there is a remaining agent preferring the most, within
N ′, an agent assigned in a clique that is partially filled,
then assign her to this clique. Go to step 1.

4. Assign an arbitrary remaining agent to the best currently
open clique according to her preferences. Go to step 1.

At the end of the algorithm, all agents are assigned. One
can prove that the resulting arrangement is swap-stable.

It remains open whether IMB preferences allow for the ex-
istence of a stable arrangement in general cluster graphs.

4 Popularity
By the roommate setting, it is known that popular arrange-
ments may not exist, even under single-peaked preferences.
Moreover, deciding about the existence of a popular room-
mate matching is NP-hard [Faenza et al., 2019; Gupta et al.,
2021], thus deciding about the existence of a popular arrange-
ment is NP-hard even in a 2-cluster graph. Hence, we investi-
gate in this section the existence of popular arrangements on
specific graphs. To construct the popularity relation, we count
the agents preferring each arrangement in pair-wise compar-
isons. Therefore, the abstention of agents because of neigh-
borhood incomparability may matter. Contrary to swap sta-
bility, a result on popularity for a given extension does not
imply others for related extensions.

4.1 Path Graph
We show that, while narcissistic single-peakedness ensures
the existence of a popular arrangement for �F , we also need
global-rankedness for �RS . Surprisingly, no popular ar-
rangement may exist for �G, even under 1-D preferences.
Proposition 4. There are instances with no popular arrange-
ment even when the graph is a path and:

1. under 1-Euclidean preferences for Gärdenfors’ prefer-
ence extension, or

2. under narcissistically single-peaked preferences for the
responsive set extension, or

3. under single-peaked and globally-ranked preferences
for Fishburn’s or the responsive set extension.

Theorem 6. There always exists a polynomial-time com-
putable popular arrangement in a path under narcissistically
single-peaked preferences and Fishburn’s extension.

Proof. Suppose, w.l.o.g., that the preferences are narcissisti-
cally single-peaked w.r.t. axis 1 < · · · < n. For path graph
Pn, let σ be the arrangement such that σ(i) = vi for ev-
ery i ∈ N . By narcissistic single-peakedness, each agent i
is adjacent in Pn to her most preferred agent, who is either
i − 1 or i + 1. By �F , the two agents 1 and n, located
at leaf nodes, prefer arrangement σ over any other arrange-
ment where their neighborhood differs, and every other agent
i such that 1 < i < n can prefer another arrangement only if
she is positioned at a leaf node adjacent to her most preferred
agent. Hence, at most two agents can prefer another arrange-
ment over σ but the number of these better-off agents is equal
to the number of worse-off agents among the agents located
at leaf nodes in σ (there are only two leaves in a path). Conse-
quently, for any other arrangement σ′, we cannot have more
agents preferring σ′ over σ than agents preferring σ over σ′,
and thus σ is popular.

Theorem 7. There always exists a polynomial-time com-
putable popular arrangement in a path graph under narcis-
sistically single-peaked and globally-ranked preferences and
the responsive set extension.

Sketch of proof. Suppose that the preferences are narcissis-
tically single-peaked w.r.t. axis 1 < · · · < n. For a path
graph Pn, let σ be the arrangement such that σ(i) = vi for
every i ∈ N . For each other arrangement σ′, we match
each better-off agent i in σ′ with a specific worse-off agent,
who is the first agent not indifferent between σ′ and σ that
is reached from i by following the direction of the location
of i’s most preferred agent in σ′. All the worse-off agents
associated with a better-off agent are different, thus the
matching is valid. It follows from this matching, perfect for
the set of better-off agents in σ′, that there cannot be more
agents who prefer σ′ over σ than agents who prefer σ over
σ′, and thus σ′ is not more popular than σ. Since this is true
for any other arrangement σ′, arrangement σ is popular.

4.2 Cycle Graph
The results are similar to those concerning path graphs but
this time the existence is guaranteed under �G and narcissis-
tically single-peaked and globally-ranked preferences.

Proposition 5. There are instances with no popular arrange-
ment even when the graph is a cycle and:
1. under narcissistically single-peaked preferences for

Gärdenfors’ or responsive set extension, or
2. under single-peaked and globally-ranked preferences for

Fishburn’s, Gärdenfors’, or the responsive set extension.
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Figure 3: All possible arrangements for the instance of Prop. 5’s
proof: each one has an outgoing arc to another arrangement that is
more popular w.r.t. �G and �RS . Each arc from σ to σ′ mentions
the agents who prefer σ′ (“+”) and those who prefer σ (“-”).

Sketch of proof. Let us present case 1. Take an instance with
five agents who have the following preferences, which are
narcissistically single-peaked w.r.t. axis 1 < 2 < 3 < 4 < 5.

1 : 2 � 3 � 4 � 5
2 : 3 � 4 � 5 � 1
3 : 2 � 1 � 4 � 5
4 : 3 � 2 � 1 � 5
5 : 4 � 3 � 2 � 1

Figure 3 shows that for every arrangement there is another
arrangement that is more popular w.r.t. �G and �RS .

The two statements of the next proposition are proved by
following the same strategy of proof as Theorems 6 and 7.
Proposition 6. There always exists a polynomial-time com-
putable popular arrangement in a cycle graph under:
1. narcissistically single-peaked preferences and Fishburn’s

extension, or
2. narcissistically single-peaked and globally-ranked prefer-

ences and Gärdenfors’ or responsive set extension.

4.3 Cluster Graph
A popular arrangement may not exist even in 2-cluster graphs
under single-peaked preferences. However, a stable room-
mate matching w.r.t. blocking pairs, i.e., no two agents prefer
to be paired than being with their current partner, is also pop-
ular [Biró et al., 2010]. One can remark that this implication
does not hold for swap stability, even under 1-D preferences.
Nevertheless, under IMB preferences, we show below that
there exists a popular arrangement in 2-cluster graphs which
is also swap-stable and stable w.r.t. blocking pairs.
Theorem 8. There always exists a polynomial-time com-
putable popular arrangement in a 2-cluster graph under it-
eratively mutual best preferences.

Proof. Suppose that the sequence of mutual best pairs in-
duced by the preference profile is ({a11, a12}, {a21, a22}, . . . ,
{ab

n
2 c

1 , a
bn2 c
2 }). For a 2-cluster graph, let σ be the arrange-

ment that assigns the agents at1 and at2 to connected vertices,
for each t ∈ [bn2 c]. By Abizada [2019], this arrangement is
swap-stable. But the associated matching is also stable w.r.t.
blocking pairs. Indeed, suppose that agents i and j prefer to
be together than with their current partner in σ. Say, w.l.o.g.,
that i = at` and j = at

′

`′ , where t < t′, and `, `′ ∈ {1, 2}. By

Graph Extension Preference restrictions
General SP IMB narSP GR

Path
�F @ @ (Prop. 2) ∃ (Th. 2) ∃ ∃
�G @ @ (Prop. 2) ? ∃ (Th. 3) ∃ (Th. 1)
�RS ? ? ? ? ∃ (Th. 1)

Cycle �F ∃ (Th. 4) ∃ ∃ ∃ ∃
�G/RS @ @ (Prop. 3) @ (Prop. 3) ? ∃ (Th. 1)

Cluster �F/G/RS @ @ [Alcalde, 1994] ∃ if ≤ 1 odd clique (Cor. 1) ∃ (Th. 5) ∃ (Th. 1)

(a) Swap stability

Graph Extension Preference restrictions
SP IMB narSP GR narSP+GR 1-D

Path
�F @ (Prop. 4) @ ∃ (Th. 6) @ (Prop. 4) ∃ ∃
�G @ @ @ @ @ @ (Prop. 4)
�RS @ @ @ (Prop. 4) @ (Prop. 4) ∃ (Th. 7) ∃

Cycle �F @ (Prop. 5) @ ∃ (Prop. 6) @ (Prop. 5) ∃ ∃
�G/RS @ @ @ (Prop. 5) @ (Prop. 5) ∃ (Prop. 6) ∃

2-Cluster �F/G/RS @ ∃ (Th. 8) ∃ ∃ ∃ ∃

3-Cluster �F/G/RS @ @ @ @ @ @ (Prop. 7)

(b) Popularity

Table 1: Summary on the existence of swap-stable or popular ar-
rangements on path, cycle, and cluster graphs w.r.t. the preference
restrictions of Figure 1 and extensions �F , �G, �RS .

definition of mutual best pairs, agent i = at` prefers at3−`, her
current partner in σ, to agent j = at

′

`′ , a contradiction. Since
stability w.r.t. blocking pairs implies popularity [Biró et al.,
2010], arrangement σ is popular.

However, this positive result does not hold if the cliques
may be of size greater than two [Brandt and Bullinger, 2020].
We show that this negative result can occur even when all
cliques are of size three and under 1-D preferences.
Proposition 7. There are instances with no popular arrange-
ment even in a 3-cluster, under 1-Euclidean preferences and
Fishburn’s, Gärdenfors’, or the responsive set extension.

5 Conclusion
We have shown that the level of preference restriction needed
to guarantee the existence of swap-stable or popular arrange-
ments depends on the chosen combination of preference ex-
tension and graph structure, see Table 1. While our results are
tight for popularity w.r.t. the hierarchy of restrictions (Fig. 1),
it remains some gaps to fill for swap stability (see question
marks in Table 1 (a)), which are interesting open problems.

Our study also brings insights on preference restrictions.
In particular, narcissistic single-peakedness is a rich structure
which allows for several positive results, as well as the itera-
tive mutual best restriction, although it is designed for match-
ings and not so hardly restrictive (weaker than both global-
rankedness and narcissistic single-peakedness). Another very
powerful restriction is global-rankedness, which allows for
strong positive results on swap stability since it makes the
dynamics of swaps converge for every graph. This result sig-
nificantly generalizes convergence results from matchings.

The investigated existence problems are hard even in very
restricted graphs. While we provide polynomial-time algo-
rithms to construct desirable arrangements under some re-
strictions, it would be interesting to determine whether these
restrictions enable to efficiently recognize positive instances,
even when they do not guarantee the existence.
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Anna Maria Kerkmann, Jérôme Lang, Anja Rey, Jörg Rothe,
Hilmar Schadrack, and Lena Schend. Hedonic games with
ordinal preferences and thresholds. Journal of Artificial
Intelligence Research, 67:705–756, 2020.

Vicki Knoblauch. Recognizing one-dimensional Euclidean
preference profiles. Journal of Mathematical Economics,
46(1):1–5, 2010.

Sagar Massand and Sunil Simon. Graphical one-sided mar-
kets. In Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IJCAI-19), pages 492–498,
2019.

Alvin E. Roth. The college admissions problem is not equiva-
lent to the marriage problem. Journal of Economic Theory,
36(2):277–288, 1985.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2914


	Introduction
	Model and Preliminaries
	Preference Extensions
	Preference Restrictions
	Problems: Swap Stability and Popularity

	Swap Stability
	Path Graph
	Cycle Graph
	Cluster Graph

	Popularity
	Path Graph
	Cycle Graph
	Cluster Graph

	Conclusion

