Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

A New ANN-SNN Conversion Method with High Accuracy, Low Latency and
Good Robustness

Bingsen Wang' , Jian Cao*, Jue Chen', Shuo Feng' and Yuan Wang?*

1School of Software and Microelectronics, Peking University
2School of Integrated Circuits, Peking University

nevermore @stu.pku.edu.cn, caojian @ss.pku.edu.cn, chenjue @stu.pku.edu.cn, feng_shuo@pku.edu.cn,
wangyuan @pku.edu.cn

Abstract

Due to the advantages of low energy consumption,
high robustness and fast inference speed, Spik-
ing Neural Networks (SNNs), with good biolog-
ical interpretability and the potential to be ap-
plied on neuromorphic hardware, are regarded as
the third generation of Artificial Neural Networks
(ANNS). Despite having so many advantages, the
biggest challenge encountered by spiking neural
networks is training difficulty caused by the non-
differentiability of spike signals. ANN-SNN con-
version is an effective method that solves the train-
ing difficulty by converting parameters in ANNs to
those in SNNs through a specific algorithm. How-
ever, the ANN-SNN conversion method also suf-
fers from accuracy degradation and long inference
time. In this paper, we reanalyze the relation-
ship between Integrate-and-Fire (IF) neuron model
and ReL U activation function, propose a StepReLLU
activation function more suitable for SNNs un-
der membrane potential encoding, and use it to
train ANNs. Then we convert the ANNs to SNNs
with extremely small conversion error and intro-
duce leakage mechanism to the SNNs and get the fi-
nal models, which have high accuracy, low latency
and good robustness, and have achieved the state-
of-the-art performance on various datasets such as
CIFAR and ImageNet.

1 Introduction

With the rapid development of artificial intelligence, deep
learning has played a more and more important role in many
fields as a representative of Al algorithms. However, Arti-
ficial Neural Networks (ANNs) also face many challenges,
such as poor robustness and high energy consumption. In
recent years, due to the increasing demand for edge com-
puting and energy-saving applications, Spiking Neural Net-
works (SNNs) have also attracted great attention because of
their distinctive advantages from ANNs [Roy et al., 2019].
As a representative of the third-generation neural networks

*Corresponding Author

3067

[Maass, 1997], SNN is inspired by neurons in the biolog-
ical nervous system, whose cells use discrete spike sig-
nals to encode and transmit information. It is precisely be-
cause the spike signal is asynchronous, event-based and non-
differentiable that SNN has excellent robustness and energy
efficiency [Diehl and Cook, 2015], but it also faces challenges
such as training difficulties [Tavanaei et al., 2019].

Although training the SNN network is very difficult (due to
the inability to directly use the backpropagation algorithm),
many excellent works have made a lot of contributions to
the improvement of SNN’s performance [Zhang et al., 2019;
Wu et al., 2018al. In general, there are two mainstream im-
plementation methods of SNNs: ANN-SNN Conversion and
direct training SNN.

ANN-SNN conversion. It can be proved mathematically
that, when the inference time is long enough, ANN-SNN con-
version can obtain the same accuracy as ANN [Sengupta et
al., 2019al, which is based on the equivalence of Integrate-
and-Fire (IF) neuron and ReLU activation function [Cao et
al., 2015a] under firing rate encoding. However, for finite
time steps, there will always be errors in the ANN-SNN con-
version, such as clipping error, quantization error (flooring
error) and unevenness error [Bu ef al., 2021al. Among these
three errors, unevenness error is caused by the unevenness of
input spikes, while the clipping error and the quantization er-
ror are caused by firing rate encoding. In addition to firing
rate encoding, we also often use membrane potential encod-
ing [Li et al., 2022a], time encoding and sequence encoding
[Jeffares et al., 2021] in SNNG.

Direct training. Due to the great success of gradient de-
scent algorithm and backpropagation algorithm in training
ANNSs, some works regard SNNs as Recurrent Neural Net-
works (RNNs) and use Back-Propagation Through Time
(BPTT) algorithm to train it. In these works, surrogate gradi-
ent methods are used to map discrete spike signals into differ-
entiable mathematical formulas, so that the backpropagation
algorithm can be used [Neftci ez al., 2019; Wu et al., 2018b;
Waunderlich and Pehle, 2021; Mostafa, 2017]. Although sur-
rogate gradient methods can lead to very few time steps, the
performance of SNNs trained in this way cannot reach a level
comparable to that of ANNs. In addition to the surrogate gra-
dient approach, there are some works using synaptic plastic-
ity [Kheradpisheh er al., 2018] for network training, which is

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

also considered to be more biologically interpretable.

Difficulties. Generally speaking, no matter which method
of building SNNs has its own difficulties and defects. Al-
though the ANN-SNN conversion method can obtain bet-
ter network performance and can also be used in deep net-
works, it will cause a relatively high time latency because this
method requires more time steps [Sengupta et al., 2019b]. In
addition, while the direct training method has the advantages
of fast inference speed and good robustness, it also has prob-
lems such as difficult training and insufficient performance
[Zenke and Vogels, 2021]. That is to say, if we use existing
methods, in order to obtain a spiking neural network with bet-
ter performance, we must make a trade-off between inference
speed, network accuracy and energy efficiency, which is also
an open hot issue.

Contributions. In this work, we address two core chal-
lenges by combining the ANN-SNN conversion with the
RNNSs network structure, resulting in high-accuracy and low-
latency SNNs with improved robustness. Specifically, we
carefully analyzed the causes of conversion errors in the
ANN-SNN conversion method, replaced firing rate encoding
with membrane potential encoding, and proposed a new acti-
vation function StepReL.U which is equivalent to IF neurons.
This enables our SNNs to achieve a high accuracy close to
that of ANNSs at only one time step. In addition, we also use
the network structure of RNNs and introduce a leakage mech-
anism, which makes our SNN’s highly robust while maintain-
ing high accuracy. The contributions of this work are summa-
rized as follows:

* We reanalyzed the equivalence between IF neurons and
ReLU activation function, and proposed a StepReLU ac-
tivation function more suitable for spiking neural net-
works on the basis of discrete spike signals and mem-
brane potential encoding. This allows SNNs to achieve
state-of-the-art accuracy of ANNs over only one time
step.

L]

We use the RNNs’ network structure and introduce a
leakage mechanism, so that the IF neurons in the last
layer of the network have the same effect as the Leaky
Integrate-and-Fire (LIF) neurons. This makes our model
more robust and more tolerant to noisy signals.

We conduct experiments on large datasets such as CI-
FAR and ImageNet, and the experimental results show
that our method is effective on different network struc-
tures. The results show that our models are more robust
while achieving state-of-the-art accuracy in a very short
inference time.

2 Related Work

ANN-SNN conversion is a relatively mature method at
present, which can obtain SNNs with the same accuracy as
ANNSs, and some of the latest works have also obtained mod-
els with less inference time than previous works. The ANN-
SNN conversion method was first proposed and used in prac-
tical work by Cao et al. [2015b]. Then data-based and model-
based normalization was proposed by Diehl et al. [2015].

3068

Under firing rate coding, soft-reset mechanism (also called
reset-by-subtraction mechanism) is proposed to solve the
information loss problem caused by hard-reset mechanism
[Rueckauer et al., 2016; Diehl et al., 2016]. Layer-based
and neuron-based parameter normalization are proposed to
solve the problem of different thresholds of neurons in differ-
ent layers of SNNs, so that deeper networks can be realized
[Sengupta er al., 2019b; Ding et al., 2021; Li et al., 2021].
Rueckauer et al. [2017] indicated that, after selecting ap-
propriate parameters, we can essentially eliminate clipping
errors in ANN-SNN conversion through parameter normal-
ization. After that, a lot of following works are studying how
to choose a more appropriate normalization scale. Spiking-
YOLO with channel-wise data-based normalization was pro-
posed by Kim et al. [2020] to solve the problem of fast object
detection in SNNs.

There are also some new neuron models proposed. In or-
der to eliminate the quantization error in ANN-SNN conver-
sion, Bu et al. [2021b] proposed the quantization clip-floor-
shift activation function under average membrane potential
encoding. Wang et al. [2022] proposed a neuron-wise param-
eter normalization method and a signed neuron with mem-
ory function under membrane potential encoding to elimi-
nate ANN-SNN conversion errors, and their method achieved
state-of-the-art results on multiple datasets. In order to solve
the problems of high energy consumption and large time la-
tency of traditional methods, Li and Zeng [2022] proposed a
neuron model for releasing burst spikes.

In recent years, people have begun to pay more attention
to the inference time of SNNs, and some works have made
considerable progress. Deng and Gu [2021], Li et al. [2021],
Meng et al. [2022] and Li and Zeng [2022] all achieved ex-
cellent results with 16 and 32 timesteps. Bu et al. [2021b]
achieved excellent inference accuracy within 10 time steps or
even 2 time steps. Besides, Massa et al. [2020] and Singh
et al. [2021] deployed converted SNNs on the Loihi Neu-
romorphic Processor [Davies et al., 2018] and evaluated the
performance. Back-Propagation Through Time (BPTT) typ-
ically achieves very short inference time [Wu er al., 2019;
Lee et al., 2016; Lee et al., 20201, but results in high com-
putational consumption. On the other hand, BPTT is only
suitable for simple datasets such as MNIST and CIFARI10
[Kheradpisheh and Masquelier, 2020; Zhang and Li, 2020].
Rathi et al. [2020] initialized SNNs with conversion method
and tuned SNNs with STDP to get a shorter inference time.
Li et al. [2022b] proposed a new neuromorphic data augmen-
tation method to improve the inference speed of SNNs.

3 Method

In this section, we use mathematical formulations to describe
the ANN-SNN conversion process of our method. Based on
the reanalysis of ANN-SNN conversion errors, we propose a
StepReLU activation function to train ANNs with membrane
potential encoding. Then we solve the neurodynamic equa-
tions of LIF neuron model to obtain the conditions that the
leakage mechanism needs to fulfill, and introduce the leak-
age mechanism into SNNs. Further, we propose a new ANN-
SNN conversion method based on the StepReLLU function.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

l
5;(0)
StepRelLU

1 RelLU

mi(t) — 0'

Figure 1: The Difference between StepReLU and ReLU

3.1 Neuron Model

Neuron model for ANNs. For ANNS, the activity of neu-
rons can be simplified to the following formula:

a' =ReLUW!a'"t —b"), 1=1,2,--- .M (1)

where the vector a' represents the outputs of all neurons in
I-th layer, W' is the weight matrix between layer / and layer
I — 1, the vector b is a bias item, which also represents the
thresholds of each neuron in layer /, and ReLLU is a common
activation function in ANNS.

Neuron model for SNNs. Similar to previous works [Han
et al., 2020], we use the Integrate-and-Fire (IF) neuron model
to describe the ANN-SNN conversion process, because the IF
neuron is mathematically equivalent to the ReL.U activation
function. At each time step ¢, the IF neurons in each layer
receive the inputs from the neurons in the previous layer and
emit spikes as outputs according to certain conditions. This
process can be expressed by Eq. (2):

m!(t) =o' (t — 1) + Wla! 1, 2)

where the vector v!(t) is the membrane potential of layer [
at time step ¢, vector m!(t) is an intermediate variable for
recording the membrane potential and W'x!~! can be re-
garded as the inputs received by neurons in layer {. For IF
neurons, when the membrane potential of the i-th neuron in
layer [exceeds the threshold 6, the neuron will fire a spike
sk(t) to neurons in the next layer. Since we used membrane
potential encoding instead of firing rate encoding, sk(¢) can
be expressed as Eq. (3):

n ReLU[mi(t) — 0" +~%, if mi(t) > 6
S =
‘ 0 , it mlt) <6

%

3

here ~/ is a spike parameter that we can set, which is caused
by different excitation thresholds of neurons in different lay-
ers. In ANNs, the minimum of +' can be 0, then Eq. (3)
becomes the ReLLU activation function. However, in SNNs,
we noticed that as long as a neuron fires a spike, the output
(membrane potential) of the neuron must be a positive num-
ber, and it cannot be equal to 0. Furthermore, unlike firing

3069

Reset to Zero

Reset by Subtraction

Input

0
o
3
SO Cwenene e ff s ey er
o

0 25 50 75 100125 150175200 O 25 50 75 100 125 150 175 200
Time step Time step

Figure 2: The Difference between Hard-reset and Soft-reset

rate encoding, the output of neurons under membrane poten-
tial encoding can exceed 1. That is to say, 7' > 0. Based on
this, we propose the StepReLU activation function, as shown
in the following Eq. (4):

StepReLU(z,v) = ReLU(x) + v
_{x—i—’y, if >0 4)
= 0.

if <0
In this way, we can rewrite the spike firing process of a neuron
in SNNs as Eq. (5):

sk(t) = StepReLU(ml(t) — 6%, 4). Q)

The difference between the StepReLU activation function and
the ReLU activation function is shown in Fig. 1. After firing a
spike, the membrane potential of the neuron is reset. In order
to preserve more information of a spike, we choose the hard-
reset mechanism, in which we reset the membrane potential
to 0. This process can be represented by Eq. (6).

mi(t), if mi(t) <6

Uf(t):{ 0 . z() I ©)
0, if my(t)>40

The difference between hard-reset and soft-reset is shown in
Fig. 2, and the figure was made with the help of the snntorch
package [Eshraghian et al., 2021]. The short black vertical
lines in the upper and lower parts of the figure represent the
input and output spike trains of neurons, respectively. The
blue line in the middle of the figure shows how the neuron’s
membrane potential changes over time. The only difference
between hard-reset mechanism and soft-reset mechanism is
that, when the membrane potential of a neuron reaches the
threshold and fires a spike, hard-reset will cause the mem-
brane potential to return to O directly, while soft-reset will
only reduce the membrane potential by a specific value.

Membrane potential encoding. The reason why firing rate
encoding is currently used more frequently is mainly be-
cause people generally regard the SNNs as binary networks,
in which neurons’ firing a spike represents 1, and non-firing
represents 0. In order to obtain excellent performance with-
out sacrificing inference time, we no longer use binary firing
rate encoding but full-precision membrane potential encod-
ing. Under membrane potential encoding, a spike fired by a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Figure 3: ANN-SNN Conversion Process

neuron no longer represents O or 1, but represents the mem-
brane potential of the neuron when the spike is fired. Then we
consider the case that neuron i sends a spike to neuron j. If we
take the synaptic weight between i and j as 1, the spike sent
by i is consistent with the spike received by j. Although the
duration of the spike signal is very short, it is still the trans-
mission of electrical signals in essence. In other words, when
the connection weight between i and j is 1, the charge of the
spike sent by i is equal to the charge of the spike received by
j- We know that an IF neuron is physically equivalent to a
Resistance-Capacitance (R-C) circuit with a battery. Due to
the difference between the circuit constants R and C, the spike
signals of the same charge represent different values for dif-
ferent neurons under membrane potential encoding, as shown
in Eq. (7):

qi = qj ZCiSi:CjICj, ‘Si:Wi"Si (7)
where C' represents the capacitance constant of the neurons,
s; represents the value of the spike signal for neuron i, x;
represents the value of the spike signal for neuron j and g rep-
resents the charge of the spike. W;; is the conversion weight
between neuron i and neuron j (the connection weight is 1),
and is also an element of the weight matrix W in Eq. (2).
In this way, we have clarified the definition of the weights
between neurons under membrane potential encoding.

3.2 Conversion from ANN to SNN

Conversion error analysis. Different from the conversion
error under firing rate encoding and soft reset mechanism,
the conversion error generated by our method is much sim-
pler. As can be seen from Fig. 1, in theory, when we use the
StepReL.U activation function to train the network, the output
value of StepReLLU and the output value of ReLU only differ

3070

t=1 t=2 t= t=T
' ' !
' ' '
' ' !
layers ... layers ... layers .
! !
. ! !
l Leéakage l Ldakage Leéakage l

Figure 4: Spiking Neural Network Architecture with Leakage

by a constant 7', In other words, we can use the StepReLU
activation function in the training of ANNS, in which we will
not introduce additional conversion errors as long as we make
reasonable adjustments to the bias term. The key points are
around 0. We artificially introduced and amplified the differ-
ence between spike firing and non-spike firing, which will in-
crease the tolerance of the network to noise interference, and
may also cause some activated points near 0 to not be acti-
vated. This is the only source of ANN-SNN conversion error
in our proposed method. For the trade-off between conver-
sion error and robustness, we will show it in the Experiments
part. Overall, if we choose appropriate parameters, we can
achieve a robustness improvement with little drop in network
inference accuracy.

ANN-SNN conversion. According to our method, the cores
of ANN-SNN conversion are using StepReLU function to
train ANNs and mapping the outputs of ANNSs’ neurons to
the membrane potential of SNNs’ neurons. The ANN-SNN
conversion in one time step ¢ can be expressed by Eq. (8)-(9):

a' = StepReLU(W'a!~t — bl A1), 1=1,2,---,M (8)

27 1(t)=a'"1, 0" = b, sl (t) = al.)

The specific process of ANN-SNN conversion is shown in
Fig. 3. In the figure, red circles and blue circles in the middle
represent the neurons in ANNs and SNNs respectively, and
the horizontal arrows indicate that the corresponding neurons
are equivalent. Semi-transparent circles along the edges of
the figure indicate other non-target neurons in the network.

Leakage mechanism. We usually think that the reason why
SNNs have good robustness and sparsity is that there is a
leakage mechanism between different time steps. The leak-
age mechanism is derived from the Leaky Integrate-and-Fire
(LIF) neuron model, which means that the membrane poten-
tial of neurons that do not fire a spike at the current time step
will gradually decrease over time. In neurobiology, the LIF
neuron model is an approximation to the Hodgkin-Huxley (H-
H) model, and its dynamic process can be expressed by the
differential equation shown in Eq. (10):

du
g pp——

dt = _[u<t) - urest] + Rl(t); Urest = O, (10)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

where u(t) represents the membrane potential, Ri(t) rep-
resents the input signals, 7, is the temporal constant and
Tm = RC. Here we take u,.st = 0 because the value of
Urest does not affect the result under the hard-reset mecha-
nism. In addition to the differential equation in Eq. (10), the
LIF neuron also satisfies the hard-reset mechanism shown in
Eq. (11):

lim wu(t) =0, (1D

t—tf
here ¢ represents the moment when the LIF neuron fires a
spike signal, which can be determined by ¢; = {t|u(t) = ¥}.
And lim, ,,+ represents the right limit to ¢;. 9 is the mem-
brane potential threshold of the LIF neuron. When the mem-

brane potential u(t) of the LIF neuron reaches the threshold
19, the neuron will fire a spike s(t), and s(t) satisfies Eq. (12):

lim u(t), if t=tf
s(t)y =7 , (12)
0, if t#ty

here we have considered the fact that the membrane poten-
tial may exceed the threshold in the actual solution, and we
have already used the membrane potential code to describe
the spike. The above three equations completely describe all
the activities of a LIF neuron, and the solution to the differ-
ential equation in Eq. (10)-(12) can be written as:

_ oty R ® s
ult) == 3 s(ty) e o= | e i - s)ds
tr

Tm 0

/OOO n(s)S(t — 5)ds + /OOO k(s) - i(t — s)ds

13)
where S(t) = sy1(t) + spa(t) + - - represents the output
sequence and i(t) represents the input sequence, k(s) rep-
resents the parameter related to leakage and 7)(s) represents
the parameter related to firing sequence. Since the leakage
only occurs in the input sequence, we neglect the firing item
J5" m(s)S(t— s)ds and discretize the convolution of i(s) and
k(s) in Eq. (13) to get:

m!(T) =v'(0)+ Y k(T —t)- W's'™'(t). (14

t=1

In Eq. (14), we have assumed that the neurons in the [-th layer
do not send spikes to the next layer within 7" time steps. Ob-
viously, this assumption is true for the last layer of neurons in
the network. Based on this, we introduce a leakage mecha-
nism on the neurons of the last layer (also called the inference
layer) of the Spiking Neural Networks, hoping to make the
entire networks more robust in a few time steps. In this way,
the SNNs network structure we finally converted from ANNs
is shown in Fig. 4. In the figure, similar to the structure of
RNNs, the vertical arrows indicate the transmission direction
of spike signals, and the horizontal arrows indicate the time
steps. At each time step from 1 to T, the spike signals are
transmitted along the direction of the network and the out-
puts are obtained according to Eq. (8) and Eq. (9), and then
these outputs are summed along the time direction according
to Eq. (14) to obtain the final output.

3071

4 Experiments

In order to verify the effectiveness of our method, we use
VGG and ResNet network structures to conduct experiments
on CIFAR10 [LeCun et al., 1998], CIFAR100' [Krizhevsky,
2009] and ImageNet? [Deng et al., 2009] datasets, and com-
pare with other state-of-the-art results on image classification
tasks. In the experiment, we use the Kaiming normal initial-
ization method to initialize the ANNs network parameters,
and use the SGD optimizer with 0.9 momentum. The L2
penalty with a value of 5e-4 is also added. In addition, we
set an initial learning rate of 0.1 and update the learning rate
with the CosineAnnealingl.R strategy. The training epoch is
300 and the batch size is 128. Specific to a single experiment,
we will make targeted adjustments to various parameters.

In this part, we verify our method from two aspects, one
is the inference accuracy of ANN-SNN conversion, and the
other is the robustness of the converted SNNs, which is
brought by StepReL.U activation function and leakage mech-
anism respectively. Our code can be seen at https://github.
com/QuelThalasGrace/aNew ANN-SNNConversionMethod.

4.1 ANN-SNN Conversion in One Time Step

Following the aforementioned method, we use the StepReLLU
activation function to train an ANN and convert it to an
SNN at one time step. We test the performance of the con-
verted SNN on different datasets, and the experimental results
are shown in Table 1. Here, we compare our method with
the state-of-the-art ANN-SNN conversion methods, including
Quantization Clip-floor-shift Activation(QCA) from Bu et al.
[2021b], Burst+LIPooling(BLIP) from Li and Zeng [2022],
SNN Conversion with Advanced Pipeline(SNNC-AP) from
Li et al. [2021], Signed Neuron with Memory and Neuron-
Wise Normalization(SNMNN) from Wang et al. [2022] and
Differentiation on Spike Representation(DSR) from Meng et
al. [2022]. Experimental results show that our method can
make the performance of SNNs close to that of ANNs in only
one time step, and the optimal accuracy of transformed SNNs
depends on the accuracy of ANNs. In other words, when
using our method for ANN-SNN conversion, the better the
initial performance of the ANNs, the better the performance
that our resulting SNNs can achieve at one time step.

In addition, we also verify the robustness improvement of
the network brought by the proposed StepRel.U activation
function. Specifically, we feed ANNs and converted SNNs
with noisy inputs without introducing a leakage mechanism
(in one time step), and observe the change of network’s in-
ference accuracy. Since SNNs use spike signals to transmit
information, we choose to use salt and pepper noise, which
is more similar to spike signals, as the experimental noise.
We use salt and pepper noise signals with different signal-to-
noise ratios (p=0.5) to process the input images and send them
to ANNs and SNNs respectively, and get inference results.
We have done the experiments on CIFAR10, CIFAR100 and
ImageNet datasets, and the experimental results are shown
in Fig. 5(a)-(c). The results show that as the input sig-
nal becomes more and more noisy, the inference accuracy at

"https://www.cs.toronto.edu/~kriz/cifar.htm]
*https://image-net.org/challenges/LSVRC/2012/

https://github.com/QuelThalasGrace/aNewANN-SNNConversionMethod
https://github.com/QuelThalasGrace/aNewANN-SNNConversionMethod
https://www.cs.toronto.edu/ ~kriz/cifar.html
https://image-net.org/challenges/LSVRC/2012/

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Method Net. Arch. ANN Acc. T=1 T=16 T=20 T=32 T=64 T=128 T>256
CIFAR10
QCA VGG16 95.52 - 95.40 - 95.54 95.55 - 95.59
BLIP VGG16 95.74 - - - 95.58 95.66 95.69 95.72
SNNC-AP VGGI16 95.72 - - - 93.71 95.14 - 95.79
Ours(StepReLU) VGG16 95.91 95.83 - - - - - -
SNMNN ResNet18 95.39 - - - 94.03 94.03 95.19 95.44
QCA ResNet18 96.04 - 95.92 - 96.08 96.06 - 96.06
BLIP ResNet20 96.56 - - - 96.11 9649 96.45 96.36
Ours(StepReLLU) ResNet20 96.64 96.59 - - - - - -
CIFAR100
DSR VGG16 78.12 - - 78.62 - - - -
BLIP VGGI16 78.49 - - - 7498 78.26 78.66 78.65
Ours(StepReLU) VGG16 78.27 78.05 - - - - - -
SNMNN ResNet18 78.26 - - - 7448 7759 7797 78.30
BLIP ResNet20 80.69 - - - 76.39 79.83 80.52 80.57
Ours(StepReLU) ResNet20 80.60 80.52 - - - - - -
ImageNet
BLIP VGGI16 74.27 - - - 70.61 73.32 73.99 74.25
QCA VGG16 74.29 - 50.97 - 68.47 72.85 73.97 74.32
SNNC-AP VGGI16 75.36 - - - 63.64 70.69 73.32 75.32
QOurs(StepReLLU) VGG16 74.40 74.31 - - - - - -

Table 1: ANN-SNN Conversion in One Time Step

one time step decreases for both ANNs and converted SNNs.
However, the performance decrease of converted SNNGs is less
than that of ANNs. Overall, the proposed StepReLU acti-
vation function can bring about 1% to 3% improvement in
inference accuracy for SNNs compared to ANNS in noisy en-
vironments, when the parameter +! is properly chosen.

4.2 ANN-SNN Conversion with Leakage
Mechanism

According to our derivation and analysis, both StepReL.U ac-
tivation function and the introduction of leakage mechanism
will improve the robustness of the network. However, in this
part, we pay more attention to the robustness improvement
brought by introducing leakage mechanism to SNNs. We still
use the salt and pepper noise signal as our experimental noise,
and in order to maintain a fast inference speed, we set the time
step of SNNs with the leakage mechanism to be 10. In exper-
iments, we still feed the inputs processed with noisy signal
directly into ANNs, however this is different in SNNs. Since
the inference process of SNNs has ten time steps, we will feed
the same input signal to the SNNs every time step, ten times
in total. Considering a more realistic situation, we randomly
select one of the ten identical input signals, process it with
noise signal, and sequentially feed these new input signals
into SNNs. Then we select an appropriate leakage parame-
ter «, and sum the ten output values as shown in Eq. (14) as
the final output value, and the category corresponding to the
neuron with the largest output value is the inference result.
In this way, we observe the inference accuracy of SNNs with
leakage mechanism over ten time steps, and the experimental

3072

results are shown in Fig. 5(d)-(f). The curves in these figures
show the accuracy changes of ANNs and SNNs with leakage
mechanism as the proportion of noise signals increases on
CIFAR10, CIFAR100 and ImageNet. The results show that
the leakage mechanism can greatly improve the robustness of
SNNs, and the leakage mechanism makes the inference ac-
curacy of SNNs about 31% higher than that of ANNs under
noisy conditions.

4.3 Sources of Robustness Brought by Our
Method

As we have verified before, both StepReLU activation func-
tion and leaky mechanism can bring robustness improvement
to SNNs. Combining the derivation and experimental results,
we believe that the StepReLU activation function artificially
sets the difference between the activation and inactivation of
neurons through the parameter ! to achieve robustness im-
provement, while the leakage mechanism improves robust-
ness by improving the fault tolerance of SNNs through the
parameter K.

For StepReLU activation function, it is more suitable for
SNNs under the membrane potential encoding while retaining
the characteristics of ReLU activation function to the greatest
extent. As we discussed in Section 3.2, the StepReLU ac-
tivation function has a jump at zero point, which of course
makes some neurons that can be activated in ANNs (the mem-
brane potential just reaches the threshold) cannot be activated
in SNNs, resulting in a decrease in accuracy. But more im-
portantly, this will also make the SNNs more tolerant to the
noise signals near the zero point, because some weaker noise

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

- 801 & 51
_90 \\ B =7
g S g7 g
> > 651
@ ® &
= 80 < 60 s
3 —— Vgg16-SNN 3 —— Vggl6-SNN 360
g —— Vggl6-ANN g —— Vggl6-ANN g

701 — ResNet20-SNN 50 { —— ResNet20-SNN - 554 —— Vggl6-SNN
ResNet20-ANN ResNet20-ANN b —— Vggl6-ANN
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Noise Content(%) Noise Content(%) Noise Content(%)
(a) Performance on CIFAR10 without Leakage (b) Performance on CIFAR100 without Leakag (c) Performance on ImageNet without Leakag

—— 80{ sy, 51
90 _ 701
S X701 S
= = =65 1
® ® 3
< 80 | =60 =
3 —— Vggl16-SNN 3 —— Vgg16-SNN 360
g Vggl6-ANN g Vggl6-ANN g

| —— ResNet20-SNN 50{ —— ResNet20-SNN 55 —— Vggl6-SNN
70
ResNet20-ANN ResNet20-ANN —— Vggl6-ANN
50
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Noise Content(%)
(d) Performance on CIFAR10 with Leakage

Noise Content(%)
(e) Performance on CIFAR100 with Leakage

Noise Content(%)
(f) Performance on ImageNet with Leakage

Figure 5: Effects of StepReL U and Leakage on Network Robustness

signals will not exceed the difference of the StepReL.U func-
tion at the zero point. This point has also been verified in
experiments. When we choose the appropriate parameters,
the StepReLU function can make SNNs achieve the accuracy
close to ANNSs (this usually comes down a little bit) in one
time step, and the robustness will also increase by 1%-3%,
which is mainly produced under weak noise signals.

For leakage mechanism, the reason why it can bring about
a huge improvement (about up to 31%) in the robustness of
the network is its tolerance to noisy signals. Taking the 10
time steps we chose as an example, since the influence of
the output of each time step on the final result will gradually
decrease over time (leakage), this leads to the fact that only
the output of the last time step will have a substantial impact
on the final result. In other words, under the condition of ten
time steps, when we assume that the noise signal randomly
affects the input of one of the ten time steps, it will only affect
the final output when the noise signal affects the input of the
last time step. Theoretically, other situations will not have
a great impact on the final output, which is the core reason
why the leakage mechanism can bring great improvement on
robustness of SNNs. If we set a larger time step, theoretically
we can get more robust SNNs, but this requires a trade-off
between inference time and robustness. This point has also
been well verified in experiments.

5 Conclusion

In this paper, we propose a new ANN-SNN conversion
method, derived from the StepReL.U activation function,
membrane potential encoding and leakage mechanism, which
can achieve accurate, robust and low-latency inference. we
reanalyze the relationship between Integrate-and-Fire (IF)
neuron model and ReL.U activation function, then we propose
a StepReL.U activation function more suitable for SNNs, and
use it to train ANNSs. After finishing the training, we convert
the ANNs to SNNs and introduce the leakage mechanism to

obtain a model with excellent performance. Our method can
make SNNs achieve the inference accuracy close to ANNs
in one time step and obtain a robustness improvement (about
1%-3%), and also enable SNNs to achieve a much higher ro-
bustness than ANNS (up to about 30%) in a very short infer-
ence time (10 time steps).

There are two core foundations in our method, the equiv-
alence between the StepReLU activation function and the
Integrate-and-Fire (IF) neuron model under membrane po-
tential encoding, and the solution of the dynamic equations
of the Leaky Integrate-and-Fire (LIF) neuron model. We have
proved and solved the above two conclusions mathematically,
and verified through experiments that our proposed method
can effectively improve the performance of SNNs. Since
the neurons in the inference layer of the network do not fire
spikes, we ignore the output term in Eq. (13) and get Eq. (14),
and only introduce a leakage mechanism in the last layer of
neurons in the SNNs. In fact, Eq. (13) is valid for any LIF
neuron, but since different neurons fire spikes at different mo-
ments, it is very difficult to simplify Eq. (13). This is also the
core difficulty of reducing the energy consumption of SNNs
and realizing asynchronous SNNs in the true sense.

Although our method has achieved excellent performance
on different network structures and datasets, there are still
some shortcomings that need our improvement. Essentially,
the SNNs model we obtained in this work is still synchronous
networks, not real asynchronous, event-driven networks, and
these points are just considered to be the key to SNNs’ low
energy consumption. In the follow-up research, we will try to
build a truly asynchronous SNNs’ model, which can achieve
the advantages of high accuracy, low latency, high robustness
and low energy consumption at the same time.

Acknowledgements

This work is supported by the Joint Funds of the National
Natural Science Foundation of China (U20A20204).

3073

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Contribution Statement

The first author and the second author contributed equally to
this paper.

References

[Bueral.,2021a]l Tong Bu, Wei Fang, Jianhao Ding,
PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency
spiking neural networks. In International Conference on
Learning Representations, 2021.

[Bu et al., 2021b] Tong Bu, Wei Fang, Jianhao Ding,
PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency
spiking neural networks. In International Conference on
Learning Representations, 2021.

[Cao et al., 2015a] Yonggiang Cao, Yang Chen, and Deepak
Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal
of Computer Vision, 113(1):54-66, 2015.

[Cao er al., 2015b] Yonggiang Cao, Yang Chen, and Deepak
Khosla. Spiking deep convolutional neural networks for

energy-efficient object recognition. International Journal
of Computer Vision, 113(1):54-66, 2015.

[Davies er al., 2018] Mike Davies, Narayan Srinivasa,
Tsung-Han Lin, Gautham Chinya, Yonggiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro,
38(1):82-99, 2018.

[Deng and Gu, 2021] Shikuang Deng and Shi Gu. Op-
timal conversion of conventional artificial neural net-
works to spiking neural networks. arXiv preprint
arXiv:2103.00476, 2021.

[Deng er al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248-255.
Teee, 2009.

[Diehl and Cook, 2015] Peter U Diehl and Matthew Cook.
Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational
neuroscience, 9:99, 2015.

[Diehl et al., 2015] Peter U Diehl, Daniel Neil, Jonathan Bi-
nas, Matthew Cook, Shih-Chii Liu, and Michael Pfeif-
fer. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In 2015 Interna-
tional joint conference on neural networks (IJCNN), pages
1-8. ieee, 2015.

[Diehl et al., 2016] Peter U Diehl, Bruno U Pedroni, An-
drew Cassidy, Paul Merolla, Emre Neftci, and Guido
Zarrella. Truehappiness: Neuromorphic emotion recog-
nition on truenorth. In 2016 international joint conference
on neural networks (ijcnn), pages 4278-4285. IEEE, 2016.

3074

[Ding er al., 2021] Jianhao Ding, Zhaofei Yu, Yonghong
Tian, and Tiejun Huang. Optimal ann-snn conversion for
fast and accurate inference in deep spiking neural net-
works. arXiv preprint arXiv:2105.11654, 2021.

[Eshraghian er al., 2021] Jason K Eshraghian, Max Ward,
Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu.
Training spiking neural networks using lessons from deep
learning. arXiv preprint arXiv:2109.12894, 2021.

[Han et al., 2020] Bing Han, Gopalakrishnan Srinivasan,
and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency
spiking neural network. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 13558-13567, 2020.

[Jeffares et al., 2021] Alan Jeffares, Qinghai Guo, Pontus
Stenetorp, and Timoleon Moraitis. Spike-inspired rank
coding for fast and accurate recurrent neural networks.
arXiv preprint arXiv:2110.02865, 2021.

[Kheradpisheh and Masquelier, 2020] Saced Reza Kherad-
pisheh and Timothée Masquelier. Temporal backpropaga-
tion for spiking neural networks with one spike per neuron.
International Journal of Neural Systems, 30(06):2050027,
2020.

[Kheradpisheh er al., 2018] Saeed Reza Kheradpisheh, Mo-
hammad Ganjtabesh, Simon J Thorpe, and Timothée
Masquelier. Stdp-based spiking deep convolutional neural
networks for object recognition. Neural Networks, 99:56—
67, 2018.

[Kim et al., 2020] Seijoon Kim, Seongsik Park, Byunggook
Na, and Sungroh Yoon. Spiking-yolo: spiking neural net-
work for energy-efficient object detection. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 34, pages 11270-11277, 2020.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Univer-
sity of Tront, 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

[Lee eral.,2016] Jun Haeng Lee, Tobi Delbruck, and
Michael Pfeiffer. Training deep spiking neural networks
using backpropagation. Frontiers in neuroscience, 10:508,
2016.

[Lee et al., 2020] Chankyu Lee, Syed Shakib Sarwar,
Priyadarshini Panda, Gopalakrishnan Srinivasan, and
Kaushik Roy. Enabling spike-based backpropagation for
training deep neural network architectures. Frontiers in
neuroscience, page 119, 2020.

[Li and Zeng, 2022] Yang Li and Yi Zeng. Efficient and ac-
curate conversion of spiking neural network with burst
spikes. arXiv preprint arXiv:2204.13271, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

[Li er al., 2021] Yuhang Li, Shikuang Deng, Xin Dong, Rui-
hao Gong, and Shi Gu. A free lunch from ann: To-
wards efficient, accurate spiking neural networks calibra-

tion. In International Conference on Machine Learning,
pages 6316-6325. PMLR, 2021.

[Li et al., 2022a] Wenshuo Li, Hanting Chen, Jianyuan Guo,
Ziyang Zhang, and Yunhe Wang. Brain-inspired multi-
layer perceptron with spiking neurons. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 783-793, 2022.

[Li et al., 2022b] Yuhang Li, Youngeun Kim, Hyoungseob
Park, Tamar Geller, and Priyadarshini Panda. Neuromor-
phic data augmentation for training spiking neural net-
works. arXiv preprint arXiv:2203.06145, 2022.

[Maass, 1997] Wolfgang Maass. Networks of spiking neu-
rons: the third generation of neural network models. Neu-
ral networks, 10(9):1659-1671, 1997.

[Massa et al., 2020] Riccardo Massa, Alberto Marchisio,
Maurizio Martina, and Muhammad Shafique. An effi-
cient spiking neural network for recognizing gestures with
a dvs camera on the loihi neuromorphic processor. In
2020 International Joint Conference on Neural Networks
(IJCNN), pages 1-9. IEEE, 2020.

[Meng er al., 2022] Qingyan Meng, Mingging Xiao, Shen
Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo.
Training high-performance low-latency spiking neural net-
works by differentiation on spike representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12444-12453, 2022.

[Mostafa, 2017] Hesham Mostafa. ~ Supervised learning
based on temporal coding in spiking neural networks.
IEEE transactions on neural networks and learning sys-
tems, 29(7):3227-3235, 2017.

[Neftci et al., 2019] Emre O Neftci, Hesham Mostafa, and
Friedemann Zenke. Surrogate gradient learning in spik-
ing neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Pro-
cessing Magazine, 36(6):51-63, 2019.

[Rathi er al., 2020] Nitin Rathi, Gopalakrishnan Srinivasan,
Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and
spike timing dependent backpropagation. arXiv preprint
arXiv:2005.01807, 2020.

[Roy et al., 2019] Kaushik Roy, Akhilesh Jaiswal, and
Priyadarshini Panda. Towards spike-based machine

intelligence with neuromorphic computing. Nature,
575(7784):607-617, 2019.

[Rueckauer et al., 2016] Bodo Rueckauer, lulia-Alexandra
Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and
tools for the conversion of analog to spiking convolutional
neural networks. arXiv preprint arXiv:1612.04052, 2016.

[Rueckauer et al., 2017] Bodo Rueckauer, lulia-Alexandra
Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to effi-
cient event-driven networks for image classification. Fron-
tiers in neuroscience, 11:682, 2017.

3075

[Sengupta er al., 2019a] Abhronil Sengupta, Yuting Ye,
Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper
in spiking neural networks: Vgg and residual architec-
tures. Frontiers in neuroscience, 13:95, 2019.

[Sengupta er al., 2019b] Abhronil Sengupta, Yuting Ye,
Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper
in spiking neural networks: Vgg and residual architec-
tures. Frontiers in neuroscience, 13:95, 2019.

[Singh et al., 2021] Sonali Singh, Anup Sarma, Sen Lu,
Abhronil Sengupta, Vijaykrishnan Narayanan, and Chita R
Das. Gesture-snn: co-optimizing accuracy, latency and
energy of snns for neuromorphic vision sensors. In 2021
IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED), pages 1-6. IEEE, 2021.

[Tavanaei et al., 2019] Amirhossein Tavanaei, Masoud Gho-
drati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony Maida. Deep learning in spiking neural net-
works. Neural networks, 111:47-63, 2019.

[Wang et al., 2022] Yuchen Wang, Malu Zhang, Yi Chen,
and Hong Qu. Signed neuron with memory: Towards
simple, accurate and high-efficient ann-snn conversion. In
International Joint Conference on Artificial Intelligence,
2022.

[Wu et al., 2018a] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu,
and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Fron-
tiers in neuroscience, 12:331, 2018.

[Wu er al., 2018b] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu,
and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Fron-
tiers in neuroscience, 12:331, 2018.

[Wu et al., 2019] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu,
Yuan Xie, and Luping Shi. Direct training for spiking
neural networks: Faster, larger, better. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pages 1311-1318, 2019.

[Wunderlich and Pehle, 2021] Timo C Wunderlich and
Christian Pehle. Event-based backpropagation can
compute exact gradients for spiking neural networks.
Scientific Reports, 11(1):1-17, 2021.

[Zenke and Vogels, 2021] Friedemann Zenke and Tim P Vo-
gels. The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural
networks. Neural computation, 33(4):899-925, 2021.

[Zhang and Li, 2020] Wenrui Zhang and Peng Li. Tempo-
ral spike sequence learning via backpropagation for deep
spiking neural networks. Advances in Neural Information
Processing Systems, 33:12022-12033, 2020.

[Zhang et al., 2019] Lei Zhang, Shengyuan Zhou, Tian Zhi,
Zidong Du, and Yunji Chen. Tdsnn: From deep neural
networks to deep spike neural networks with temporal-

coding. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 33, pages 1319-1326, 2019.

	Introduction
	Related Work
	Method
	Neuron Model
	Conversion from ANN to SNN

	Experiments
	ANN-SNN Conversion in One Time Step
	ANN-SNN Conversion with Leakage Mechanism
	Sources of Robustness Brought by Our Method

	Conclusion

