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Abstract
We consider the computational problem of finding
a smallest local explanation (anchor) for classify-
ing a given feature vector (example) by a black-box
model. After showing that the problem is NP-hard
in general, we study various natural restrictions of
the problem in terms of problem parameters to see
whether these restrictions make the problem fixed-
parameter tractable or not. We draw a detailed and
systematic complexity landscape for combinations
of parameters, including the size of the anchor, the
size of the anchor’s coverage, and parameters that
capture structural aspects of the problem instance,
including rank-width, twin-width, and maximum
difference.

1 Introduction
Explainable AI aims to help humans understand the com-
plex decisions made by the opaque inner workings of ma-
chine learning (ML) models. Ideally, one tries to explain the
entire ML model (global explanation) or replace an opaque
model with an interpretable one [Angelino et al., 2017;
Hu et al., 2019; Rudin, 2019; Ignatiev et al., 2021]. How-
ever, this approach has limits, as many applications require
using non-interpretable models such as Neural Networks. In
such cases, one can fall back to a local model-agnostic ap-
proach, which generates post-hoc explanations of individ-
ual decisions made by the opaque model (local explana-
tion), treating the model as a black box [Ribeiro et al., 2016;
Lundberg and Lee, 2017; Shrikumar et al., 2017; Shrotri et
al., 2022].

A central concept for local model-agnostic explanations is
the notion of an anchor [Ribeiro et al., 2018]. An anchor pro-
vides a local explanation in terms of a subset of features that
“anchors” the prediction or classification of a given data point
(or example) locally. That means changes to the rest of the
feature values of the example do not matter. Thus, an anchor
determines a small set of features sufficient to anchor the pre-
diction. Practical heuristics for computing anchors have been
successfully applied in many scenarios and come with the ad-
vantage of offering human-understandable explanations. For
this reason, one prefers anchors that are small, providing con-
cise explanations, while still applying to a large region.

For instance, assume a loan application has been declined,
and we want to compute an anchor that could consist of two
features, say, the applicant’s income and age. Ideally, there
should be no other applicants with the same income and age
whose application has been accepted. The anchor’s robust-
ness can be measured in terms of the anchor’s coverage (pre-
vious applicants with the same income and age whose appli-
cation has been rejected), either in absolute numbers or as the
fraction between the size of the coverage and the total number
of applications.

In this paper, we provide the first study of the computation
complexity of computing small anchors. We show that the ex-
act computation of small anchors is NP-hard. Based on this
insight, we roll out a systematic investigation of the param-
eterized complexity of this problem by taking various prop-
erties of the sought-for anchor or structural properties of the
input data in terms of problem parameters into account. Our
results draw a detailed complexity-landscape of the problem
(see Figure 1), indicating regions where the problem is

1. fixed-parameter tractable (i.e., solvable in uniform poly-
nomial time for fixed parameter values),

2. XP-tractable (i.e., solvable in nonuniform-polynomial
time for fixed parameter values), and

3. paraNP-hard (remains NP-hard even for fixed parame-
ter values).

Parameterized complexity considers problems in a two-
dimensional setting, where a problem instance is a pair (I, k),
where I is the main part and k is the parameter. A param-
eterized problem is fixed-parameter tractable if there exists
a computable function f such that instances (I, k) can be
solved in time f(k)∥I∥O(1); one can show that a problem
is unlikely to be fixed-parameter tractable by showing it to
be hard for the complexity classes W[1] or W[2]. The prob-
lem is XP-tractable if it can be solved in time ∥I∥f(k). Fi-
nally, a parameterized problem is paraNP-hard if the prob-
lem is NP-hard if the parameter is replaced by some con-
stant. paraNP-hard problems are not XP-tractable unless
P = NP. For a more in-depth treatment of parameterized
complexity we refer to other sources [Cygan et al., 2015;
Downey and Fellows, 2013].

Our results extend a recent line of research that investi-
gates explainability and interpretability of ML models from
a (parameterized) complexity theoretic perspective [Barceló
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Figure 1: Diagram of the parameterized complexity of MA when
parameterized by subsets of {k, rw, tww, c, δmax}; we refer to Sec-
tions 2 and 3 for a definition of these parameters. The background
color indicates the parameterized complexity classification as indi-
cated, black and red boxes indicate the results establishing the classi-
fication. An arrow from a combination of parameters A to a combi-
nation of parameters B indicates that B dominates A. Note that the
tractability result for tww+k requires a witness for small twin-width
to be given as part of the input. We omit combinations of parameters
for which a subset is already fpt. Thus, from all 32 combinations or
the parameters k, rw, tww, δmax, and c, eight are paraNP-hard, two
are W[2]-hard and in XP, and the remaining 22 are FPT.

et al., 2020; Ganian et al., 2018; Kobourov et al., 2022;
Ordyniak and Szeider, 2021; Simonov et al., 2019].

2 Problem Definition
A classified data set (CDS) is a triple (E,F,m) where E is
a multi-set of examples over the set F of features and m is
a mapping, called classification, that assigns each example
e ∈ E a non-negative integer m(e). Here, an example is a
mapping e : F → Z. We think of m as being computed by a
black-box model that has been trained earlier from a separate
set of examples and whose classifications we want to explain.

We say that two examples e1, e2 agree on a feature f ∈ F
if e1(f) = e2(f); otherwise they disagree on f .

Given a CDS (E,F,m), an anchor for an example x ∈ E
is a set A ⊆ F of features such that all e ∈ E with m(x) ̸=
m(e) disagree with x on some feature in A. The coverage of
A is the number of all examples e ∈ E \ {x} with m(e) =
m(x) that agree with x on all features in A. We can now
formulate our central computational problem:

MINIMUM ANCHOR (MA)

Input: A CDS (E,F,m), an example x ∈ E, and
two integers k, c.

Question: Is there an anchor A for x of size at most k
and coverage at least c?

For an instance I = ((E,F,m), x, k, c) of MA, we de-
note by pE and nE the subsets of E containing all examples

e ∈ E such that m(e) = m(x) and m(e) ̸= m(x), respec-
tively. We will refer to the examples in pE and nE as positive
and negative examples, respectively. Instead of the size c of
the coverage we might want to achieve a coverage that in-
cludes a certain fraction q of the examples in E; in this case,
we can put c = q · |pE|. Interestingly, since our results show
that the parameter c is not necessary for any of our tractability
results as can seen from Figure 1, i.e., for all considered pa-
rameterization the complexity remains the same after adding
c as an additional parameter, it follows that all our results still
hold when we require the coverage to have a certain fraction
q instead of a size c.

Let I = ((E,F,m), x, k, c) be an instance of MA. In
the following we will show that we can normalize I into
an equivalent instance of MA that has only two classes and
where the domain of every feature is Boolean. We denote
by N(I) = ((E′, F,m′), x′, k, c) the normalized instance
of I that is defined as follows. E′ is the set {e′ | e ∈ E}
such that, for every f ∈ F , e′(f) = 0 if e(f) = x(f) and
e′(f) = 1 otherwise. Moreover, m′(e′) = 0 if m(e) ̸= m(x)
and m′(e′) = 1 otherwise. Note that x′ now satisfies that
m(x′) = 1 and x(f) = 0 for every f ∈ F . We say that I is
normalized if I = N(I). Thus, all the features of a normal-
ized instance are Boolean, i.e., range over the domain {0, 1}
and m is Boolean as well, i.e., m(e) ∈ {0, 1} for all e ∈ E.
The following lemma shows that I and N(I) are equivalent
instances of MA.

Lemma 1. An instance I = ((E,F,m), x, k, c) of MA has
a solution if and only if so does the instance N(I).

We will consider several parameters that restrict the graph-
ical structure of the MA instance I by means of its incidence
graph GI(I). This is the bipartite graph with vertex-partition
(E,F ) having an edge between an example e ∈ E and a fea-
ture f ∈ F iff e(f) ̸= x(f), i.e., the edge indicates that the
example e disagrees with x on feature f .

Finally, we would like to note that MA is computational
equivalent to the following interesting and natural general-
ization of the well-known DOMINATING SET problem.

MA DOMINATING SET

Input: A graph G = (V,E), where V is partitioned
into B, P , and N , and two integers k and c.

Question: Is there a set D ⊆ B with |D| ≤ k that
dominates N , i.e., N ⊆ NG(D), and leaves
at least c vertices in P not dominated, i.e.,
|P \NG(D)| ≥ c? Here, NG(D) denotes the
set of all neighbors of any vertex in D.

The equivalence between the two problems follows be-
cause there is a one-to-one correspondence between the inci-
dence graph of an MA instance and an instance of MA DOM-
INATING SET; after setting B to the set of features, P to the
positive examples, and N to the set of negative examples.

3 Structural Parameters
Besides the anchor size k and the coverage size c, we consider
structural parameters that depend on the given instance I =
((E,F,m), x, k, c) of MA.
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We first consider maximum difference, which has been
used in a related context by Ordyniak and Szeider [2021].
The maximum difference δmax(X) of a CDS X = (E,F,m)
is the largest number of features on which any two exam-
ples e, e′ ∈ E disagree on. This parameters is attractive as
it has been observed that for real-world instances, the maxi-
mum difference tends to be surprisingly small [Ordyniak and
Szeider, 2021]. In our setting, we define the maximum dif-
ference δmax(I) of an MA instance I = ((E,F,m), x, k, c)
as the largest number of features any example e ∈ E \ {x}
with m(e) ̸= m(x) differs from x. Consequently δmax(I) ≤
δmax(X), thus it is likely that the parameter is even smaller
than the one considered by Ordyniak and Szeider.

The following observation (whose proof follows along the
same lines as the proof of Lemma 1) shows that neither the
parameter δmax(I) nor the incidence graph of I change after
normalization. This will later allow us to work solely on the
simpler normalized instances.
Observation 2. Let I = ((E,F,m), x, k, c) be an in-
stance of MA. Then, GI(I) = GI(N(I)) and δmax(I) =
δmax(N(I)).

There is a plethora of width parameters for graphs that we
can utilize for MA by means of the incidence graph. We
cover this field of width parameters by considering three of
the most fundamental ones. For comparing the generality
of width parameters p and q, the following notion is useful.
We say that p dominates q if, for every class of instances for
which q is bounded, p is also bounded; p strictly dominates
q if p dominates q, but q does not dominate p. If p and q
dominate each other, they are domination-equivalent.

treewidth (tw) is perhaps the most famous width parameter
which measures how “tree-like” a graph is. Graphs of
bounded treewidth are sparse [Bodlaender, 2007].

rank-width (rw) strictly dominates treewidth, as also dense
graphs (even cliques) can have small rank-width, but any
class of graphs of bounded treewidth has also bounded
rank-width [Oum and Seymour, 2006].

twin-width (tww) has been recently introduced [Bonnet et
al., 2022b]. It strictly dominates rank-width, as any class
of graphs of bounded rank-width has also bounded twin-
width, but the reverse isn’t true. For instance, planar
graphs have bounded twin-width but can have arbitrarily
high rank-width1.

Thus, for an instance I = ((E,F,m), x, k, c) of MA we
simply write tw(I) = tw(GI(I)), rw(I) = rw(GI(I)), and
tww(I) = tww(GI(I)).

The following is now a direct consequence of Observa-
tion 2 and implies that none of our parameters changes after
normalization.
Corollary 3. Let I = ((E,F,m), x, k, c) be an instance of
MA. Then, δmax(I) = δmax(N(I)), tw(I) = tw(N(I)),
rw(I) = rw(N(I)), and tww(I) = tww(N(I)).

1Bonnet et al. [2022b; 2021a; 2021b] list more than a dozen
of diverse fundamental graph classes which have bounded twin-
width, and for all of them corresponding decompositions can be fpt-
approximated.
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Figure 2: Domination between width parameters and their renaming
variants. a → b means that b dominates a.

E f1 f2 f3 f4 f5 f6 class
x 1 0 -2 1 0 -1 1
e1 1 0 -2 3 2 -2 1
e2 1 0 -2 2 0 -1 1
e3 1 0 -2 5 0 -2 1
e4 1 5 -2 4 1 4 1
e5 -1 0 -2 0 1 1 2
e6 1 0 -1 1 -1 0 2
e7 0 0 0 0 0 0 3

x′ 0 0 0 0 0 0 1
e′1 0 0 0 1 1 1 1
e′2 0 0 0 1 0 0 1
e′3 0 0 0 1 0 1 1
e′4 0 1 0 1 1 1 1
e′5 1 0 0 1 1 1 0
e′6 0 0 1 0 1 1 0
e′7 1 0 1 1 0 1 0

x

e′1
e′2
e′3
e′4
e′5
e′6
e′7

f1

f2

f3

f4
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Figure 3: An instance I of MA with CDS X and example x (top
part of the table), the normalized instance N(I) (bottom part of the
table) and the incidence graph GI(I) (with blue/red vertices indicat-
ing positive/negative examples) of I (right). Note that, for example,
{f1, f3} is an anchor for x with coverage 4.

Therefore, in the following (and throughout the rest
of the paper), we can assume that any instance I =
((E,F,m), x, k, c) of MA is normalized.

By the notion of renaming, borrowed from a similar notion
for propositional CNF formulas [Lewis, 1978], we can further
strengthen width parameters for MA instances. A renaming
IR of a normalized MA instance I = ((E,F,m), x, k, c)
with respect to a subset R ⊆ F is the MA instance IR =
((ER, F,mR), xR, k, c) where ER = { eR | e ∈ E } with
eR(f) = 1 − e(f) if f ∈ R and eR(f) = e(f) if f /∈ R;
mR(eR) = m(e). For each of the above width measures
w ∈ {tw, rw, tww}, we define a renaming variant w∗ where
w∗(X) = minR⊆F w(XR).

tw∗ strictly dominates tw (domination follows by defini-
tion, to see that the domination is strict, construct a normal-
ized MA instance I = ((E,F,m), x, k, c), |E| = |F | = n
where e(f) = 1 ̸= x(f) = 0 for all e ∈ E \ {x} and f ∈ F ;
the incidence graph of I is a complete bipartite graph and thus
tw(I) = n; however the incidence graph of IF is edge-less
and thus tw∗(I) = 0). rw and tww, however, are domination-
equivalent with their renaming variants, since these two pa-
rameters are known to be closed under local complementation
[Oum, 2005; Bonnet et al., 2023]. We therefore have the re-
lationship in terms of domination as indicated in Figure 2.
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4 Hardness Results
Here, we show our hardness results for the MA problem. We
start by giving a simple polynomial-time reduction from the
well-known HITTING SET (HS) problem to the MA prob-
lem. In the HS problem one is given a family S of sets over
some universe U and an integer h and one asks whether S
has a hitting set of size at most h, i.e., a set H ⊆ U (with
|H| ≤ h) such that H ∩ S ̸= ∅ for every S ∈ S . For a
given instance I = (S, U, h) of HS, we construct the instance
((E,F,m), x, k, c) of MA, denoted by LA(I), as follows.
We set c = 0, k = h, F = U and for every set S ∈ S , E con-
tains the example eS with m(eS) = 0 such that eS(f) = 1
if f ∈ S and eS(f) = 0 otherwise for every f ∈ F . Fi-
nally, let x be the example with x(f) = 0 for every f ∈ F
and m(x) = 1; note that x is also part of E. Clearly, LA(I)
can be computed in polynomial-time. The following lemma
shows that LA(I) is indeed a reduction from HS to MA.

Lemma 4. An instance I = (S, U, h) of HS has a solution
if and only if the instance LA(I) of MA does.

Proof. Towards showing the forward direction, let H ⊆ U
be a hitting set of size at most h for I . Then, H is an anchor
for x, because for every example eS for some S ∈ S , it holds
that H ∩ S ̸= ∅ and moreover eS disagrees with x on all
features in H ∩ S. Because |H| ≤ h = k and c = 0, we
obtain that H is a solution for LA(I).

Towards showing the reverse direction, let A be an anchor
of x of size at most k. Then, A is a hitting set for I , because
for every set S ∈ S , the example eS disagrees with x on
some feature f ∈ A, which implies that f ∈ S and therefore
A ∩ S ̸= ∅. Because |A| ≤ k = h, it follows that A is a
solution for I .

Because HS is W[2]-hard parameterized by solution size h
and because the reduction LA(I) maps the parameter h to k,
we obtain.

Corollary 5. MA is W[2]-hard parameterized by k even if
c = 0.

We will show one more related hardness result for MA
in Section 7, i.e., we will show that MA is NP-hard even
if δmax ≤ 2, c = 0, and the incidence graph has bounded
twin-width.

5 Algorithms Using δmax and k

In this section we show that MA is in XP parameterized by k
alone and fpt parameterized by δmax + k. The former algo-
rithm is a simple brute-force algorithm that uses the fact that
we can enumerate all potential anchors A in time O(|F |k)
and that we can then check whether A is indeed an anchor
having the required coverage in time O(|E||A|) = O(|E|k).
This gives us the following theorem.

Theorem 6. MA can be solved in time O(|F |k|E|k) and is
therefore in XP parameterized by k.

The remainder of this section is devoted to a proof of the
following theorem, which shows that MA can be solved effi-
ciently for instances with small δmax + k.

Theorem 7. MA can be solved in time O(δkmax|I||E|k) and
is therefore fpt parameterized by δmax + k.

The main idea behind the algorithm is to show that we can
efficiently enumerate all (minimal) anchors of size at most k.
Towards showing this, we use a simple reduction to the HS
problem and the following well-known result.

Proposition 8 (Downey and Fellows 2013). Let I =
(S, U, h) be an instance of HS with all sets in S having size
at most γ. Then, there is an algorithm that enumerates all
minimal hitting sets of size at most h for I in time O(γh|I|).

Consider an instance I = ((E,F,m), x, k, c) of MA.
Then, a set A of features is an anchor of x if and only if
for every example e ∈ nE, A contains a feature f with
e(f) ̸= x(f). In other words, for every example e ∈ nE,
an anchor A has to contain (hit) at least one feature from the
set X(e) = { f | e(f) ̸= x(f) }. Therefore, A is an an-
chor for x if and only if A is a hitting set of (S(nE), F ) with
S(nE) = {X(e) | e ∈ nE }. Because the cardinality of
every set in S(nE) is at most δmax, we obtain from Proposi-
tion 8 that:

Lemma 9. Let I = ((E,F,m), x, k, c) be an instance of
MA. Then, there is an algorithm that enumerates all minimal
anchors of size at most k for I in time O(δkmax|I|).

We are now ready to prove Theorem 7.

Proof of Theorem 7. Given an instance I =
((E,F,m), x, k, c) of MA, we use Lemma 9 to enu-
merate all minimal anchors of I in time O(δkmax|I|). Then,
for every such anchor A, we count the number n(e) of
examples e ∈ pE that agree with x on all features in A in
time O(|E|k). If n(e) ≥ c for one of those anchors, we
return yes. Otherwise, we continue with the next anchor.
Finally, if none of the anchors covers at least c examples, we
return no. The total run-time of the algorithm is therefore
O(δkmax|I||E|k) as stated.

6 An Algorithm for Rank-width
In this section, we provide an fpt-algorithm for MA parame-
terized by the rank-width of the incidence graph of the input
instance. Indeed, we will show something slightly stronger,
namely, that given an instance I = ((E,F,m), x, k, c) of
MA we can find an anchor for x of minimum size that has
coverage at least c or output correctly that no such anchor
exists. Throughout this section, we will assume that I is nor-
malized, which we are allowed to do due to Lemma 1 and
Corollary 3. The following is the main result of this section.

Theorem 10. MA is fixed-parameter tractable parameter-
ized by the rank-width of GI(I).

The remainder of this section is devoted to a proof of The-
orem 10. At a first glance one might be tempted to think that
Theorem 10 can be obtained by a simple application of Cour-
celle’s theorem or more specifically by the known extensions
of Courcelle’s theorem for optimization problems [Arnborg
et al., 1991]. Unfortunately, on a second glance, this does
not seem to be the case because the MA problem has two
orthogonal optimization criteria, i.e., we want to minimize
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the size of the anchor while at the same time maximizing the
coverage of the anchor. We therefore have to resort to pro-
vide a dedicated algorithm that is based on a dynamic pro-
gramming algorithm. along a given rank decomposition; in-
deed for simplicity we will provide the algorithm on a NLC-
decomposition, which is known to be asymptotically equiv-
alent to rank-width [Wanke, 1994]. Before we start with an
informal description of the algorithm in Subsection 6.3, let us
first fix the main notation required to describe the algorithm.

6.1 Graphs and NLC-width
We will assume that the reader is familiar with basic graph
theory (see e.g., [Bang-Jensen and Gutin, 2009; Diestel,
2017]). We consider (vertex and edge labelled) undirected
graphs. Let G = (V,E) be a graph. We write V (G) = V
and E(G) = E for the sets of vertices and edges of G, re-
spectively. We denote an edge between u ∈ V and v ∈ V by
{u, v}. For a set V ′ ⊆ V of vertices, we let G[V ′] denote the
graph induced by the vertices in V ′, i.e. G[V ′] has vertex set
V ′ and edge set E ∩{ {u, v} | u, v ∈ V ′ } and we let G−V ′

denote the graph G[V \ V ′]. For a set E′ ⊆ E of edges we
let G − E′ denote the graph with vertex set V and edge set
E \ E′.

A ω-graph is a pair (G,λ), where G = (V,E) is a graph
and λ : V → [ω] is a vertex label mapping that labels every
vertex v ∈ V with a label λ(v) from [ω] = {1, . . . , ω}. An
initial ω-graph is a ω-graph consisting of exactly one vertex v
(say, with label i) which is denoted by i(v).

Node label control-width (NLC-width) is a graph parameter
defined as follows [Wanke, 1994]: let ω ∈ N be a positive
integer. A ω-NLC-expression tree of a graph G = (V,E) is a
subcubic tree B, where every node b of B is associated with
a ω-graph (denoted by (Gb, λb)), such that:

1. Every leaf represents an initial ω-graph i(v) with i ∈ [ω]
and v ∈ V .

2. Every non-leaf node b with one child c is a rela-
belling node and has an associated relabelling function
γb : [ω] → [ω]. Moreover, (Gb, λb) is obtained from
(Gc, λc) by relabelling all vertices of Gc with label i to
label γb(i) for every i ∈ [ω].

3. Every non-leaf node b with two children, i.e. a left
child l and a right child r, is a join node and has an
associated join matrix, i.e. a binary ω × ω matrix Mb.
Moreover, (Gb, λb) is obtained from the disjoint union
of (Gl, λl) and (Gr, λr) by adding an edge from all ver-
tices labeled i in Gl to all vertices labelled j in Gr when-
ever Mb[i, j] = 1.

4. G is equal to the Gr for the root node r of B.

The NLC-width of a graph G, denoted by nlcw(G), is the
minimum ω for which G has a ω-NLC-expression tree. A ω-
NLC-expression tree is nice if every relabelling node b has
a relabelling function γb : [ω] → [ω] such that for some
i, j ∈ [ω], γb(i) = j and γb(c) = c for all c ∈ [ω] \ {i}.
Let b be a node in a ω-NLC-expression tree of a graph G. We
let Vb denote the set of vertices of Gb. By the definition of
a ω-NLC-expression tree, if u, v ∈ Vb have the same label
in (Gb, λb) and w ∈ V (G) \ Vb, then u is adjacent to w in

G if and only if v is. Computing the NLC-width of a graph
is NP-hard [Gurski and Wanke, 2005], however, we have the
following.
Proposition 11. Let G be a graph and ω be an integer. There
is an fpt-algorithm (w.r.t. ω) which either correctly concludes
that G has NLC-width larger than ω or outputs a nice 2ω-
NLC-expression tree for G with O(2ωn) nodes.

6.2 Main Notation
To simplify the description of the proof, we will show the
result for NLC-width, which is known to be asymptotically
equivalent to rank-width [Wanke, 1994]. Because of Propo-
sition 11, it suffices to show the result for the case when we
are provided with a nice ω-NLC-expression tree.
Lemma 12. Let I = ((E,F,m), x, k, c) be an instance of
MA and let B be a nice ω-NLC-expression tree for GI(I).
Then, finding an anchor of smallest size, whose coverage is
at least c or deciding correctly that no such anchor exists, is
fixed-parameter tractable parameterized by ω.

The remainder of this section is devoted to a proof
of Lemma 12, which implies Theorem 10. Let I =
((E,F,m), x, k, c) be a normalized instance of MA. Let G
be the graph GI(I) after removing the isolated example x.
Recall that we denote by pE and nE the subsets of E con-
taining all examples e ∈ E such that m(e) = m(x) and
m(e) ̸= m(x), respectively, and that we refer to the examples
in pE and nE as positive and negative examples, respectively.

Let B be a ω-NLC-expression tree for G and let b be a node
of B. Recall that (Gb, λb) is the ω-graph associated with node
b and that Vb is the set of vertices of Gb. We denote by Ib the
MA instance associated with b, i.e., Ib contains all features
and examples in Vb and the feature values of the examples
in Ib are given by the edge relation of Gb, i.e., e(f) = 1 if
Gb has an edge between e and f and otherwise e(f) = 0.
We denote by λ−1

b (c) the set of features and examples v in Vb

with λb(v) = c for every c ∈ [ω]. For convenience, we denote
by feat(b) and exam(b) the set of features and examples in Vb

respectively, i.e., feat(b) = F ∩ Vb and exam(b) = E ∩ Vb.
Moreover, we denote by pexam(b) and nexam(b) the set of
all positive and negative examples in exam(b), respectively,
i.e., pexam(b) = exam(b) ∩ pE and nexam(b) = exam(b) ∩
nE. With a slight abuse of notation, we will in the following
assume that the feature values for any example in exam(b) are
defined with respect to the instance Ib; if not explicitly stated
otherwise.

6.3 Overview and Informal Description of the
Algorithm

As is usual for algorithms exploiting NLC-width, the algo-
rithm uses a dynamic programming approach to compute a
set of valid records for every node b of the decomposition B
in a leaf-to-root manner. The crucial part of the algorithm
is the correct definition of the records. Informally, a (valid)
record for a node b of B represents a compact representation
of an equivalence class of solutions (anchors) for the whole
instance from the perspective of the subinstance Ib. For the
purpose of the DP algorithm, it is best to think of a solution
for I = ((E,F,m), x, k, c) in terms of a pair (A,P ), where
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A ⊆ F with |A| ≤ k is an anchor for x and P ⊆ pexam
with |P | = c is a set of positive examples that are not distin-
guished from x by any feature in A and that witnesses that A
has coverage at least c. Then, the first question is what infor-
mation do we need to store for such a solution (A,P ), when
viewed from the perspective of the subinstance Ib? Consider
the part (Ab, Pb) of the solution (A,P ) that lives inside Ib,
i.e., Ab = A∩feat(b) and Pb = P∩pexam(b). Then, (Ab, Pb)
is not necessarily a solution for the subinstance Ib, because
Ab is not necessarily an anchor for x in Ib; this is because
there can be negative examples e ∈ nexam(b) that are not yet
distinguished from x by Ab (but are only latter distinguished
from x using some feature in A \ Ab). To take this into ac-
count, one also needs to consider the set Nb ⊆ nexam(b) of
negative examples in Ib that are not yet distinguished from
x by Ab in Ib. Therefore, the triple (Ab, Pb, Nb) now pro-
vides a complete representation of the solution (A,P ) from
the perspective of Ib and we will therefore refer to it as a par-
tial solution. Unfortunately, it is not possible to store every
such triple for b, because the number of those triples is too
large (the size is at least Ω(|Ib|k+c)). However, because of
the properties of an NLC-decomposition and in particular the
fact that every feature (or example) of Ib with the same label
will behave the same w.r.t. every example (or feature) that is
not yet in Ib, it is not necessary to remember the exact sets
of features and examples. In particular, instead of storing the
partial solution (Ab, Pb, Nb), it is sufficient to store the tuple
(C,C−, C+, p, s), where:

• C ⊆ [ω] is the set of all labels in Gb that contain a fea-
ture in Ab,

• C− ⊆ [ω] is the set of all labels in Gb that contain a
negative example in Nb,

• C+ ⊆ [ω] is the set of all labels in Gb that contain a
positive example in Pb,

• p and s are integers with p = |Pb| and s = |Ab|.
We will later refer to the tuple (C,C−, C+, p, s) as a record
and we will refer to a partial solution (Ab, Pb, Nb) that is rep-
resented by the record as a witness. Clearly, we are only in-
terested in records that represent some partial solution and
we will refer to such records as semi-valid. Note that a record
can be seen as a compact representation of an equivalence
class of partial solutions since many partial solutions can re-
sult in the same record. However, since all partial solutions
that result in the same record behave in the same manner due
to the properties of an NLC-decomposition it is sufficient to
represent all those partial solutions by a record. More impor-
tantly, if we have two semi-valid records that only differ in the
size s of the (partial) anchor, then it is sufficient to remember
only the tuple with the smaller (partial) anchor. This now
provides us with the notion of a valid record, i.e., a record
(C,C−, C+, p, s) is valid for a node b if s is equal to the min-
imum number s′ such that (C,C−, C+, p, s

′) is semi-valid.

6.4 Formal Definition of Records and Preliminary
Results

We are now ready to define the records and their semantics. A
record for b is a tuple (C,C−, C+, p, s) where C,C− and C+

are set of labels (subsets of [ω]) and p and s are integers with
p ≤ c. We say that a record (C,C−, C+, p, s) is semi-valid
for b if there is a set of features A ⊆ feat(b) of size s and a
set of positive examples P ⊆ pexam(b) of size p such that:

(a) C is the set of all labels c ∈ [ω] such that λ−1
b (c) ∩A ̸=

∅.

(b) C− is the set of all labels c ∈ [ω] such that λ−1
b (c)∩N ̸=

∅. Here, and in the following, N is the set of all nega-
tive examples in nexam(b) that are not yet distinguished
from x by a feature in A w.r.t. Ib, i.e., N = { e ∈
nexam(b) | e(f) = x(f) for every feature f ∈ A }; re-
call the the feature values of e are defined with respect
to Ib.

(c) C+ is the set of all labels c ∈ [ω] such that λ−1
b (c)∩P ̸=

∅.

(d) the examples in P agree with x on all features in A with
respect to Ib.

Let R = (C,C−, C+, p, s) be a semi-valid record for node
b. A witness for R is a pair (A,P ), where A ⊆ feat(b) is a
set of features of size s and P ⊆ pexam(b) is a set of positive
examples of size p that satisfy all the conditions (a)–(d).

We say that a record (C,C−, C+, p, s) is valid if s is equal
to the minimum number s′ such that (C,C−, C+, p, s

′) is
semi-valid. We denote by R(b) the set of all valid records
for the node b. The following corollary follows immediately
from the definition of valid records and gives an upper bound
on the size of R(b).

Observation 13. |R(b)| ≤ 23ωc.

6.5 Putting It All Together
We will now show that we can compute R(b) for each of the
three node types of a nice ω-NLC expression tree provided
that R(c) has already been computed for every child c of b.
Recall that b is either a leaf node associated with a ω-graph
i(v), a relabelling node with one child and with relabelling
function γb, or a join node with a left child, a right child and a
join matrix Mb. Moreover, recall that (Gb, λb) is the ω-graph
associated with b (whose unlabelled version is a subgraph of
G) and Vb is the set of vertices of Gb.

Lemma 14 (leaf node). Let b ∈ V (B) be a leaf node. Then
R(b) can be computed in O(1) time.

Proof. Let i(v) be the initial ω-graph associated with b. We
distinguish the following cases. If v is a feature, then R(b)
contains the following two records: The record (∅, ∅, ∅, 0, 0)
which is witnessed by the set A = ∅ of features and the set
P = ∅ of positive examples and the record ({i}, ∅, ∅, 0, 1),
which is witnessed by the sets A = {v} and P = ∅.

If v is a negative example, then R(b) contains the record
(∅, {i}, ∅, 0, 0), which is witnessed by the sets A = ∅ and
P = ∅.

If v is a positive example, then R(b) contains the two
records (∅, ∅, {i}, 1, 0), which is witnessed by the sets A = ∅
and P = {v}, and (∅, ∅, ∅, 0, 0), which is witnessed by the
sets A = ∅ and P = ∅.
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Clearly, R(b) can be computed in constant time. Moreover,
the correctness of the definition of R(b) follows directly from
the definition and the given witnesses.

Lemma 15 (join node). Let b ∈ V (B) be a join node. Then
R(b) can be computed in O((23ωc)2) time.

Proof Sketch. Let bl and br be the left and right child of b
in B, respectively. Let Mb be the join matrix for the node b,
i.e. Mb is a ω × ω binary matrix.

Let Rl = (Cl, Cl
−, C

l
+, p

l, sl) ∈ R(bl) and Rr =

(Cr, Cr
−, C

r
+, p

r, sr) ∈ R(br) be two records. Let Ql be
the set of all labels c ∈ [ω] such that there is a label c′ ∈ Cr

with Mb[c, c
′] = 1, i.e., informally Ql is the set of all labels

occurring in Gbl that are connected to at least one label in Cr.
Note that if e is an example in Ibl whose label is in Ql, then e
is distinguished from x in the instance Ib by any feature with
label c′ ∈ Cr. We say that Rl is compatible with Rr if they
satisfy:
(*) Ql ∩ Cl

+ = ∅ and Qr ∩ Cr
+ = ∅.

Intuitively, Rl and Rr are compatible if all positive examples
in Cl

+ and Cr
+ are not distinguished from x in the instance Ib;

assuming that those examples were not distinguished from x
already in the instance Ibl and Ibr , respectively.

We are now ready to define R(b). A record R =
(C,C−, C+, p, s) is valid for b, that is, belongs to R(b)
if and only if there is a pair of compatible records
Rl = (Cl, Cl

−, C
l
+, p

l, sl) ∈ R(bl) and Rr =
(Cr, Cr

−, C
r
+, p

r, sr) ∈ R(br) such that:

(i) C = Cl ∪ Cr;
(ii) C− = (Cl

− \Ql) ∪ (Cr
− \Qr);

(iii) C+ = Cl
+ ∪ Cr

+;

(iv) p = pl + pr and s = sl + sr.
We now show how and in what time R(b) can be com-

puted. We compute R(b) as follows. First we compute
Ql and Qr in time O(ω2). Then, for every pair of records
Rl ∈ R(bl) and Rr ∈ R(br), we do the following. First
we check whether both records are compatible in time O(ω).
If not, we continue with the next pair. Otherwise, we com-
pute R from Rl and Rr in time O(ω + log c + log k) and
add it to R(b). Therefore, the total run-time for computing
R(b) is at most O(ω2 + |R(bl)||R(br)|(ω + log c+ log k)),
which because of Observation 13 is at most O((23ωc)2). The
correctness-proof of the definition of R(b) can be found in
the supplementary material.

Lemma 16 (relabel node). Let b ∈ V (B) be relabelling node
in B. Then R(b) can be computed in O(23ωcω) time.

We are now ready to prove the main result of this section.

Proof of Lemma 12. Given I = ((E,F,m), x, k, c) and B,
we use Lemmas 14, 15 and 16 to compute the set R(b) of
valid records for every node b of B in a leaf-to-root man-
ner. We then go through all records in R(r) for the root r
of B to find a record R such that s is minimum among all
records of the form (C, ∅, C+, c, s). If no such record R ex-
ists or the size s for R is larger than k, we correctly output

no. Otherwise, we use standard dynamic programming meth-
ods to obtain a witness (A,P ) for R and output A. The cor-
rectness of the algorithm follows directly from the definition
of the valid records together with Lemmas 14, 15 and 16.
Moreover, we obtain the run-time of the algorithm as fol-
lows. The maximum time spent on any of the nodes b (which
is achieved for a join-node) is O((23ωc)2). Because B has
at most O(ω|E ∪ F |) (see Proposition 11) nodes, we obtain
O((23ωc)2ω|E ∪ F |) as the total run-time of the algorithm,
which shows that MA is fixed-parameter tractable parameter-
ized by the NLC-width of GI(I).

7 Twin-Width
In this section, we provide our complexity results for twin-
width. In particular, we show that the fpt-result of the
previous section for rank-width cannot be extended to the
more general (less restrictive) parameter twin-width; indeed
we show that MA is paraNP-hard parameterized by twin-
width alone. However, we also show that MA becomes
fixed-parameter tractable parameterized by twin-width plus k
(given that a witness for small twin-width is provided), which
given the generality of twin-width is an encouraging result.
We start with our hardness result.
Theorem 17. MA is paraNP-hard parameterized by the
twin-width of its incidence graph even if c = 0 and
δmax(I) = 2.

We are now ready to show that MA is fixed-parameter
tractable parameterized by twin-width plus k. While it is rel-
atively straightforward to show that MA is fixed-parameter
tractable when additionally parameterized by c (this follows
immediately from the recently shown first order logic meta-
theorem for twin-width [Bonnet et al., 2022b]), this is no
longer the case if one merely parametrizes by tww + k. We
therefore developed a tailor-made dynamic programming al-
gorithm, which we believe to be interesting in its own right;
an alternative proof can be obtained using a very recently es-
tablished meta-theorem [Bergougnoux et al., 2023].
Theorem 18. MA is fpt parameterized by the twin-width of
GI(I) plus k provided that one is given an optimal contrac-
tion sequence of the incidence graph.

8 Conclusion
We have provided the first complexity analysis of finding con-
cise local explanations (MA), a central computational prob-
lem in explainable AI. Starting from an NP-hardness result
of the problem in general, we have studied it in a parameter-
ized complexity setting with several natural parameters. Our
results drawn a comprehensive complexity landscape for all
combinations of the considered parameters. Particularly in-
teresting is our finding that adding the coverage size c to any
of the considered parameterizations does not change the com-
plexity of the MA problem. On a more technical level and of
independent interest is that our fpt-results for rank-width and
twin-width can both not be obtained via the corresponding
meta-theorems but require a tailor-suited dynamic program-
ming approach. We hope that our study stimulates further re-
search on the computational complexity of problems arising
in explainable AI.
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