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Abstract
Explaining predictions made by inductive classi-
fiers has become crucial with the rise of complex
models acting more and more as black-boxes. Ab-
ductive explanations are one of the most popular
types of explanations that are provided for the pur-
pose. They highlight feature-values that are suf-
ficient for making predictions. In the literature,
they are generated by exploring the whole feature
space, which is unreasonable in practice. This pa-
per solves the problem by introducing explanation
functions that generate abductive explanations from
a sample of instances. It shows that such functions
should be defined with great care since they cannot
satisfy two desirable properties at the same time,
namely existence of explanations for every individ-
ual decision (success) and correctness of explana-
tions (coherence). The paper provides a parame-
terized family of argumentation-based explanation
functions, each of which satisfies one of the two
properties. It studies their formal properties and
their experimental behaviour on different datasets.

1 Introduction
Recent advances in many AI fields rely on inductive mod-
els, depending on parameters that are adjusted based on a
set of training instances. Such models tend to be large for
practical tasks, in the sense of having a lot of parameters,
and may allow for non-linear interactions between input fea-
tures. Consequently, they are perceived as black-boxes whose
behaviour is difficult to grasp both from their designers and
users’ point of view. This opacity has sparked a new sub-field
of AI, explainable AI (XAI), whose approaches provide ways
to explain what black-box models do and why they do it (see
[Burkart and Huber, 2021] for a recent survey on XAI).

One of the most studied types of explanation is the so-
called abductive explanations, which highlight feature-values
that are sufficient for making a given prediction. For example,
a client was refused a loan because he is unemployed. Such
explanations are generally generated from the whole feature
space (eg., [Darwiche and Hirth, 2020; Ignatiev et al., 2019b;
Audemard et al., 2022; Amgoud, 2021a]). While the ap-
proach is reasonable when models are interpretable, like De-

cision Trees or Random Forests, it is not tractable in case of
black-boxes (see [Cooper and Marques-Silva, 2021]) as it re-
quires an exhaustive exploration of the feature space.

As a solution, the two prominent explanation functions An-
chors [Ribeiro et al., 2018] and LIME [Ribeiro et al., 2016]
and the argument-based function [Amgoud, 2021b] gener-
ate abductive explanations from a sample (i.e., subset) of
instances, avoiding thus exploring the whole feature space.
However, it has been shown in [Amgoud, 2021b; Narodyt-
ska et al., 2019] that the explanations of Anchors/LIME may
be globally inconsistent and thus incorrect. The third func-
tion ensures correct explanations but does not guarantee the
existence of explanations for every instance. Furthermore, it
is very cautious as it simply removes all conflicting explana-
tions that may be generated from the considered sample.

This paper investigates explanation functions that generate
abductive explanations from a subset of feature space while
satisfying desirable properties. Its contributions are fourfold:

The first consists of proving an impossibility result, which
states that a function that generates abductive explanations
from a subset of instances cannot guarantee both existence
of explanations (success) and their correctness (coherence).
This result sheds light on the reason behind violation of suc-
cess by the argument-based function from [Amgoud, 2021b].

The second contribution consists of a parameterized family
of argumentation-based explanation functions, each of which
satisfies one of the two incompatible properties. The ap-
proach starts by generating arguments in favour of classes,
identifies attacks among them, uses stable semantics [Dung,
1995] for generating sets of arguments that can be jointly ac-
cepted, identifies accepted arguments, and uses the latter for
defining the novel types of abductive explanations. Accepted
arguments are defined in our approach using two parameters:
selection function and inference rule. The former selects a
subset of stable extensions and the latter selects (accepted)
arguments from the chosen extensions. We define various in-
stantiations of the two parameters, capturing different criteria
for solving conflicts between arguments.

The third contribution is a formal analysis and a compre-
hensive comparison of the new functions. We show that the
family encompasses the argument-based function, however
the new functions that ensure correctness of explanations per-
form better as they explain more instances and more classes.

The fourth contribution is an experimental analysis of the
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functions on various datasets. The results confirm that abduc-
tive explanations that are generated from datasets (as done by
Anchors) are generally incorrect. They show also that the
new functions which guarantee correctness perform well as
they explain quite an important proportion of instances.

The paper is organized as follows: Section 2 gives
some background, Section 3 defines plausible explana-
tions, Section 4 presents two desirable properties and shows
their incompatibility, Section 5 defines the novel family of
argumentation-based functions, and studies their properties,
Section 6 presents the first experimental results, Section 7 is
devoted to related work, and the last section concludes.

2 Preliminaries
Throughout the paper, we consider a classification theory as a
tuple made of a finite set of features, a function which returns
the domain of every feature and a finite set of classes.
Definition 1 (Theory). A theory is a tuple T = 〈F, D, C〉 s.t.

• F is a finite set of features,

• D is a function on F such that, for every f ∈ F, D(f) is
countable (discrete domains),

• C is a finite set of possible distinct classes with |C| > 1.

We introduce next the useful notion of literal.
Definition 2 (Literal). Let T = 〈F, D, C〉 be a theory. A literal
is a pair (f, v) where f ∈ F and v ∈ D(f). Let Lit(T) denote
the set of all possible literals of T.

A set of literals is consistent if it does not contain two lit-
erals having the same attribute but distinct values.
Definition 3 (Consistency). A setL ⊆ Lit(T) is consistent iff
@(f, v), (f ′, v′) ∈ L such that f = f ′ and v 6= v′. Otherwise,
L is said to be inconsistent.

We call instance any assignment of values to all features.
Definition 4 (Instance). Let T = 〈F, D, C〉 be a theory. An in-
stance is a subset I of literals such that every attribute f ∈ F
appears exactly once in I . Let IT denote the set of all in-
stances of T, called feature space.

A classification model, or classifier, is a surjective function
mapping every instance into a single prediction.
Definition 5 (Classifier). Let T = 〈F, D, C〉 be a theory. A
classifier on T is a surjective function R from IT to C.

An explanation function answers questions of the form:
why does classifier R assign class c to instance x? One of the
most studied types of reasons in the AI literature for a long
time is abductive explanations (eg., [Dimopoulos et al., 1997;
Kakas and Riguzzi, 2000]). More recently, they have been
used for interpreting classifiers (eg., [Shih et al., 2018;
Ignatiev et al., 2019a; Darwiche and Hirth, 2020]). An abduc-
tive explanation is defined as a subset-minimal set of literals
that is sufficient for predicting the class of an instance.
Definition 6 (Abductive Explainer). Let R be a classifier and
T a theory. An abductive explainer is a function ga mapping
every I ∈ IT into the set of any L verifying the following:

a) L ⊆ I ,

b) ∀I ′ ∈ IT \ {I} such that L ⊆ I ′, R(I ′) = R(I),
c) @L′ ⊂ L such that L′ satisfies the above conditions.

The set of literals L is called abductive explanation.
Every instance may have one or several abductive explana-

tions as shown in the following example.
Example 1. Consider a theory made of two binary features
f1, f2 and three classes c1, c2, c3. The table below summa-
rizes the predictions made by a classifier R.

I(T) f1 f2 R(Ii)
I1 0 0 c1
I2 0 1 c2
I3 1 0 c3
I4 1 1 c3

The abductive explanations of I1, I2, I3, I4 are given below.
• ga(I1) = {L1} L1 = {(f1, 0), (f2, 0)}
• ga(I2) = {L2} L2 = {(f1, 0), (f2, 1)}
• ga(I3) = ga(I4) = {L3} L3 = {(f1, 1)}
The condition b) in the above definition states that generat-

ing an abductive explanation for the prediction of an instance
requires testing a set L of literals on the whole feature space,
especially when the classifier R is a black-box. This is not rea-
sonable due to the huge size of the feature space in practice,
and the complexity of querying black-box classifiers like deep
neural networks. Indeed, it has been shown in [Cooper and
Marques-Silva, 2021] that the complexity of finding one ab-
ductive explanation in case of black-box classifiers is co-NP-
complete. In what follows we propose an alternative solution,
which consists of testing L only on a subset of instances.

3 Plausible Abductive Explanations
In the remaining of the paper, we assume fixed but arbitrary
theory T = 〈F, D, C〉 and black-box classifier R. We also con-
sider a sample Y ⊆ IT of the feature space. This set may
represent a dataset on which R is trained or may be gener-
ated in specific ways. Whatever its source, it should satisfy
a property stating that every class in C should be represented
in Y (i.e., ∀c ∈ C, ∃I ∈ Y such that R(I) = c). This con-
dition ensures a quite well-balanced sample. Furthermore,
as we will show later, explanations generated from a sample
are approximations of those generated from the feature space.
Hence, the condition increases the quality of approximations.
We call the latter plausible abductive explanations.
Definition 7 (Plausible Explainer). Let R be a classifier, T a
theory, Y ⊆ IT. A plausible explainer is a function gp map-
ping every I ∈ Y into the set of any L verifying the following:

a) L ⊆ I ,
b) ∀I ′ ∈ Y \ {I} such that L ⊆ I ′, R(I ′) = R(I),
c) @L′ ⊂ L such that L′ satisfies the above conditions.

The set L is called plausible abductive explanation.
Let us illustrate the definition on an example.

Example 2. Let us consider the theory made of four binary
features and three classes. Assume a classifier R which pro-
vides the predictions below for the seven instances in Y .
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Y f0 f1 f2 f3 R(Ii)
I1 0 0 1 0 c1
I2 0 0 1 1 c1
I3 0 1 0 0 c0
I4 0 1 0 1 c2
I5 0 1 1 1 c1
I6 1 1 0 1 c2
I7 1 1 1 0 c2

The function gp returns the following explanations.

• gp(I1) = {L5, L7} L1 = {(f2, 0), (f3, 0)}
• gp(I2) = {L2, L5, L7} L2 = {(f2, 1), (f3, 1)}
• gp(I3) = {L1, L6} L3 = {(f0, 1)}
• gp(I4) = {L4} L4 = {(f2, 0), (f3, 1)}
• gp(I5) = {L2, L7} L5 = {(f1, 0)}
• gp(I6) = {L3, L4} L6 = {(f0, 0), (f1, 1), (f3, 0)}
• gp(I7) = {L3, L8} L7 = {(f0, 0), (f2, 1)}
• L8 = {(f1, 1), (f2, 1), (f3, 0)}
We show1 that every abductive explanation of an instance

is a superset of a plausible explanation of the same instance.
This shows that plausible explanations are approximations of
and shorter than abductive ones.

Proposition 1. Let T be a theory and Y ⊆ IT. For every
I ∈ Y , if L ∈ ga(I), then ∃L′ ⊆ L such that L′ ∈ gp(I).

The following example shows that the converse does not
hold, i.e., a plausible explanation may not be the subset of
any abductive explanation provided by the function ga.

Example 2 (Cont.) Assume that the prediction of the in-
stance I8 ∈ IT below is R(I8) = c1.

f0 f1 f2 f3 R(I8)
I8 1 1 0 0 c1

Note that L1 ∈ gp(I3) while L1 cannot be a subset of an
abductive explanation (i.e., L0 /∈ ga(I3)).

It is worth mentioning that generating one plausible expla-
nation can be achieved in polynomial time. It depends simply
on the number of instances in the sample and the number of
features in the theory. While this gain is important, we show
next that the plausible explainer suffers from a tricky issue.

4 Coherence vs Existence of Explanations
In [Amgoud and Ben-Naim, 2022], the authors introduced a
set of principles for explanation functions that interpret the
global behaviour of a classifier, i.e., those that explain classes
instead of instances. Every principle is seen as a desirable
property that should be satisfied. In what follows we adapt
two of them to functions explaining instances from samples.

Definition 8. Let R be a classifier, T a theory and Y ⊆ IT.
A refined plausible explainer is a function g mapping every
I ∈ Y into g(I) ⊆ gp(I).

1N.B. All proofs are listed in the technical annex because of
space constraints.

The first principle, called success, states that any refined
plausible explainer should return at least one explanation to
every instance. It ensures feedback for end-users.
Principle 1. (Success) A refined plausible explainer g satis-
fies success iff for any classifier R, any theory T, any Y ⊆ IT,
and any I ∈ Y , we have that g(I) 6= ∅.

The second principle, called coherence, states that the ex-
planations of instances labelled with different classes should
be inconsistent. This property prevents the following three
undesirable situations: Assume two instances I, I ′ ∈ Y such
that R(I) 6= R(I ′). Assume also that L is an explanation for I
and L′ is an explanation for I ′. We may have the following:

i) L = L′,
ii) L ⊂ L′,

iii) L 6⊆ L′ and L ∪ L′ is consistent.
It is clearly not reasonable to predict different classes on the
basis of the same set of information (i), ii)). For the third case,
assume L and L′ stand respectively for: Age ≤ 45, salary
≤ 50K and R(I) and R(I ′) stand for accepting and rejecting
a loan respectively. The two explanations are incompatible
since they both match a profile of a customer whose age is
30 and salary is 40K. The first rule states that this customer
should have the loan while the second predicts rejection.
Principle 2. (Coherence) A refined plausible explainer g sat-
isfies coherence iff for any classifier R, any theory T, any
I, I ′ ∈ Y , if R(I) 6= R(I ′), then ∀L ∈ g(I), ∀L′ ∈ g(I ′),
L ∪ L′ is inconsistent.

It is well-known in the literature that the function ga pro-
vides at least one explanation for each instance in the theory’s
feature space. From Proposition 1, it follows that the same
holds for the plausible explainer gp, thus gp satisfies success.
Proposition 2. For any theory T, any Y ⊆ IT, any classifier
R, and any I ∈ Y , gp(I) 6= ∅.

The situation is different for the second principle. Indeed,
the following example shows that the plausible explainer gp
violates coherence, and may provide erroneous explanations.
Example 2 (Cont.) Consider the two instances I2 and I3.
Note that R(I2) 6= R(I3) while L5 ∈ gp(I2), L1 ∈ gp(I3)
and L1 ∪ L5 is consistent. Consequently, there exists I ′ ∈ IT
such that L1 ∪ L5 ⊆ I ′. Since I ′ has a single class, then at
least one of the two explanations (L1, L5) is incorrect.

In what follows, we show that the two principles (success,
coherence) are incompatible when explanations are generated
from a dataset or more generally from a subset of instances.
In other words, there is no (refined) plausible explainer that
can satisfy the two principles at the same time for every clas-
sifier, every theory, and every subset of the feature space.
Theorem 1. There is no refined plausible explainer that sat-
isfies both coherence and success.

To sum up, the previous result shows that generating ab-
ductive explanations from a subset of feature space is a tricky
issue. A refined plausible explainer can either, like gp al-
ways guarantee explanations for every instance but they may
be wrong, or provide correct explanations for only a subset of
instances. The following section defines in a unified setting
various functions for each of the two policies.
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5 Parameterized Family of Explainers
Throughout this section we consider an arbitrary but fixed
subset Y ⊆ IT of instances of theory T = 〈F, D, C〉. We
define a novel parameterized family of refined explanation
functions. The family is based on argumentation theory (see
[Rahwan and Simari, 2009] on more on argumentation) and
follows thus the following steps: it starts by generating ar-
guments from Y , identifies attacks among them, uses a se-
mantics for generating sets of arguments that can be jointly
accepted, identifies accepted arguments, and uses the latter
for defining novel types of abductive explanations.

In our approach, arguments support classes, in the sense
that they provide minimal sets of literals that determine a
class. They are thus independent from instances. An advan-
tage of not considering instances is to reduce the number of
arguments that can be built from Y . Furthermore, explana-
tions of an instance are explanations of its predicted class.

Definition 9 (Argument). An argument built from Y is a pair
〈L, c〉 such that:

• L ⊆ Lit(T) and c ∈ C,

• ∃I ∈ Y such that L ⊆ I ,

• ∀I ∈ Y such that L ⊆ I , R(I) = c,

• @L′ ⊂ L that verifies the above conditions.

L and c are called respectively support and conclusion of the
argument. Arg(Y) denotes the set of arguments built from Y .

The second condition of the above definition ensures that
arguments are extracted from instances of the set Y . It dis-
cards any fallacious argument whose support is not included
in any instance of Y and thus satisfies the third condition in a
vacuous way. The third condition states that the support L is
correlated to the conclusion c.

Example 2 (Cont.) Eight arguments are generated from Y:

• a1 = 〈L1, c0〉 a2 = 〈L6, c0〉
• a3 = 〈L2, c1〉 a4 = 〈L5, c1〉 a5 = 〈L7, c1〉
• a6 = 〈L3, c2〉 a7 = 〈L4, c2〉 a8 = 〈L8, c2〉

Notice that the support of every argument is a plausible
abductive explanation of one or more instances in Y . Before
presenting the result, let us first introduce two notations.
Notations: Let E ⊆ Arg(Y). We denote by covi(E) the set
of instances covered by E , ie., covi(E) = {I ∈ Y | ∃〈L, c〉 ∈
E and L ⊆ I}, and by covc(E) the set of classes covered by
E , ie., covc(E) = {c ∈ C | ∃〈L, c〉 ∈ E}.
Proposition 3. The following properties hold.

• For every 〈L, c〉 ∈ Arg(Y), the set L is consistent,

• L ∈
⋃
I∈Y

gp(I) iff 〈L, c〉 ∈ Arg(Y),

• For every I ∈ Y , ∃〈L, R(I)〉 ∈ Arg(Y) such that L ⊆ I ,

• covi(Arg(Y)) = Y ,

• covc(Arg(Y)) = C iff {R(I) | I ∈ Y} = C,

• The set Arg(Y) is finite.

Arguments may be conflicting, particularly when they vio-
late the coherence property, i.e., their supports are consistent
but their conclusions are different.

Definition 10 (Attack). Let a = 〈L, c〉, a′ = 〈L′, c′〉 ∈
Arg(Y). We say that a attacks a′ iff L ∪ L′ is consistent and
c 6= c′. We denote by Att(a) the set of all attackers of a.

Property 1. The attack relation is symmetric and irreflexive.

Example 2 (Cont.) The attacks between the eight arguments
are depicted in the figure below.

a6 a1a3

a4a7

a2 a5

a8

Arguments and their attack relations form an argumenta-
tion system as follows.

Definition 11 (Argumentation system). An argumentation
system built from Y is a pair AS = 〈Arg(Y),R〉 whereR ⊆
Arg(Y)× Arg(Y) such that for a, b ∈ Arg(Y), (a, b) ∈ R iff
a attacks b (in the sense of Def. 10).

Since arguments are conflicting, they should be evaluated
using a semantics. In this paper, we consider an extension-
based semantics introduced in [Dung, 1995], namely stable
semantics. It computes sets of arguments that can be jointly
accepted. Each set is called a stable extension and represents
a set of compatible plausible explanations.

Definition 12 (Stable Semantics). Let AS = 〈Arg(Y),R〉
and E ⊆ Arg(Y).

• E is conflict-free iff @a, b ∈ E such that (a, b) ∈ R.

• E is a stable extension iff it is conflict-free and ∀a ∈
Arg(Y) \ E , ∃b ∈ E such that (b, a) ∈ R.

Let σ(AS) denote the set of all stable extensions of AS.

Example 2 (Cont.) The AS depicted in the above figure has
nine stable extensions.

• E1 = {a1, a2, a3, a7} E2 = {a1, a3, a5, a7}
• E3 = {a1, a3, a7, a8} E4 = {a2, a3, a4}
• E5 = {a3, a4, a5} E6 = {a3, a4, a8}
• E7 = {a2, a6, a7} E8 = {a5, a6, a7} E9 = {a6, a7, a8}
An argumentation system has one stable extension if the

attack relation is empty and multiple extensions otherwise.

Proposition 4. Let Y ⊆ IT and AS = 〈Arg(Y),R〉.
• σ(AS) 6= ∅,
• σ(AS) = {Arg(Y)} iffR = ∅.
Let us now turn to the evaluation of individual arguments.

Accepted arguments are defined in our approach using two
parameters: selection function and inference rule. The for-
mer selects a subset of stable extensions and the latter selects
arguments from the chosen extensions. We define various in-
stantiations of the two parameters, capturing different criteria
for solving conflicts between arguments.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3107



Definition 13 (Selection Functions). Let Σ = {E1, . . . , Ek}
such that for any i ∈ {1, . . . , k}, Ei ⊆ Arg(Y). We define
below selection functions:

• Max(Σ) = Σ

• Card(Σ) = {E ∈ Σ | ∀E ′ ∈ Σ, |E| ≥ |E ′|}
• Incli(Σ) = {E ∈ Σ | covi(E) is subset-maximal}
• Cardi(Σ) = {E ∈ Σ | ∀ E ′ ∈ Σ, |covi(E)| ≥
|covi(E ′)|}

• Inclc(Σ) = {E ∈ Σ | covc(E) is subset-maximal}
• Cardc(Σ) = {E ∈ Σ | ∀E ′ ∈ Σ, |covc(E)| ≥
|covc(E ′)|}

• Mix(Σ) = Cardc(Cardi(Σ))

Applied to the set of stable extensions of an argumenta-
tion system, the function Max returns all the extensions, Card
selects the extensions that contain more arguments, the two
functions Incli, Cardi focus on the instances covered by the
extensions and choose extensions with more instances. These
functions promote the Success principle, which requires an
explainer to have at least one explanation for each instance.
The functions Inclc, Cardc focus on classes being justified
by arguments. As we will se later, these principles promote
explaining a large number of classes. This is useful when
explanations are provided for classifier designers as they de-
scribe classifier’s behaviour. Finally, the function Mix com-
bines Cardi and Cardc, indeed, it starts by selecting the ex-
tensions that cover more instances, then it refines the result
by selecting extensions that explain more classes.

Example 2 (Cont.) Recall that σ(AS) = {E1, . . ., E9}.
• covi(E1) = {I2, I3, I4, I5, I6}
• covi(E2) = {I1, I2, I3, I4, I5, I6}
• covi(E3) = {I2, I3, I4, I5, I6, I7} with
covc(E1) = covc(E2) = covc(E3) = {c0, c1, c2}

• covi(E4) = {I1, I2, I3, I5} covc(E4) = {c0, c1}
• covi(E5) = {I1, I2, I5} covc(E5) = {c1}
• covi(E6) = {I1, I2, I5, I7} covc(E6) = {c1, c2}
• covi(E7) = {I3, I4, I6, I7} covc(E7) = {c0, c2}
• covi(E8) = {I1, I2, I4, I5, I6, I7} covc(E8) = {c1, c2}
• covi(E9) = {I4, I6, I7} covc(E9) = {c2}
The selection functions return the following extensions:

• Card(σ(AS)) = Cardc(σ(AS)) = Inclc(σ(AS)) =
{E1, E2, E3}

• Incli(σ(AS)) = Cardi(σ(AS)) = {E2, E3, E8}
• Mix(σ(AS)) = {E2, E3}
We show next the links between the selection functions.

Proposition 5. Let Σ be a non-empty set of subsets of argu-
ments of Arg(Y). The following inclusions hold:

• Card(Σ) ⊆ Max(Σ)

• Mix(Σ) ⊆ Cardi(Σ) ⊆ Incli(Σ) ⊆ Max(Σ)

• Cardc(Σ) ⊆ Inclc(Σ) ⊆ Max(Σ)

The selection functions may still return several extensions,
hence we need to identify the strongest arguments which will
yield explanations. For that purpose, we introduce two infer-
ence rules that provide strong arguments from extensions.
Definition 14 (Inference Rules). Let Σ be a non-empty set of
subsets of arguments of Arg(Y) and a ∈ Arg(Y). We define
the following inference rules:

• Universal inference: Σ |∼ ∀a iff a ∈
⋂
E∈Σ

E .

• Existential inference: Σ |∼ ∃a iff ∃E ∈ Σ s.t. a ∈ E .

The next result shows the links between the two rules.
Proposition 6. Let Σ be a non-empty set of subsets of argu-
ments of Arg(Y) and a ∈ Arg(Y). The following hold:

• Σ |∼ ∀a⇒ Σ |∼ ∃a

• If |Σ| = 1, then Σ |∼ ∀a ⇐⇒ Σ |∼ ∃a.
Selection functions and inference rules are combined for

defining accepted arguments. Each pair gives birth to a crite-
rion for declaring an argument as accepted.
Definition 15 (Accepted Arguments). Let AS = 〈Arg(Y),
R〉, α be a selection function and β an inference rule. An
argument a ∈ Arg(Y) is accepted, denoted by AS |∼ α,β

a, iff
α(σ(AS)) |∼ β

a.
We show that accepted arguments under the function Max

(which retains all extensions) are non-attacked ones if Max is
combined with the universal rule and they are all arguments
of the system when Max is combined with the existential rule.
Proposition 7. Let AS = 〈Arg(Y),R〉 and a ∈ Arg(Y).

• AS |∼ Max,∀
a ⇐⇒ Att(a) = ∅

• {a ∈ Arg(Y) | AS |∼ Max,∃
a} = Arg(Y)

Below are links between accepted arguments returned us-
ing the same inference rule but distinct selection functions.
Proposition 8. Let AS = 〈Arg(Y),R〉, a ∈ Arg(Y), and
α, α′ be two selection functions. If α(Σ) ⊆ α′(Σ), then:

• AS |∼ α′,∀
a ⇒ AS |∼ α,∀

a

• AS |∼ α,∃
a ⇒ AS |∼ α′,∃

a

Below is a complete list of links between sets of accepted
arguments returned by pairs of selection principles and infer-
ence rules.
Proposition 9. The following implications hold.

• AS |∼ α,∀
a⇒ AS |∼ α,∃

a, ∀α

• AS |∼ Max,∀
a⇒AS |∼ Card,∀

a

• AS |∼ Max,∀
a ⇒ AS |∼ Incli,∀a ⇒ AS |∼ Cardi,∀a ⇒

AS |∼ Mix,∀
a

• AS |∼ Max,∀
a⇒AS |∼ Inclc,∀a⇒AS |∼ Cardc,∀a

• AS |∼ Card,∃
a⇒AS |∼ Max,∃

a

• AS |∼ Mix,∃
a ⇒ AS |∼ Cardi,∃a ⇒ AS |∼ Incli,∃a ⇒

AS |∼ Max,∃
a
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Y I1 I2 I3 I4 I5 I6 I7
gMax,∀ ∅ ∅ ∅ ∅ ∅ ∅ ∅
gCard,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gIncli,∀ ∅ ∅ ∅ {L4} ∅ {L4} ∅
gCardi,∀ ∅ ∅ ∅ {L4} ∅ {L4} ∅
gInclc,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gCardc,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gMix,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅

Table 1: The outcomes of all functions gα,∀ in Example 2.

• AS |∼ Cardc,∃a⇒AS |∼ Inclc,∃a⇒AS |∼ Max,∃
a

We are now ready to define our new parameterized family
of plausible explanation functions. For a given instance I ,
they return the support of any argument in favour of R(I) in-
ferred by following one of the principles defined above. The
support of the argument should be part of the instance I .

Definition 16 (Explanation Functions). Let T be a theory,
Y ⊆ IT, R a classifier, α a selection function and β an in-
ference rule. An explainer is a function gα,β mapping every
instance I ∈ Y into a set of subsets of literals such that every
L ∈ gα,β(I) satisfies the following:

• AS |∼ α,β〈L, R(I)〉 where AS = 〈Arg(Y),R〉,
• L ⊆ I .

Example 2 (Cont.) Table 1 summarizes the explanations of
the seven instances provided by every function which uses the
universal inference rule. Note that the new functions explain
more instances than the argument-based function (which is
equivalent to gMax,∀) from [Amgoud, 2021b].

We show that all the above defined explanation functions
are refined plausible explainers, i.e., they return subsets of
explanations computed by the function gp (see Definition 8).

Proposition 10. Let T be a theory, Y ⊆ IT and R a classifier.
For every selection function α, every inference rule β, every
I ∈ Y , it holds that gα,β(I) ⊆ gp(I).

The following results show the links between the various
explanation functions.

Proposition 11. Let I ∈ IT.

• gα,∀(I) ⊆ gα,∃(I) for any selection function α

• gMax,∀(I) ⊆ gCard,∀(I)

• gMax,∀(I) ⊆ gIncli,∀(I) ⊆ gCardi,∀(I) ⊆ gMix,∀(I)

• gMax,∀(I) ⊆ gInclc,∀(I) ⊆ gCardc,∀(I)

• gCard,∃(I) ⊆ gMax,∃(I)

• gMix,∃(I) ⊆ gCardi,∃(I) ⊆ gIncli,∃(I) ⊆ gMax,∃(I)

• gCardc,∃(I) ⊆ gInclc,∃(I) ⊆ gMax,∃(I)

It is worth mentioning that the explanation function gMax,∃

corresponds exactly to the plausible explanation function gp.

Property 2. It holds that gMax,∃ = gp.

The function gMax,∀ coincides with the function g∗ intro-
duced in [Amgoud, 2021b]. We show that this function is
very cautious as it discards any explanation which is incoher-
ent with at least one other explanation.
Proposition 12. Let AS = 〈Arg(Y),R〉 and I ∈ Y .
gMax,∀(I) = {L ∈ gp(I) | ∀L′ ∈ gp(I

′), if R(I) 6=
R(I ′) then L ∪ L′ is inconsistent}.

We show next how the various explainers behave wrt the
two principles of Coherence and Success.
Theorem 2. Let AS = 〈Arg(Y),R〉, α be a selection func-
tion and β an inference rule. If |σ(AS)| > 1, then:

• gα,β satisfies Success iff α = Max and β = ∃ .

• gα,β satisfies Coherence iff β = ∀.
The above result shows that gMax,∃ (or gp) is the only func-

tion which satisfies success and all the other functions that
are based on the existential inference rule violate both suc-
cess and coherence. Consequently, those functions are not
reasonable. Note that in this paper, we investigated the differ-
ent possibilities for the purpose of completeness and proving
formally which function is not suitable and why it is not.

Coherence is guaranteed by all the functions that are
based on the universal inference rule. Furthermore, gCard,∀,
gMix,∀ and gCardc,∀ are more informative than the other func-
tions that use the same inference rule. Indeed, they provide
more explanations for instances, and can thus explain more
instances. However, the three functions may return different
outcomes as they follow different strategies. gCard,∀ is less
interesting than the two others. It selects the extensions that
contain more arguments, but the latter may support the same
class as in our running example (the arguments in the exten-
sion E1 are all in favour of the class c0). Hence, any instance
whose prediction is c1 gets an empty set of explanations.

The function gMix,∀ maximizes the number of instances
for which explanations are provided, this is important in do-
mains like healthcare or banking where explanations are gen-
erally requested by end-users.
gCardc,∀ maximizes the number of explained classes. It is

suitable for understanding the global behaviour of a classifier,
especially for a problem with a lot of classes.

6 Experimental Analysis
Recall that the function gp generates from a sample all pos-
sible abductive explanations, which may be incorrect. Our
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novel functions that use the universal inference rule guaran-
tee correctness of explanations at the cost of success. The
aim of this section is to confirm experimentally these find-
ings. We provide two experiments, the first one measures
the proportion of correct explanations provided by gp while
the second measures the proportion of explained instances by
novel functions that satisfy coherence. We implemented five
functions: gp, the argument-based function gMax,∀ from [Am-
goud, 2021b] and the three new functions that follow differ-
ent strategies: gCard,∀, gCardi,∀ and gCardc,∀. Details on the
implementation are given in the supplementary material.

We tested the four functions on various datasets, namely
diabetes, titanic available on the Kaggle website, and lending
adult (shortened) and recidivism (shortened) that are avail-
able on Anchors’ experiments [Ribeiro et al., 2018]. In each
experiment, we built the whole feature space, shuffled the in-
stances, and kept different percentages of the whole space
from which we generate arguments.

%space adult diabetes lending titanic rcdv

12.50 0.00 0.00 0.00 0.00 0.00
25.00 0.00 0.01 0.02 0.00 0.00
37.50 0.05 0.19 0.14 1.77 0.00
50.00 0.52 1.01 0.85 3.48 0.04
62.50 2.21 4.12 3.98 8.14 0.39
75.00 7.78 13.18 13.76 16.39 2.84
87.50 27.36 37.60 41.51 32.63 16.03
93.75 50.48 60.36 66.66 50.74 38.96

100.00 100.00 100.00 100.00 100.00 100.00

Table 2: Percentage of unattacked arguments computed from the
portion % space of the whole feature space.

For checking the proportion of correct explanations pro-
vided by gp in a dataset, we measure the percentage of non-
attacked arguments generated from the dataset. Table 2 shows
that it is very unlikely to find correct explanations by probing
a model with a small part of the feature space. This might not
entirely reflect the nature of a problem if natural restrictions
of possible values confine real instances to a small subspace
(something usually hard to know in practice).

Function adult diabetes titanic rcdv lending

gMax,∀ 0 0 0 0 0
gCardc,∀ 0 0 0 0 0
gCard,∀ 40 60 43 48 48
gCardi,∀ 14 36 81 96 42

Table 3: Percentage of explained instances for each dataset.

Table 3 gives the proportion of instances of a dataset that
are explained by the argument-based function gMax,∀ and the
three new functions, given the guarantee of coherence accord-
ing to Theorem 2. While gMax,∀ fails to explain any instance
in the chosen datasets, gCard,∀ and gCardi,∀ show better perfor-
mances. gCardc,∀, which maximises the number of explained

classes, fails as well but for the simple reason that the classi-
fication theories of the datasets contain only two classes.

7 Related Work
Most work on finding explanations in the ML literature is ex-
perimental, focusing on specific models, exposing their in-
ternal representations to find correlations post hoc between
these representations and the predictions. There haven’t been
a lot of formal characterizations of explanations in AI, with
the exception of [Ignatiev et al., 2019b], which defines ab-
ductive explanations and adversarial examples in a fragment
of first order logic, [Darwiche and Hirth, 2020], who focused
on semi-factuals, that they consider a specific form of coun-
terfactuals, [Amgoud, 2021a] who defined in a unified set-
ting abductive explanations, counterfactuals and contrastive
explanations. These works generate explanations from the
whole feature space, which in practice is not reasonable. In
our work, we generate abductive explanations for black-box
classifiers from subsets of instances. Unlike existing ap-
proaches which are based on samples, our novel functions
that use the universal inference rule offer theoretical guaran-
tees as they ensure correctness of explanations. They have
also a greater explanatory power than the unique function in
the literature that satisfies correctness, namely the argument-
based function from [Amgoud, 2021b].

Unlike our work which explains existing black-box mod-
els, [Cocarascu et al., 2020] proposed classification models
that are based on arguments. Their explanations are defined
in dialectical way as fictitious dialogues between a proponent
(supporting an output) and an opponent (attacking the output)
following [Dung, 1995]. The authors in [Zhong et al., 2019;
Rago et al., 2018] followed the same approach for defining
explainable multiple decision systems or scheduling systems.

In [Borg and Bex, 2021; Liao and van der Torre, 2020],
the authors investigated explainability of argument status in
Dung style argumentation setting. This is quite far from our
work which uses argumentation for explaining ML models.

8 Conclusion
The paper proposed an argumentation-based approach for
defining explanation functions for black-box classifiers. The
novel functions provide abductive explanations from samples
of instances, some of them guarantee correctness of their out-
comes while one function ensures existence of explanations.

This work lends itself to a number of developments in
order to improve its generality and the compromise coher-
ence/success of the explanations. We can consider other at-
tack relation for minimizing the distance between plausible
and absolute explanations. The idea is to take into account
weights of features and thus assign a basic weight to every
argument reflecting the importance of features it is based on.
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