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Abstract
Understanding the vulnerability of label aggrega-
tion against data poisoning attacks is key to en-
suring data quality in crowdsourced label collec-
tion. State-of-the-art attack mechanisms generally
assume full knowledge of the aggregation mod-
els while failing to consider the flexibility of mali-
cious workers in selecting which instances to label.
Such a setup limits the applicability of the attack
mechanisms and impedes further improvement of
their success rate. This paper introduces a black-
box data poisoning attack framework that finds the
optimal strategies for instance selection and label-
ing to attack unknown label aggregation models in
crowdsourcing. We formulate the attack problem
on top of a generic formalization of label aggrega-
tion models and then introduce a substitution ap-
proach that attacks a substitute aggregation model
in replacement of the unknown model. Through ex-
tensive validation on multiple real-world datasets,
we demonstrate the effectiveness of both instance
selection and model substitution in improving the
success rate of attacks.

1 Introduction
Crowdsourcing provides a cost-effective means to collect la-
beled data for machine learning tasks by engaging human
workers in the form of an open call [Doan et al., 2011;
Wang and Zhou, 2016; Sheng and Zhang, 2019; Fang et al.,
2018]. While allowing the participation of a large group of
workers, the openness of crowdsourcing brings opportunities
for adversarial parties to launch data poisoning attacks for
data sabotage purposes [Miao et al., 2018a]. Understanding
and assessing the vulnerability of crowdsourcing against the
data poisoning attacks is essential to ensure data quality in
crowdsourced label collection.

∗Corresponding author

Previous studies on adversarial attacks generally assume
simple attack strategies by malicious workers such as sub-
mitting random labels or labels that disagree with those sub-
mitted by normal workers [Gadiraju et al., 2015; Khud-
aBukhsh et al., 2014b; Yuan et al., 2017]. Such mali-
cious behaviors can be easily detected by label aggregation
models designed to capture worker reliability, e.g., Dawid-
Skene [Dawid and Skene, 1979], ZenCrowd [Demartini et
al., 2012]. In those models, malicious workers whose la-
bels disagree with the normal workers—who generally con-
stitute the majority—are considered to be of low reliabil-
ity; consequently, labels from malicious workers will be as-
signed with low weights in label aggregation, thus generat-
ing limited impact on the aggregation result. Recently, Miao
et al. [2018a] introduce an intelligent data poisoning mecha-
nism that disguises the attacking behaviors from the Dawid-
Skene model. In their work, data poisoning attack is for-
mulated as an optimization problem where the objective is
to maximize the error of aggregated labels, while improv-
ing the reliability estimate for malicious workers by guid-
ing them to agree with normal workers on (preassigned) in-
stances whose labels are unlikely to be overturned. Such an
idea has been extended to attacking other aggregation mod-
els (e.g., the Gaussian truth model (GTM) and the conflict
resolution on heterogeneous data (CRH) [Fang et al., 2021;
Miao et al., 2018b]).

Those attack mechanisms, however, have only considered
the crowdsourcing setting where malicious workers are ran-
domly assigned data instances for labeling and their only
room for action is determining the labels. In real-world set-
tings, malicious workers can often actively select which in-
stances to label [Jagabathula et al., 2017; Wang et al., 2014;
Tran et al., 2009; Molavi Kakhki et al., 2013]. Such a higher
degree of flexibility offers an opportunity to improve the suc-
cess rate of the attack with less cost: malicious workers
can strategically select and label instances for which normal
workers provide divergent labels, thereby disguising mali-
cious behavior while easily turn over the majority label. An-
other important limitation of the existing attack mechanism
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is that it is designed specifically for the Dawid-Skene model
with the assumption of full knowledge about the model,
i.e., model parameters are known to the attacker. In real-
world scenarios, the specific label aggregation model used by
crowdsourcing platforms can be a black box, rendering such
attack mechanisms inapplicable.

In this work, we introduce SubPac, a substitution-based ap-
proach for black-box data poisoning attack on crowdsourcing
with unknown label aggregation models. We first introduce a
unified representation of label aggregation that covers a broad
family of aggregation models. Building on top of that, we
then formulate the data poisoning attack problem as an opti-
mization problem, where the objective is to find the best strat-
egy for attacking the unified model under a specific budget
constraint of the attacker. In modeling the attack strategy, we
consider the general crowdsourcing setting that allows the se-
lection of instances to be labeled by malicious workers in ad-
dition to the determination of the labels themselves. From the
computational perspective, the new formulation results in a
bilevel min-max optimization problem where the outer prob-
lem is to find the optimal attack strategies for both instance
selection and labeling and the inner problem is to optimize
label aggregation. The problem is generally considered as
NP-hard; in our specific formulation, it is further complicated
by the mixture of both continuous and discrete variables that
represent the instance selection and labeling strategies. To
handle such an issue, we introduce a dual gradient-descent al-
gorithm with a reparameterization trick that converts discrete
variables into continuous ones and then learns the parameters
of the aggregation model and those of the attack strategy.

Our approach allows to attack a chosen aggregation model
in substitution for the unknown black-box model in crowd-
sourcing. To select the substitute model, we use a success
rate metric that quantifies the transferability between the sub-
stitute model and the target, unknown aggregation model.
Through empirical experiments, we study the transferability
between a set of widely-used aggregation models and provide
guidelines for choosing the substitute model.

In summary, we make the following key contributions:
• We propose SubPac, a substitution-based approach for

data poisoning attacks on crowdsourcing with unknown
label aggregation models;

• We introduce a cost-effective attack strategy considering
both instance selection and labeling and derive an algo-
rithm with a reparameterization trick for learning the op-
timal strategy;

• We conduct an extensive evaluation on four real-world
datasets and show that SubPac substantially improves
the state of the art under the same budget.

To the best of our knowledge, we are the first to consider
data poisoning attacks under the black-box assumption of ag-
gregation models in crowdsourcing. Our empirical results
show both the instance selection and substitution are effec-
tive methods to improve the success rate of attacks. In partic-
ular, we find that probabilistic models such as Dawid-Skene
(DS) [Dawid and Skene, 1979] and ZenCrowd [Demartini et
al., 2012] are effective substitutes due to their higher trans-
ferability for other models.

2 Related Work
2.1 Label Aggregation in Crowdsourcing
Label aggregation aims to infer the true label of each in-
stance by aggregating its labels from multiple workers [Chen
et al., 2022b; Jiang et al., 2022; Chen et al., 2022a]. The
simplest voting model, majority voting (MV) [Sheng et al.,
2008], derives the majority labels by counting the workers’
votes for each alternative label. Due to the ignorance of vary-
ing reliability among workers, MV is error-prone. In con-
trast, WMV [Li and Yu, 2014] and CATD [Li et al., 2014]
assigns different weights to workers’ votes considering work-
ers’ abilities. Besides, a major type of label aggregation mod-
els leverage probabilistic modeling to estimate worker relia-
bility. DS [Dawid and Skene, 1979] models each worker’s
reliability with a confusion matrix and uses the EM algorithm
to iteratively updates the true label of each instance and the
workers’ confusion matrices. ZC [Demartini et al., 2012] is a
simplified version of DS: it does not consider the priors and
models each worker’s reliability with a single probability of
correct labeling. There also exist some other models that can
be viewed as the extensions of ZC, e.g., GLAD [Whitehill
et al., 2009], KOS [Karger et al., 2011], VI-BP [Liu et al.,
2012] and the extensions of WMV [Chen et al., 2022b].

The impact of poisoning attacks on those different aggre-
gation models has not been compared or systematically an-
alyzed. Our work, to the best of our knowledge, is the first
to introduce a generic attacking strategy for a wide range of
aggregation models and to present an analysis of attack per-
formance across those models.

2.2 Data Poisoning Attacks on Machine Learning
Understanding adversarial attacks[Dong et al., 2019a; Dong
et al., 2019b; Dai et al., 2018; Mei and Zhu, 2015a; Li et
al., 2016; Checco et al., 2020] helps to develop more ro-
bust machine learning system, which is essential for achiev-
ing trustworthy artificial intelligence. Data poisoning [Wang
et al., 2014; Biggio et al., 2012; Mei and Zhu, 2015b; Khud-
aBukhsh et al., 2014a; Zhao et al., 2017; Ma et al., 2019;
Zhang et al., 2019; Liu and Shroff, 2019] has been used to
analyze the vulnerabilities of many popular machine learn-
ing technologies, e.g. SVMs [Biggio et al., 2012], regres-
sion learning [Jagielski et al., 2018] and multi-task learn-
ing [Zhao et al., 2018]. In a poisoning attack, the at-
tacker attempts to affect or even dominate the final trained
model by manipulating the feature values or annotations
of training instances [Chen et al., 2020; Chen et al., 2021;
Chen et al., 2018]. Due to the heterogeneous characteristics
of crowdsourcing data, most of the existing approaches can-
not be directly applied to attack label aggregation models of
crowdsourcing. They are designed for the setting in which the
label of an instance is from a single reliable expert. However,
in the setting of crowdsourcing, each instance is labeled by
multiple workers with varying levels of reliability.

Our work focus on the analysis of the vulnerability of
crowdsourcing by designing optimal poisoning attacks. We
show that the attacker can instigate an effective attack on
crowdsourcing even when only a small number of malicious
workers are present.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2976



3 Problem Formalization
We formally define our problem of finding the optimal data
poisoning attack strategy as follows.

Notations. We use capital letters (e.g. A) in calligraphic
math font to denote sets. We use boldface uppercase letters to
denote matrices, e.g., M, in which the entry (i, j) is denoted
by the corresponding lowercase letters mij and the entries of
i-th row is denoted by Mi∗. We use boldface lowercase let-
ters to denote vectors (e.g., v). LetX = {x1,x2, . . . ,xi, . . .}
be the instance set, U = {u1, u2, . . . , uj , . . .} be the normal
worker set, Ω = {l1, l2, . . . , lk, . . .} be the set of possible la-
bels, and Y = (yij)|X |×|U| be the set of normal labels, where
yij is the label from uj to xi. Let T = (tij)|X |×|U| be the
indicator matrix where tij = 1 indicates that uj provides a
label to instance xi, and 0 otherwise. Similarly, we denote
the malicious worker set, their label matrix, and their indica-
tor matrix by Ũ = {ũ1, ũ2, . . . , ũj′ , . . .}, Ỹ = (ỹij′)|X |×|Ũ|,
and T̃ = (t̃ij′)|X |×|Ũ|. For each instance xi, there is an un-
observed ground truth zi to be estimated by the label aggre-
gation model f ′ : Ω|U|+|Ũ| → Ω from the labels of crowd
workers U and Ũ .

Problem statement. Given a budget B =
∑
i

∑
j′ t̃ij′ and

a victim label aggregation model f ′, the attacker attempts to
find an optimal attack strategy for the instance selection T̃

and labeling Ỹ to subvert a maximum number of the aggre-
gated labels while disguising the malicious behavior. In our
setting, an additional complexity is that the attacker does not
know the label aggregation model f ′ used by the crowdsourc-
ing platform and the attacker uses a substitute model f for the
estimate of the aggregated labels.

4 Unified Representation of Label
Aggregation Models

To allow for black-box data poisoning attacks, we first pro-
vide a unified representation for the label aggregation models.
We start with the simple yet common setting of binary label-
ing which does not sacrifice the generality of our approach.
We will extend the proposed method to the multi-option set-
ting of the labeling task later. For the sake of convenience,
we introduce the following notions.

v(ij) =
1

2
tij (1− yij , 1 + yij) , (1)

where vector v(ij) is constructed by one-hot encoding for
each label from worker uj to xi: v(ij) = (0, 1) when worker
uj provides +1 to xi; v(ij) = (1, 0) when worker uj pro-
vides −1 to xi; and v(ij) = (0, 0) when worker uj does not
provide label to xi.

W(ij) =

(
w

(ij)
−1,−1 w

(ij)
−1,+1

w
(ij)
+1,−1 w

(ij)
+1,+1

)
, (2)

w
(ij)
kh denotes the weight of class lk on xi, when yij = lh and

lh ∈ Ω.

Without loss of generality, we define the unified label ag-
gregation model f as follows.

f (Yi∗) = argmaxlk w̄
(i)
k , (3)

where

w̄
(i)
k =

∑
j
v(ij)(W

(ij)
k∗ )T + w∗

k, (4)

w̄ik denotes the weight of class lk on xi, when we observe
Yi∗, and w∗

k is a shift constant.
We show in the following theorems that Equation 3 is a uni-

versal representation of the label aggregation models. First,
for the Dawid-Skene model, we have Theorem 1.

Theorem 1. let P(j) denote the confusion matrix and π∗
k de-

note the prior of class lk, f is equivalent to the Dawid-Skene
model when W(ij) = lnP(j) and w∗

k = lnπ∗
k.

Another widely used aggregation model, ZenCrowd [De-
martini et al., 2012], can be viewed as the homogeneous ver-
sion of the DS model: it characterizes the worker ability with
the symmetric confusion matrix. For ZenCrowd, we have
Corollary 1 based on Theorem 1.

Corollary 1. f is equivalent to ZenCrowd, when w∗
k = 0 and

W(ij) =

(
ln(p∗j ) ln(1− p∗j )

ln(1− p∗j ) ln(p∗j )

)
, (5)

where p∗j denotes the reliability parameters of workers.

Finally, we have the following theorems for majority vot-
ing and weighted majority voting 1.

Theorem 2. When W(ij) = I and w∗
k = 0, f is equivalent

to majority voting, where I is the identity matrix.

Theorem 3. When W(ij) = djI and w∗
k = 0, f is equivalent

to weighted majority voting, where dj denotes the weight of
uj who provides a label to instance xi.

5 Data Poisoning Attacks on Crowdsourcing
In this section, we first formulate the problem of data poi-
soning attack on the unified label aggregation model, and
then present our substitution approach that attacks a substi-
tute model in replacement of the unknown target model. We
first generalize Equation (3) to support the modeling of an
adversarial environment.

As for normal workers, we introduce ṽ(ij′) and W̃(ij′) for
malicious workers. The label aggregation model f is defined
as follows.

f(Y′
i∗) = argmaxlk ŵ

(i)
k , (6)

where

ŵ
(i)
k = w̄

(i)
k +

∑
j′
ṽ(ij′)(W̃

(ij′)
k∗ )T + w∗

k, (7)

ŵ
(i)
k denotes the weights attached to class lk, when the crowd

labels Y′
i∗ from U and Ũ are provided to xi.

1Refer to the supplementary material for proofs of Theorems,
which is available at https://github.com/yongqiangyang/SubPac.
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5.1 Optimal Adversarial Strategy
We now formulate the problem of finding the optimal attack
strategy for attacking f , which represents a broad family of
substitute models. The strategy gives the indication of both
instance selection (i.e., which instances to select) and label-
ing (i.e., how to label) under a limited budget. To formally
define the problem, we translate the goal of subverting a max-
imum number of the aggregated labels while disguising the
malicious behavior to the following objectives: minimizing
the similarity of the estimated true labels before and after at-
tacks, meanwhile minimizing the discrepancy of malicious
labels and the estimated true labels before attacks. Consider-
ing these two objectives together, we formulate the problem
of finding optimal adversarial strategy as a bilevel min-max
optimization problem.

min
Ỹ,T̃

L = d1 + d2 (8)

s.t. f(Y′
i∗) = maxlk ŵ

(i)
k ,∑

i

∑
j′
t̃ij′ = B, T̃ ∈ {0, 1}|X |×|Ũ|, (9)

where L denotes the loss function, which contains two
components. d1 = − 1

|X |
∑
i v (f (Y

′
i∗) , f (Yi∗)), repre-

sents the average similarity between the aggregated labels
before and after attacks, where v(p, q) measures the dis-
crepancy between p and q, such as cross entropy. d2 =
λ
|Ũ|

∑
j′

∑
i t̃ij′v(ỹij′ ,f(Yi∗))∑

i t̃ij′
, represents the discrepancy be-

tween the malicious worker’s label ỹij′ and the estimated true
label f (Yi∗) before attacks.

In this optimization problem, the label aggregation model
is a constraint, making the problem a bilevel min-max prob-
lem. Here specifically, the outer problem is relatively
straightforward to optimize, while the inner optimization
problem is highly non-linear and non-convex, for which a
closed-form solution is hard to obtain. The constraint that the
summation of all the elements in T̃ is limited by the budget
B, further complicates the optimization problem.

5.2 Computing Optimal Attack Strategies
We first provide a theoretical solution for the problem defined
in Equation 8. Then, based on the solution, we present our
algorithm to obtain the optimal attack strategy with substitute
models.

Gradient Computation
We first construct the Lagrangian Ψ of the outer problem of
Equation 8. The following optimization problem needs to be
solved in order to achieve the adversarial aim.

min
Ỹ,T̃

Ψ = L+ ψ(
∑

i

∑
j′
t̃ij′ −B)

s.t. f(Y′
i∗) = maxlk ŵ

(i)
k

T̃ ∈ {0, 1}|X |×|Ũ|, (10)

where ψ is the Lagrangian multiplier. Since the elements of
Ỹ ∈ {−1, 1}|X |×|Ũ| and T̃ ∈ {0, 1}|X |×|Ũ| are discrete, we
cannot directly compute the gradients of them. To address

the problem, we introduce a reparameterization trick that con-
verts the discrete variables into continuous ones such that it
can be updated in a gradient-based optimization algorithm.

We first relax each element in Ỹ and T̃ into [0, 1]. In other
words, ỹij′ denotes the probability that worker uj′ provides
class 1 to instance xi and t̃ij′ denotes the probability that
worker uj′ provides a label to instance xi. To account for
the constraints Ỹ ∈ [0, 1]|X |×|Ũ| and T̃ ∈ [0, 1]|X |×|Ũ|, we
posit that Ỹ and T̃ are derived from their ancestral matrices.

Ỹ = sigmoid(Ỹ′), (11)

T̃ = sigmoid(T̃′), (12)

where Ỹ′ = (ỹ′ij′)|X |×|Ũ| ∈ R|X |×|Ũ| and T̃′ =

(t̃′ij′)|X |×|Ũ| ∈ R|X |×|Ũ|. With reparameterization, we can
compute the gradients of Ψ with respect to ỹ′ij′ and t̃′ij′ .
Note that ỹ′ij′ ∈ (−∞,+∞) and t̃′ij′ ∈ (−∞,+∞) which
can be updated in a gradient-based optimization algorithm.

Attacks Using Substitution
To attack crowdsourcing systems with unknown label aggre-
gation models, we first introduce our algorithm based on the
dual gradient descent approach that can attack a family of
substitute models in replacement of the unknown targeted
model. Then, we use a success rate metric that quantifies the
transferability between the substitute and the targeted model,
which enables us to find a good substitute model.

To learn the optimal strategy, we iteratively update the pa-
rameters of the substitute models and those of the attack strat-
egy.

Phase 1. Fixing the Lagrange multiplier ψ computed in the
previous iteration, this phase is responsible for updating the
attack strategy T̃ and Ỹ, which contains two iterative steps.
Step 1: it is responsible for estimating the parameters W̃(ij′)

and W(ij) by inputting the T̃ and Ỹ generated in step 2
into the substitutes. If the substitute model is majority vot-
ing (MV), it directly obtains that W̃(ij) = W(ij) = I.
Step 2.Fixing the parameters, we adopt the gradient descent
method to update T̃ and Ỹ. In iteration t, we update ỹ′ij′ and
t̃′ij′ as follows.

ỹ
′(t+1)
ij′ ← ỹ

′(t)
ij′ − η∇ỹ′ij′Ψ, (13)

t̃
′(t+1)
ij′ ← t̃

′(t)
ij′ − η

′∇t̃′
ij′
Ψ, (14)

where η and η′ are the step size.

Phase 2. Fixing T̃ and Ỹ computed in Phase 1, this phase
involves computing the Lagrange multiplier ψ as follows. In
iteration r, we update ψ as follows.

ψ(r+1) ← ψ(r) + η′′∇ψΨ, (15)

where ∇ψΨ is the gradient of Ψ with respect to ψ and η′′ is
the step size.
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Algorithm 1: SubPac

Input: The budget B, the number of malicious workers |Ũ |
Output: Optimal attack strategy concerning instance

selection T̃ and labeling Ỹ

1 Initialize Ỹ, and T̃ ;
2 while the Lagrangian multiplier ψ does not converge do
3 while the change of T̃ or Ỹ > tolerance do
4 Update the parameters of the substitute label

aggregation model;
5 for each t̃′ij′ do
6 Update t̃′ij′ with Equation 14;
7 Update t̃ij′ with Equation 12;
8 t̃ij′ =

1
2
(1 + sign(t̃ij′ − 1/2));

9 for each ỹ′ij′ do
10 Update ỹ′ij′ with Equation 13;
11 Update ỹij′ with Equation 11;
12 ỹij′ = sign(ỹij′ − 1/2);

13 Update the Lagrangian multiplier ψ with Equation 15

14 return Optimal attack strategy T̃ and Ỹ;

We summarize the procedure of the proposed attack in Al-
gorithm 1, which computes the optimal attack strategy against
a broad family of substitutes for the unknown target label ag-
gregation model.

We use transferability to measure the effectiveness of
substitution-based attacks on the target model and find a good
substitute model that possesses high transferability. We adopt
the attack success rate [Dong et al., 2019b] of substitution-
based attacks on the target model for the measurement of at-
tack transferability. We will analyze four substitutes on eight
target models in the experiments and find good substitutes
based on transferability analysis.

6 Experiments
This section presents our experimental results for evaluating
the effectiveness of the attack strategy obtained by our pro-
posed approach SubPac 2. Specifically, we answer the fol-
lowing questions:
• Q1: How well does the attack strategy perform in subvert-

ing the label aggregation result with varying proportion of
malicious labels?

• Q2: How well does the attack strategy perform in disguis-
ing malicious behaviors in gold test?

• Q3: How effective is the attack strategy in attacking differ-
ent target models and which are good substitute models?

• Q4: How effective is the proposed attack strategy perform
with limited accessibility to normal labels?

6.1 Experimental Setup
Real-world datasets. We experiment with the following
four real-world datasets. 1) Temp [Snow et al., 2008]: labels
of this dataset are provided by workers from Amazon Me-
chanical Turk. Annotators are presented with dialogue and

2Our code is available at https://github.com/yongqiangyang/SubPac.

Dataset N M A N∗ M∗

Temp 462 76 4,620 60.8 10
rte 800 164 8,000 48.8 10
sentiment 1,000 85 20,000 235.3 20
ER 8,315 176 24,945 141.7 3

Table 1: Real-world datasets. N is the number of instances and
M is the number of normal workers. M∗ is the average worker
redundancy of instances. N∗ is the average number of instances
handled by each worker. A is the number of normal labels.

verbs in it and are encouraged to identify the temporary or-
der of given verbs. 2) rte [Snow et al., 2008]: the task is to
recognize textual entailment, i.e., the annotator needs to de-
termine whether a given hypothesis sentence can be inferred
from another sentence. 3) sentiment [Zheng et al., 2017]: in
this dataset, each instance contains a review text of a com-
pany and the labels of workers reflect their opinions about
the sentiment of the review. 4) ER [Wang et al., 2012]: the
task is entity resolution, i.e., each instance contains two prod-
ucts (with descriptions), the workers judge whether the two
products are the same. For the 4 real-world datasets, Figure 1
presents the boxplots concerning the distribution of the num-
ber of labels per worker and the distribution of the worker
accuracy among the workers.
Target and substitute models. In our experiments, we con-
sider 8 target models: Dawid and Skene (DS) [Dawid and
Skene, 1979], ZenCrowd (ZC) [Demartini et al., 2012], ma-
jority voting (MV) [Sheng et al., 2008], weighted majority
voting (WMV) [Li and Yu, 2014], GLAD [Whitehill et al.,
2009], KOS [Karger et al., 2011], VI-BP [Liu et al., 2012]
and CATD [Li et al., 2014]. Among them, 4 models are
considered as substitute models, i.e., Dawid and Skene, Zen-
Crowd, majority voting, and weighted majority voting.
Comparison methods. We compare the proposed method
with the following methods. 1) TIA [Miao et al., 2018a], a
state-of-the-art attacking method designed to subvert the la-
bels inferred by Dawid and Skene model. 2) Rand, malicious
workers provide random labels on each given item. 3) Flip,
malicious workers indiscriminately provide bad labels on ev-
ery given instance [Ipeirotis et al., 2010].
Details of parameter settings. The budget B possessed by
the attacker is set to M ′× Ñ , where M ′ is the number of ma-
licious workers and Ñ is the number of instances labeled by
each malicious worker. Each element of T̃ is initialized by 1.
Each element of Ỹ is initialized as a random option different
from aggregated result. We consider the scenario where the
proportion of malicious workers is very low, namelyM ′ ≤ 5.
The attacker has a limited budget; thus we set Ñ ≤ 0.5 · N ,
where N is the number of instances. We discuss how to set
the parameter λ in the supplementary material 3 . Each gold
task involves an instance randomly selected and the number
of the gold tasks is set to 10 according to [Yuan et al., 2017].
We use cross-entropy for the discrepancy function v(p, q).

3Refer to the supplementary material for more details about the
experimental setup.
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(a) Temp dataset
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(b) Rte dataset
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(c) Sentiment dataset
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(d) ER Dataset

Figure 1: Boxplots concerning the distribution of the number of labels from per worker and the distribution of the worker accuracy among
the workers in Temp dataset, Rte dataset, Sentiment dataset, and ER dataset.

0.1 0.2 0.3 0.4

Percentage of instances

0.00

0.02

0.04

A
tta

ck
 s

uc
ce

ss
 r

at
e

Temp dataset

POAC

TIA

Flip

Rand

0.1 0.2 0.3 0.4

Percentage of instances

0.0

0.1

0.2

A
tta

ck
 s

uc
ce

ss
 r

at
e

Rte dataset

POAC

TIA

Flip

Rand

0.1 0.2 0.3 0.4

Percentage of instances

0.00

0.01

0.02

0.03

0.04

A
tta

ck
 s

uc
ce

ss
 r

at
e

Sentiment dataset

POAC

TIA

Flip

Rand

0.1 0.2 0.3 0.4

Percentage of instances

0.00

0.02

0.04

0.06

A
tta

ck
 s

uc
ce

ss
 r

at
e

ER dataset

POAC

TIA

Flip

Rand

Figure 2: Attack success rate with varying proportions of the instances labeled by each malicious worker.

Evaluation metrics. The evaluation metric of experiments
1, 3, and 4 is the attack success rate [Dong et al., 2019b]
which is computed as the ratio between (numerator.) the num-
ber of instances whose aggregation results are correct before
the attack and become incorrect after the attack, and (denom-
inator.) the number of instances whose aggregation results
are correct before the attack. The evaluation metric of ex-
periment 2 is the ability of workers which is computed with
golden tasks.

6.2 Different Attack Budget (Q1)
We consider the overall number of malicious workers to be
not more than 50% of the average number of normal work-
ers per data instance, thus making the adversarial attack a
challenging problem. This gives us the number of malicious
workers to be 5, 5, 5, and 1 in the four datasets.

Figure 2 compares the performance of different attacks
with varying proportions of instances labeled by malicious
workers, with the target model being DS. We observe that
the attacks computed by the proposed method SubPac sig-
nificantly outperform other strategies across all the four
datasets. We further observe that the proposed method im-
proves steadily when the proportion of instances labeled by
malicious workers increases, and outperforms the baseline
methods by a larger margin. This shows that when the pro-
portion of instances labeled by malicious workers increases
(the budget of the attacker increases), SubPac can consis-
tently select vulnerable and easier-to-subvert instances, for
which the normal workers provide the divergent labels. Those
results clearly demonstrate the effectiveness of our proposed
approach in the attack as well as the cost-efficiency.

6.3 Disguising Malicious Behaviors (Q2)
We analyze the performance of our approach in disguising
malicious behaviors, by showing the estimated reliability of
malicious ones in the golden test. The number of malicious

workers is set to 2 and the proportion of instances labeled by
malicious workers is set to the average number of instances
labeled by normal workers.

Results are given in Figure 3. From the figures, we ob-
serve that malicious workers generated with SubPac exhibit
even higher abilities than normal participants on average, thus
effectively disguising their malicious behavior. On dataset
Temp, rte, sentiment, and ER, the average reliability of ma-
licious workers manipulated by SubPac is 0.7540, 0.7410,
0.8690, and 0.9050, respectively. The average reliability of
normal workers is 0.8399, 0.8351, 0.7951, and 0.7864, re-
spectively. As a result, malicious workers can avoid their
labels to be filtered out by strategically select instances and
providing wrong labels. As comparison, we observe that the
reliability of malicious workers following the baseline attack
strategies – including the state-of-the-art method TIA – are
estimated much lower than normal workers, making them
easily detectable and their labels useless for attack purposes.

6.4 Transferability Analysis (Q3)
We analyze the transferability of different substitutes for
finding suitable ones and demonstrate the effectiveness of
substitute-based black-box attacks. We compute the attacks
on the four substitute models using the proposed framework
SubPac and evaluate the attack success rate of eight victim
models under the calculated attacks. We set the small num-
ber of malicious workers for the four datasets (Temp: 6.17%,
rte: 2.96%, sentiment: 5.56%, and ER: 2.76%), and the pro-
portion of instances labeled by them is 0.50 in each dataset.
Figure 4 shows the transferability of the four attacks on the
eight victim models on the four real-world datasets. First,
the attack success rate of the attack designed for probabilis-
tic models on other victim models is comparable to that of
the attack designed for the victim model, which means that
the probabilistic substitutes-based attacks have good transfer-
ability. The average attack success rate of the probabilistic

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2980



0 25 50 75

Worker ID
0.00

0.25

0.50

0.75

1.00
W

o
rk

e
r 

re
lia

b
ili

ty SubPac

Normal
Malicious

0 25 50 75

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty TIA

0 25 50 75

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty Flip

0 25 50 75

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty Rand

(a) Dataset Temp

0 50 100 150

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty SubPac

Normal
Malicious

0 50 100 150

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty TIA

0 50 100 150

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty Flip

0 50 100 150

Worker ID
0.00

0.25

0.50

0.75

1.00

W
o
rk

e
r 

re
lia

b
ili

ty Rand
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Figure 3: Reliability distribution of all the participating workers (normal or malicious) in the golden test for four datasets.
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Figure 4: The transferability of attacks based on different substitutes. We compute the attacks on the four representative methods using the
unified framework SubPac and evaluate the attack success rate of eight victim models under the computed attacks.
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Figure 5: Attack with small proportion of known normal labels.

models is 26.25%, 41.06%, 11.08%, and 55.34% on the four
datasets, respectively. Second, the variance of the attack suc-
cess rate of the probabilistic models is smaller than that of
others, which demonstrates the stability of substitution-based
attacks. This is because Subpac is based on the generic aggre-
gation function whose parameter matrix is constructed based
on the form of a confusion matrix in DS and ZC.

6.5 Limited Accessibility to Normal Labels (Q4)
We now investigate the performance of our approach with
limited accessibility to normal labels, assuming that an at-
tacker can know the normal workers’ labels to a small frac-
tion of the instances in each dataset. Specifically, since Sub-
Pac and TIA entail analyzing the normal labels for generating
malicious labels, in these two strategies, the malicious parties
only annotate the instances whose normal labels they can ob-
serve. We are concerned with the following situation: mali-
cious workers have no quantitative advantage, that is, there
exist only 5, 5, 5, 1 malicious workers for the four datasets.

Figure 5 shows the result with the proportion of instances la-
beled by malicious workers set to 0.3 and the proportion of
instances accessible by malicious workers also set to 0.3. We
consider the target model being the non-probabilistic model
WMV and the substitute model being the probabilistic one
DS, on which TIA is applicable. From the figure, we ob-
serve that SubPac consistently outperforms the other meth-
ods across all the four datasets. The attack success rate of
SubPac is on average 5.7 times larger than that of TIA. The
result shows that although there are only a small number of
malicious workers and these workers know only a small frac-
tion of normal workers’ labels, the malicious workers as in-
structed by our strategy can still effectively attack those in-
stances whose labels of honest parties are observable.

7 Conclusion
This paper has presented SubPac, a black-box data poison-
ing attack framework for crowdsourcing. SubPac is built on a
generic formulation of label aggregation and leverages a sub-
stitution approach to attack unknown label aggregation mod-
els. It finds the optimal attack strategy by suggesting mali-
cious both the instances to label and the labels themselves
for the maximization of success rate. Extensive validation on
several real-world datasets shows that SubPac is an effective
attack framework that substantially outperforms the state of
the art and can be applied for black-box attacks. In future
work, we plan to investigate approaches to defending against
data poisoning attacks via precise identification of strategic
instance selection and labeling behaviors.
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