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Abstract
Handling conflicting information is an important
challenge in AI. Measuring inconsistency is an ap-
proach that provides ways to quantify the severity
of inconsistency and helps understanding the pri-
mary sources of conflicts. In particular, a relative
inconsistency measure computes, by some criteria,
the proportion of the knowledge base that is incon-
sistent. In this paper we investigate relative incon-
sistency measures for indefinite databases, which
allow for indefinite or partial information which is
formally expressed by means of disjunctive tuples.
We introduce a postulate-based definition of rela-
tive inconsistency measure for indefinite databases
with denial constraints, and investigate the com-
pliance of some relative inconsistency measures
with rationality postulates for indefinite databases
as well as for the special case of definite databases.
Finally, we investigate the complexity of the prob-
lem of computing the value of the proposed rela-
tive inconsistency measures as well as of the prob-
lems of deciding whether the inconsistency value is
lower than, greater than, or equal to a given thresh-
old for indefinite and definite databases.

1 Introduction
Handling conflicting information is an important challenge
in AI. Data of poor quality can significantly limit the imple-
mentation of effective AI solutions [Levy, 1999; Jain et al.,
2020]. So, having information on the quality of data used
in machine learning and data-driven approaches is crucial,
as poor quality data can have serious adverse consequences
on the quality of decisions made using AI [Sarker, 2021].
Measuring inconsistency [Grant, 1978; Grant and Martinez,
2018] is a well-understood approach that can be used to-
wards assessing data quality, as it provides ways to quan-
tify the severity of inconsistency that help understanding
the primary sources of conflicts and devising ways to deal
with them. In this regard, inconsistency measurement has
been extensively investigated for propositional knowledge
bases (e.g., [Thimm, 2016; Mu, 2018; Bona et al., 2019;
Thimm and Wallner, 2019; Besnard and Grant, 2020; Ul-
bricht et al., 2020]), and explored in other settings such as

software specifications [Mu et al., 2005], databases [Martinez
et al., 2007; Decker, 2017; Bertossi, 2019; Parisi and Grant,
2020; Grant et al., 2021], and ontologies [Zhou et al., 2009;
Zhang et al., 2017], among others. However, most of the lit-
erature on inconsistency measures (IMs) focused on absolute
measures, rather than relative measures. An absolute measure
gives the total amount of inconsistency, while a relative mea-
sure computes, by some criteria, the proportion of the base
that is inconsistent [Besnard and Grant, 2020]. The differ-
ence between the two types of measures and the motivation
for considering relative measures can be explained as follows.
Consider the case of a large databaseD with numerous incon-
sistencies and a much smaller database D′ that has almost as
many inconsistencies as D. The absolute inconsistency of D
is greater than the absolute inconsistency ofD′ just because it
has more inconsistencies. But we can consider D′ to be more
inconsistent thanD since relative to its size it has more incon-
sistencies thanD. In fact, if the question is “How inconsistent
is the database?” the answer would likely be something like
“It’s x% inconsistent”, rather than “It has y inconsistencies”.
Relative inconsistency measures have been used in applica-
tions including [Zhou et al., 2009] for ontologies, [Costa and
Martins, 2018] for a hospital admission system, and [Fan et
al., 2019] for a financial system database.

In this paper, we explore relative inconsistency measures
for indefinite databases. The relational model is arguably
among the most common types of data models and rela-
tional databases (DBs) are often used to store real-world data
consumed by AI applications. Classical relational DBs can
store definite information only, while in practical situations
much of the information is not precise. Indefinite DBs, also
known as disjunctive DBs, represent disjunctive information
in the form of indefinite tuples, i.e., disjunctive facts. They
have been studied for a long time [Grant and Minker, 1986;
Liu and Sunderraman, 1990; Imielinski et al., 1995; Minker
and Seipel, 2002; Alviano et al., 2010], and their potential ap-
plications include e.g. data integration, extraction and clean-
ing [Benjelloun et al., 2008; Molinaro et al., 2009]. Classical
relational DBs are a special case of indefinite DBs where the
information is definite, i.e., there is no disjunction of tuples.

There are few interesting works addressing the problem of
measuring inconsistency in relational DBs. [Martinez et al.,
2007] first developed single-dependency axioms for dirtiness
functions quantifying inconsistency w.r.t. one functional de-
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pendency (FD)—a simple type of denial constraint (DC)—
considered in isolation, and proposed a measure that satisfies
these axioms. Then a single axiom for dirtiness functions that
handle multiple FDs was proposed, although such functions
are supposed to be built on top of a dirtiness function for sin-
gle FDs. The approach in [Decker, 2017; Decker and Misra,
2017; Decker, 2018] deals with relational databases from the
point of view of first-order logic, as in logic programming.
Its purpose is to show how database inconsistency measures
(IMs) can be applied to integrity checking [Decker and Mar-
tinenghi, 2008; 2011], relaxing repairs, and repair checking,
which are applications that also fit within our framework.
However, the degrees of inconsistency defined in [Decker,
2018] form a partially ordered set; hence it is not always pos-
sible to compare the inconsistency of different DBs. An IM
based on an abstract repair semantics is proposed in [Bertossi,
2018], where the degree of inconsistency depends on the dis-
tance between the database instance and the set of possible
repairs under a given repair semantics; an instantiation for
cardinality-repairs that can be computed via answer-set pro-
grams is proposed in [Bertossi, 2019]. Rationality postulate
compliance and the complexity of some absolute measures
for DBs inspired from those for propositional logic are in-
vestigated in [Parisi and Grant, 2020]. Provenance-informed
annotations of the base tuples are used in [Issa et al., 2020;
2021] to characterize the level of inconsistency of data and
query results. In particular, building upon the computed an-
notations, different measures of inconsistency which consider
single and multiple violations of denial constraints are intro-
duced. IMs have been considered as the basis of progress in-
dicators for data-cleaning systems in [Livshits et al., 2021],
where properties that account for operational aspects of re-
pair systems are introduced as well as a measure satisfy-
ing such properties. Finally, the Shapley value [Hausken and
Mohr, 2001] of DB tuples is investigated in [Livshits and
Kimelfeld, 2021] to calculate the contribution of a tuple to
inconsistency for inconsistent DBs w.r.t. FDs. All the above-
mentioned works focus on definite DBs. Absolute IMs for in-
definite DBs have been explored in [Parisi and Grant, 2023].
Contribution. Our main contributions are as follows.

• We introduce four postulates and a postulate-based defi-
nition of the concept of relative inconsistency measure (IM)
for indefinite DBs with denial constraints, a class of integrity
constraints that includes, for instance, equality generating de-
pendencies [Beeri and Vardi, 1984] and numerical dependen-
cies [Grant and Minker, 1985]. We consider five relative IMs,
namely Imv , IrM , IrP , IrH , and IrC (which are formally de-
fined in Section 3), corresponding to different methods of
quantifying inconsistency in indefinite DBs.

• Analyzing the compliance of IMs w.r.t. rationality postu-
lates is an important way to evaluate a measure, and is one of
the main problems investigated in the area of inconsistency
measurement, even though the set of desirable postulates
is not universally accepted [Besnard, 2014; Thimm, 2016;
2018] (some postulates proposed in the literature are even in-
compatible, as they express alternative properties that may be
required in different contexts). Given the importance of pos-
tulate satisfaction, in addition to the postulates considered in

the definition of relative IM, we examine the compliance of
definite and indefinite DBs w.r.t. additional rationality pos-
tulates (Section 4). Our results are shown in Table 2. Two
of the measures (IrP and IrH ) satisfy 7 of the 8 postulates
even for indefinite DBs. As two of the considered postulates
are incompatible (MI-Normalization and Contradiction can
be satisfied together only for a very specific form of integrity
constraints), IrP and IrH satisfy as many postulates in the list
as possible. For another two measures (Imv and IrC), the sat-
isfaction results are better for the definite case (in which case
Imv and IrC satisfy as many postulates as possible), but in all
cases the majority of the postulates are satisfied.
• We investigate the data complexity of the problems of de-
ciding whether a given value is lower than (LV), greater than
(UV), or equal to (EV) the inconsistency measured using a
given relative IM for indefinite and definite DBs (Section 5).
The complexity results obtained for these decision problems
and for the function problem of computing the value of a rel-
ative IM (IM problem) are given in Table 3. It turns out that,
for indefinite DBs, the considered relative IMs exhibit differ-
ent levels of intractability. Specifically, for the decision prob-
lems (LV, UV, and EV), the complexity ranges from the first
level of the polynomial hierarchy [Papadimitriou, 1994] for
IrH and IrC , to the second level of the hierarchy for Imv and
IrP , and up to classes from the counting polynomial hierar-
chy [Wagner, 1986] for IrM . However, three measures (Imv ,
IrP , and IrM ) turn out to be tractable in the case of definite
DBs, while for the other two measures (IrH and IrC) restrict-
ing to the definite case has no impact on the complexity.
Finally, the complexity of the function problem IM ranges
from being in FP for Imv , IrP , and IrM for definite DBs; in
FPNP [log n] for IrH and IrC for both definite and indefinite
DBs; in FPΣp

2 [log n] for Imv and IrP for indefinite DBs; and
in the counting class # · coNP [Hemaspaandra and Vollmer,
1995] for IrM and indefinite DBs.

2 Preliminaries
We recall indefinite DBs and some complexity classes.

2.1 Indefinite Databases
We assume that the reader is familiar with the relational
model and the basic concept of definite DBs. An indefinite
tuple over relational scheme R(A1, . . . , An) is a set of (def-
inite) tuples over R(A1, . . . , An). An indefinite relation in-
stance (or simply relation) is a finite set of indefinite tu-
ples over a given relation scheme, and an indefinite DB in-
stance (database) is a set of indefinite relations over a given
DB scheme. Under the model-theoretic approach to relational
DBs, an indefinite DB is a set of minimal models [Minker,
1982] (instead of a unique model of the underlying first-
order theory as for the case of definite DBs). Under the
proof-theoretic approach, an indefinite tuple corresponds to
a logical formula with inclusive disjunctions. The informa-
tion content of an indefinite DB D consists of a set of def-
inite DBs called possible worlds. A possible world for D
is a set of (definite) tuples that contains a tuple from each
element of D and is minimal w.r.t. set inclusion. More for-
mally, let Def(D) be the set of all the definite DBs that can
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Id Name Birth Year Parent Death Year
t1 1 James 1668 Mary 1751

e1
t2 1 James 1670 Mary 1751
t3 1 Michael 1643 Mary 1600 e2

t4 1 Robert 1668 Michael 1600
e3

t1 1 James 1668 Mary 1751
t5 2 David 1838 Patricia 1905 e4

t6 3 Jennifer 1841 Sarah 1923 e5

t7 3 Jennifer 1841 Joseph 1923 e6

t8 4 Jennifer 1841 Susan 1923
e7

t9 4 Jennifer 1841 Jessica 1923

Table 1: Database Dex, instance of Ancestor.

be obtained from an indefinite DB D by selecting a (definite)
tuple from each indefinite one in D. The meaning of D is
given by the set of possible worlds W(D) = {W | W ∈
Def(D), @W ′ such that W ′ ∈ Def(D) and W ′ ⊂W}.

We use the terminology element to refer to an indefinite
tuple of a databaseD. Note that a definite DB is a special case
of an indefinite DB, where each element is a definite tuple and
only one possible world exists, that is,W(D) = {D}.
Example 1. Consider a genealogical DB whose scheme
DSex consists of the relation scheme Ancestor (Id, Name,
Birth Year, Parent, Death Year), where every record has an
id and contains the name, the birth and death year of a per-
son as well as the name of her/his parent. An instance Dex of
DSex consisting of 7 elements (obtained from 9 different def-
inite tuples) is shown in Table 1. A possible world for Dex is
{t1, t3, t5, t6, t7, t8}, which is obtained fromDex by selecting
the tuple t1 from the elements e1 and e3, the tuples t3, t5, t6,
and t7 from the singleton elements e2, e4, e5, and e6, respec-
tively, and t8 from element e7. Let T = {t3, t5, t6, t7}, the set
of possible worlds for Dex isW(Dex) = {T ∪ {t1, t8}, T ∪
{t1, t9}, T ∪ {t2, t4, t8}, T ∪ {t2, t4, t9}}.

It is worth noting that an indefinite DB may contain
redundant information because an indefinite tuple is part of
another one. For instance, the database {{R(1, 1), R(1, 2)},
{R(1, 1)}} is equivalent to {{R(1, 1)}}, that is, they have
the same set of possible worlds. Redundancy can be removed
by deleting redundant tuples, that is, indefinite tuples that
subsume other tuples. This is polynomial in the number
of indefinite tuples, assuming that the size of the largest
indefinite tuple is a constant (usually a small integer). In the
following, we assume that the given DB is not redundant.
It is also worth noting that since each indefinite tuple
corresponds to a logical formula with inclusive disjunctions,
it is possible for more than one tuple within an indefinite
tuple to be the real world truth. For instance, for the database
{{R(1, 1), R(1, 2)}, {R(1, 1), R(1, 3)}, {R(1, 2), R(1, 3)}},
a possible world is {R(1, 1), R(1, 2)}, which is obtained
from the DB by selecting the definite tuple R(1, 1) from the
first two indefinite tuples and R(1, 2) from the third one.

A denial constraint (DC) over a database scheme DS is
a first-order sentence of the form: ∀ ~x1, . . . , ~xk [¬R1(~x1) ∨
· · ·∨¬Rk(~xk)∨ϕ(~x1, . . . , ~xk)] where: (i) ∀ i ∈ [1..k], ~xi are
tuples of variables and Ri(~xi) are atoms over DS; and (ii) ϕ

is a disjunction of built-in predicates of the form τi ◦τj where
τi and τj are variables in ~x1, . . . , ~xk or constants, and ◦ ∈ {=,
6=, >,<,≥,≤}. In the following, we will omit the prefix of
universal quantifiers and write [¬R1(~x1) ∨ · · · ∨ ¬Rk(~xk) ∨
ϕ(~x1, . . . , ~xk)] for a denial constraint.

A functional dependency (FD) is a DC of the form
[¬R(~x, y, ~z) ∨ ¬R(~x, u, ~w) ∨ (y = u)] where ~x, ~z, ~w are
tuples of variables. It is written as R : X → Y (or simply
X → Y ), where X is the set of attributes of R corresponding
to ~x and Y is the attribute corresponding to y (and u).

For a DB scheme DS and a set IC of integrity constraints
overDS , an indefinite DB instanceD ofDS is said to be con-
sistent w.r.t. IC (denoted as D |= IC) iff there is at least one
possible world of D which is consistent w.r.t. IC (in the stan-
dard model-theoretic sense), that is, {W |W ∈ W(D),W |=
IC} 6= ∅; otherwise, D is said to be inconsistent (w.r.t. IC).
Example 2. Continuing from Example 1, let the set ICex of
integrity constraints consist of the following DCs:
• c1 = [¬Ancestor(x1, x2, x3, x4, x5) ∨ x5 > x3], stating
that the death year must be greater than the birth year.
• c2 = [¬Ancestor(x1, x2, x3, x4, x5) ∨ ¬Ancestor(x1, x6,
x7, x8, x9) ∨ x2 = x6], that is the FD Id→Name.
• c3 = [¬Ancestor(x1, x2, x3, x4, x5) ∨ ¬Ancestor(x6, x2,
x7, x8, x9) ∨ ¬Ancestor(x10, x2, x11, x12, x13) ∨ x4 = x8 ∨
x4 = x12 ∨ x8 = x12], that is the numerical depen-
dency [Grant and Minker, 1985] Name→2Parent stating that
for every person there can be at most 2 parents.

We have that Dex is inconsistent w.r.t. ICex. In particu-
lar, going through the integrity constraints we find that 1)
e2 6|= c1, while e.g. e3 |= c1 as one of its two tuples (dis-
juncts) satisfies the constraint; 2) the pairs of elements e1, e2

and e2, e3 are inconsistent with c2 (it is worth noting that
{e1, e3} |= c2 as there is a world consisting of their common
tuple t1 which is consistent); 3) the three elements e5, e6,
and e7 together are inconsistent with c3. None of the possible
worlds for Dex is consistent w.r.t. ICex, as each one violates
one or more constraints (e.g., c1 is violated by all of them).

2.2 Complexity Classes
The complexity classes Σp

k,Π
p
k and ∆p

k, with k ≥ 0, are de-
fined as follows [Papadimitriou, 1994]:
i) Σp

0 = Πp
0 = ∆p

0 = P ;
ii) Σp

1 = NP and Πp
1 = coNP ;

iii) ∆p
k = PΣp

k−1 , Σp
k = NPΣp

k−1 , and Πp
k = coΣp

k, ∀k > 0.
Thus, P C (resp.,NP C) denotes the class of the decision prob-
lems that can be solved in polynomial time by using an ora-
cle in the class C by a deterministic (resp., non-deterministic)
Turing machine. It holds that Σp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ⊆
PSPACE and Πp

k ⊆ ∆p
k+1 ⊆ Πp

k+1 ⊆ PSPACE.
A decision problem is in Dp

k iff it is the conjunction of a
problem in Σp

k and a problem in Πp
k. Dp

1 is also denoted as
Dp. It holds that Dp ⊆ ∆p

2.
We will also use the class CNP from the counting polyno-

mial hierarchy defined in [Wagner, 1986]. This class relies on
a counting quantifier C defined as follows. Given a predicate
H(x, y) with free variables x and y,Ck

yH(x, y) holds iff |{y :
H(x, y) is true}| ≥ k, i.e., the counting quantifier is true for
predicate H and bound k iff the number of values of y such
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that H(x, y) holds is at least k. The polynomially bounded
version of the counting quantifier is defined as follows. Given
a class C of decision problems, we say that a problem A is
in CC iff there is a problem B ∈ C, a polynomial-time com-
putable function f , and a polynomial p such that x is a posi-
tive instance of A iff Cf(x)

y, |y|≤p(x)(x, y) ∈ B. That is, instance
x ∈ A iff there are at least f(x) many y’s whose size is poly-
nomially bounded by that of x such that a predicate for (x, y)
holds, with checking the predicate being in B. A canonical
problem for CNP is deciding whether an open quantified
boolean formula ∀Y Φ(X,Y ) has at least k many satisfying
assignments (for the variables X in the open part). CNP is
closed under complement. It holds that CP ⊆ CNP . More-
over, CNP = CB(NP ), where B(NP ) is the Boolean clo-
sure of NP [Wagner, 1986], that implies that Dp ⊆ B(NP )
and CNP = CDp. The class C=C is defined exactly as CC
except that the counting quantifier holds iff it is satisfied by
equality. We will focus on C=D

p. To the best of our knowl-
edge, it is not known whether C=NP coincides with C=D

p,
neither whether C=NP coincides with C=B(NP ).
FP is the class of the function problems that can be solved

by a deterministic Turing machine in polynomial time. For a
class C, FP C is the class of functions computable by a deter-
ministic polynomial-time Turing machine using a C-oracle.
Thus, FPNP (resp., FPΣp

2 ) is the class of problems that can
be solved by a polynomial-time Turing machine that can ask
a polynomial number of queries to an NP oracle (resp., Σp

2
oracle). If a logarithmic number of queries is asked by the ma-
chine, then we have the class FPNP [log n] (resp., FPΣp

2 [log n]).
We also use the class # · coNP [Hemaspaandra and

Vollmer, 1995]. Given a class C of decision problems, # · C is
the class of the counting problems defined by means of wit-
ness functions w that assign to a given input x a set w(x) of
witnesses. Herein, a counting problem returns the cardinality
|w(x)| of a set of witnesses. For the witness functionw, (i) for
every input x, the size of every witness y ∈ w(x) is polyno-
mially bounded by that of x; and (ii) given x and y, deciding
whether y ∈ w(x) is in class C. A canonical problem for #·P
is counting the satisfying assignments of a SAT formula. This
problem is in #P [Valiant, 1979], which coincides with #·P .
It holds that # · P ⊆ # · coNP and # · coNP = # ·∆p

2.

3 Relative Inconsistency Measures
In this section, we develop relative IMs for indefinite DBs
in analogy with relative IMs for propositional knowledge
bases [Besnard and Grant, 2020]. Although these methods
are inspired by IMs for propositional logic we do not ap-
ply them directly as done e.g. in [Grant and Parisi, 2020;
2022] where a general information space, which encompasses
definite databases, is translated into an inconsistency equiv-
alent propositional knowledge base (KB), and then proposi-
tional IMs are applied to find the inconsistency. This approach
makes no distinction between DB tuples and integrity con-
straints, i.e., IMs blame simultaneously tuples and constraints
without considering that inconsistency in DBs typically refers
to the tuples rather than the integrity constraints. Rather, we
use well-known methods as inspiration to define (by analogy)
IMs that are applicable to indefinite DBs. Every IM measures

the inconsistency by blaming (indefinite) tuples only. This is
different from measuring the inconsistency of a set of for-
mulas, all of which have the same status, as is the case of
propositional KBs. This leads to some substantial differences
between the two cases, e.g. some measures that are distinct
for KBs become identical in our setting (cf. Proposition 1).

We use D to denote the set of all indefinite DB instances
over a fixed but arbitrary DB scheme DS . In general, we will
omit the DB scheme and the set IC of integrity constraints
in the terminology. A minimal inconsistent subset (MIS) of
DB D is a set of elements X ⊆ D such that X is incon-
sistent (w.r.t. IC) and no proper subset of X is inconsistent.
We denote by MI(D) the set of MISs of D. Any element that
occurs in a MIS is problematic; otherwise it is free. We use
Problematic(D) and Free(D) to denote the sets of problem-
atic and free elements of D. We use Tuples(D) to denote the
set of definite tuples of a DBD, that is Tuples(D) =

⋃
e∈D e.

To define relative IMs, we use the following postulates.
Definition 1 (Basic Postulates). Let D,D′ be DBs, and I :
D→ R≥0

∞ a function. The basic postulates are as follows:

Consistency I(D) = 0 iff D is consistent.

Normalization 0 ≤ I(D) ≤ 1.

Free-Element Reduction For e 6∈ D, if e ∈ Free(D ∪ {e})
and I(D) 6= 0, then I(D ∪ {e}) < I(D).

Relative Separability If MI(D ∪ D′) = MI(D) ∪ MI(D′),
Tuples(D) ∩ Tuples(D′) = ∅, I(D) 6= 0, I(D′) 6= 0, and
I(D) w I(D′), then I(D) w I(D ∪D′) w I(D′), where
either w is < in every instance or w is = in every instance.

Assuming that I is a function measuring inconsistency,
Consistency means that all and only consistent databases get
measure 0. Consistency is the only postulate that is required
to be satisfied by every IM. In some cases, the satisfaction of a
postulate called Monotony is also required for absolute IMs.
Monotony means that the enlargement of a database cannot
decrease its measure. However, Monotony is not appropriate
for relative IMs where the ratio of inconsistency may decrease
with the addition of consistent information. In contrast, Nor-
malization is appropriate for relative IMs; it states that an IM
cannot have value greater than 1.

Free-Element Reduction requires that adding a free ele-
ment to an inconsistent DB (that is, adding an element that
does not introduce a new conflict) reduces the IM. The rea-
son is that while the numerator remains the same, the denom-
inator decreases. But Free-Element Reduction may not hold
for indefinite DBs because while the element is new, it may
contain tuples already in the DB. Relative Separability deals
with the case where a DB can be split into two inconsistent
parts. If w is =, then the DB has the same IM as the two parts.
Otherwise, the DB has an inconsistency value in between the
inconsistency values of the two parts. Thus under the speci-
fied conditions the relative measure of the union sort of av-
erages out the relative measures of the components; however,
the result need not be the exact average.

We are now ready to define the concept of relative IM. The
definition is inspired by that in [Besnard and Grant, 2020],
where it is shown that all IMs that are intuitively relative mea-
sures satisfy both Consistency and Normalization and any IM
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that satisfies neither Free-Formula Independence nor Relative
Separability does not satisfy our intuitive notion of a relative
measure. This way we restrict what we may consider as a
relative measure without making the definition so strict that
some reasonable relative IMs would be excluded.
Definition 2 (Relative IM). A function I : D → R≥0

∞ is a
relative inconsistency measure iff it satisfies the postulates
Consistency, Normalization, and either Free-Formula Reduc-
tion or Relative Separability (or both).

In the following subsections we will define five IMs that
will be shown to satisfy Definition 2 in Section 4. It is worth
noting that, in general, normalizing an absolute IM may not
result in a relative IM (as Definition 2 may not be satisfied).

3.1 Relative Measures Using MISs
We introduce relative IMs that rely on MISs and on the re-
lated concepts defined earlier. In the following definition we
assume that D 6= ∅ and set I(∅) = 0 in all cases.
Definition 3 (Relative Inconsistency Measures). For any DB
D, the IMs Imv IrM , IrP , and IrH are such that

• Imv(D) =
|Tuples(

⋃
X∈MI(D)X)|

|Tuples(D)|

• IrM (D) =
|MI(D)|( |D|
b|D|/2c

)
• IrP (D) =

|Problematic(D)|
|D|

• IrH(D)=
min{|X| s.t. X⊆D and ∀M∈MI(D), X∩M 6=∅}

|D|
Thus, Imv(D) is the number of definite tuples occurring

in some MIS divided by the amount of all such tuples in the
DB (observe that |Tuples(D)| can be greater than, lower than,
or equal to |D| depending on how definite tuples are com-
bined to form indefinite ones). The proportion of proposi-
tional variables is considered by this measure in propositional
logic [Xiao and Ma, 2012]. IrM is the ratio of the number of
MISs to the maximum possible number of such subsets. The
rationale is that a MIS represents a minimal inconsistency for
a set of database elements; hence this measure is proportional
the number of such inconsistencies [Hunter and Konieczny,
2008]. The denominator of IrM is the maximum number of
MISs that can occur in a database of size D. As MI(D) is
a Sperner family over D, its size is maximized if its ele-
ments have size b|D|/2c [Thimm, 2016]. We use superscript
‘r’ for relative IMs whose criterion for quantifying inconsis-
tency is obtained by relativizing some absolute IM. Next, IrP
is the ratio of the number of elements that are in one or more
MISs to the size of the database. This is the relativized ver-
sion of the so-called problematic measure [Grant and Hunter,
2011]. The numerator of IrH corresponds to the minimal num-
ber of elements whose deletion makes the database consis-
tent [Grant and Hunter, 2013]. Hence IrH can be written as
IrH = min{|X| s.t. D \X is consistent }/|D|.
Example 3. Continuing with our running example, we have
that MI(Dex) = {{e2}, {e5, e6, e7}}. Note that {e1, e2} as
well as {e2, e3} are not included because they contains {e2}.

Thus there are 4 problematic elements in Dex, and 3 free ele-
ments. The values of the IMs for Dex are as follow.
• Imv(Dex) = 5

9 as 5 of the 9 tuples in Dex are in MISs.

• IrM (Dex) = 2
35 as there are 2 MISs as given above while 35

is the maximum number of MIS that can occur in a database
consisting of 7 elements.
• IrP (Dex) = 4

7 as 4 of the 7 elements are in MI(Dex).

• IrH(Dex) = 2
7 as no less than 2 of the 7 elements intersect

with each MIS.

3.2 A Relative Measure Using 3VL
We now consider the Contension measure [Grant and Hunter,
2011], which uses a three-valued (3VL) logic. In our set-
ting, a 3VL interpretation is a function i that assigns to each
atom R(~t) in D one of the three truth values: T (true), F
(false), or B (both). The logical connectives are extended
to 3VL interpretations using Priest’s three-valued logic, the
Logic of Paradox [Priest, 1979]. This interpretation uses an
ordering on the truth values where F < B < T and ∧ com-
putes the minimum value while ∨ computes the maximum
value; also ¬(B) = B. So, for example, B ∧ F = F and
B ∨ F = B. The 3VL semantics extends to first-order logic
in our case as we consider the grounded versions of the con-
straints. In classical two-valued logic, an interpretation is a
model for a set of formulas if every formula gets the value
T (the unique designated value). But in 3VL there are two
designated values, T and B. In the DB context this means
that for a given D with a set IC of constraints, a 3VL in-
terpretation is a 3VL model iff all the integrity constraints
and elements get the value T or B. We use Models(D) to
denote the set of 3VL models for D (with the constraints in
the background). Also, for a 3VL interpretation i we define
Conflictbase(i) = {R(~t) | i(R(~t)) = B}, the atoms that
have truth value B.

We now introduce the IM IrC . As before, IrC(∅) = 0.
Definition 4 (Relative Contension Measure). For any DB D,

IrC(D) =
min{|Conflictbase(i)| | i ∈ Models(D)}

|Tuples(D)|
.

Hence, IrC is the minimal number of definite tuples that if
we could consider them both true and false would resolve all
inconsistencies divided by the size of the DB. For our running
example, we have IrC(Dex) = 2

9 as the minimal number of
B values for an interpretation occurs when assigningB to the
tuple in e2 and a tuple in either e5 or e6.

3.3 Measures Coinciding for Definite DBs
In the propositional case, of the IMs considered in this pa-
per no two give the same result for all KBs. But because of
the structure of DBs, for definite DBs two equalities hold: 1)
Imv(D) = IrP (D), and 2) IrC(D) = IrH(D). The first fol-
lows from the fact that, for a definite DB, every element is
a definite tuple, and thus Tuples(D) = D and the problem-
atic elements are exactly the tuples in the MISs. The second
equality follows from the fact that the minimum number of
tuples that need to be assigned B in order to get a 3VL model
in Models(D) is the same as the cardinality of the setX ⊆ D
having a non-empty intersection with every MIS of D.
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Proposition 1. For any definite database D, Imv(D) =
IrP (D) and IrC(D) = IrH(D).

As will be noted after Theorem 1, no other pair of consid-
ered measures is identical for definite or indefinite DBs.

For indefinite DBs, Imv and IrP need not give the same
result. For instance, considering D′ = {{R(−1), R(−2)},
{R(−1), R(3)}} and IC′ = {¬R(x) ∨ x > 0}, we have
that Imv(D′) = 2/3 > IrP (D′) = 1/2 since there are three
tuples in D′ forming two elements, and there are two tuples
in the first element which is a self-contradiction. Similarly,
IrH and IrC need not give the same result. For instance, we
have that IrH(D′) = 1/2 > IrC(D′) = 1/3 because one of
the two elements is a self-contradiction and for 3VL it suf-
fices to assign R(−1) the value B, R(−2) the value F , and
R(3) the value T to eliminate the inconsistency. In general,
IrC(D) ≤ IrH(D) holds for all indefinite DBs because as-
signing B to one of the disjuncts in an element that needs
removal for IrH suffices to eliminate the inconsistency for IrC
as well, and the denominator of IrC is greater than or equal to
that of IrH . Although our interest is in relative measures, we
wish to point out that even the absolute versions, IH and IC
are not the same. They happen to have the same value, 1 for
D′ but consider D′′, the same as D′ except that R(3) is re-
placed by R(−3). As now both elements are contradictions,
IH(D′′) = 2, while IC(D′′) = 1 as it suffices to assign
R(−1) the value B and both R(−2) and R(−3) the value F .

4 Postulate Satisfaction for Relative IMs
In the previous section we formulated four important postu-
lates relevant for relative IMs. In this section we introduce
four additional postulates for indefinite DBs that relative IMs
may or may not satisfy. We avoid postulates that were shown
in [Besnard and Grant, 2020] not to hold for relative IMs.
Then, we show which of the eight postulates are satisfied by
the five IMs defined previously.
Definition 5 (Additional Postulates Relevant for Relative
IMs). Let D be an indefinite DB and I : D → R≥0

∞ a func-
tion. The additional postulates are as follows:
Safe-Element Reduction If e∩Tuples(D) = ∅ and I(D) 6=

0, then I(D ∪ {e}) < I(D).
MI-Normalization If MI(D) = D, then I(D) = 1.
Equal Conflict If MI(D) = D, MI(D′) = D′, and |D| =
|D′|, then I(D) = I(D′).

Contradiction I(D) = 1 iff for all ∅ 6= D′⊆D, I(D′) > 0.
Safe-Element Reduction is a weak version of Free-Element

Reduction where we require that e contain no tuple in D. In
fact, Free-Element Reduction implies Safe-Element Reduc-
tion. MI-Normalization and Equal Conflict deal specifically
with MISs. MI-Normalization requires every database coin-
ciding with a MIS to have measure 1. Equal Conflict requires
MISs of the same size to have the same measure, thus stating a
similarity between MISs of the same size. MI-Normalization
implies Equal Conflict but the converse does not hold. Finally,
Contradiction requires that the highest relative inconsistency
measure, 1, be reserved for DBs all of whose nonempty sub-
sets are inconsistent. The intuition is that a DB that has a con-
sistent portion should not be considered 100% inconsistent.

Inconsistency Measures

Imv IrM IrP IrH IrC
Consistency 3 3 3 3 3

Normalization 3 3 3 3 3

Free-Element Reduction 3 7 3 3 3 3 7

Relative Separability 3 7 3 3 3

Safe-Element Reduction 3 3 3 3 3

MI-Normalization 3 7 3 7 7

Equal Conflict 3 3 3 3 3 7

Contradiction 7 7 7 3 3

Table 2: Postulate satisfaction for relative IMs. 3: satisfied for both
definite and indefinite DBs, 37: satisfied for definite DBs but not
satisfied for indefinite DBs, 7: not satisfied for both definite and in-
definite DBs.

It is useful to note that MI-Normalization and Contradiction
are incompatible postulates because if a database D that is
its own MIS is such that |D| > 1 then Contradiction fails.
We would have to restrict the constraints to ones that contain
only a single relation symbol to gain compatibility. Impor-
tantly, this also means that no IM can satisfy all 8 postulates;
hence the ones that satisfy 7 satisfy as many as possible in the
list.
Theorem 1. For definite and indefinite DBs the satisfaction
of postulates for relative IMs is as given in Table 2.

Thus, the functions defined in the previous section are rel-
ative IMs according to Definition 2, as each of them satis-
fies Consistency, Normalization, and Free-Formula Reduc-
tion or Relative Separability. The other four postulates are not
mandatory; they simply allow us to better understand the be-
havior of relative IMs in some circumstances. For instance,
if Contradiction is satisfied and the inconsistency value is
100%, then the DB is ‘totally inconsistent’, in the sense
that each of its subset is inconsistent. On the other hand, if
MI-Normalization is satisfied and the inconsistency value is
100%, then we should be aware that there is a chance that the
inconsistency could be ascribed to a single MIS coinciding
with the DB. Overall, the results of Theorem 1 allow us to
compare the IMs in terms of the satisfied postulates. Both IrP
and IrH satisfy as many postulates as possible, though with al-
ternative behavior w.r.t. the two incompatible postulates, and
this holds also for Irmv and IrC for definite DBs.

Finally, as a consequence of Theorem 1, we have that, ex-
cept for the equalities given in Proposition 1 for the case of
definite DBs, no other pair of IMs in Table 2 are identical
since they do not satisfy exactly the same set of postulates.

5 Complexity of Relative IMs
We investigate the data-complexity of the following three de-
cision problems, which intuitively ask if a given rational value
v is, respectively, lower than, greater than, or equal to the
value returned by a given IM when applied to a given DB.
Definition 6 (Lower (LV), Upper (UV), and Exact Value
(EV) problems). Let I be an IM. Given a database D over a
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LVI(D, v) UVI(D, v) EVI(D, v) IMI(D)

definite indefinite definite indefinite definite indefinite definite indefinite

Imv P Σp
2-c P Πp

2-c P Dp
2 -c FP FPΣ

p
2 [log n]

IrM P coNP -h, CNP P NP -h, CNP P Dp-h, C=D
p FP # · coNP

IrP P Σp
2-c P Πp

2-c P Dp
2 -c FP FPΣ

p
2 [log n]

IrH coNP -c coNP -c NP -c NP -c Dp-c Dp-c FPNP [log n]-c FPNP [log n]-c
IrC coNP -c coNP -c NP -c NP -c Dp-c Dp-c FPNP [log n]-c FPNP [log n]-c

Table 3: Complexity of Lower Value (LV), Upper Value (UV), Exact Value (EV), and Inconsistency Measurement (IM) problems for definite
and indefinite DBs. For a complexity class C, C-c (resp., C-h) means C-complete (resp., C-hard); only C means membership in C. For two
classes C, C′, the separation by a comma means C-hard and in C′.

fixed database scheme with a fixed set of integrity constraints,
and a value v ∈ Q(0,1],
• LVI(D, v) is the problem of deciding whether I(D) ≥ v.
Given D and a value v′ ∈ Q[0,1],
• UVI(D, v′) is the problem of deciding whether I(D) ≤ v′,
• EVI(D, v′) is the problem of deciding whether I(D) = v′.

We avoid considering values for which the considered
problems are trivial, e.g. LVI(D, 0) is true for any IM.

We also consider the problem of determining the IM value.
Definition 7 (Inconsistency Measurement (IM) problem).
Let I be an IM. Given a database D over a fixed database
scheme with a fixed set of integrity constraints, IMI(D) is
the problem of computing the value of I(D).

The following proposition states the complexity of the
above-mentioned problems for the case of definite DBs.
Proposition 2. For any definite DB and IM I ∈ {Imv,
IrM , IrP , IrH , IrC}, the complexity of LVI , UVI , EVI , and
IMI is as given in Table 3.

Thus, IrM and Imv (and IrP which coincides with Imv for
definite DBs) are tractable for definite databases. As we show
next, the presence of disjunction entails that the measures
Imv , IrM , and IrP are no longer tractable. Indeed, for indefi-
nite DBs, depending on the considered IM, the complexity of
the considered problems reaches the first level of the poly-
nomial hierarchy or beyond (even under data-complexity).
However, the results obtained for the measures IrH and IrC
in the case of definite DBs still hold for indefinite DBs.
Theorem 2. For any indefinite DB and IM I ∈ {Imv,
IrM , IrP , IrH , IrC}, the complexity of LVI , UVI , EVI , and
IMI is as given in Table 3.

Most of the results in Table 3 hold even if the set of con-
straints consists of FDs only. In fact, all the membership re-
sults trivially hold for FDs as they hold for the more general
class of DCs. Moreover, we can show the following result.
Proposition 3. All the hardness results in Table 3 for LV and
UV still hold if the set of constraints consists of FDs only.

In particular, the NP-hardness results for IrH and IrC can
be shown in cases where the set of constraints consists of
two FDs only. Moreover, the results for IrM hold even if the
constraint is a single FD. Finally, we can show that also the
Σp

2/Πp
2-hardness results for Imv and IrP (for the case of in-

definite DBs) hold even in the presence of a single FD.

6 Conclusions and Future Work
We have introduced relative IMs for indefinite DBs and an-
alyzed postulate compliance as well as their complexity for
both indefinite and definite DBs. Our work contributes to un-
derstanding how the database counterpart of some methods
to quantify inconsistency in propositional logic behaves in
the DB context, where data are generally the reason for in-
consistency, not the integrity constraints. The results in Ta-
bles 2 and 3 give insights on the behavior of relative IMs,
helping to figure out which measure could be appropriate for
specific applications. We do not believe that there is a “best”
IM. An IM gives information about a DB that can be used in
different ways depending on the circumstance. For instance,
maintaining an IM-based progress bar during database re-
pair involving deletions [Livshits et al., 2021] has different
requirements than measuring inconsistency for bank holding
companies [Fan et al., 2019] where the information cannot
be deleted even if it is inconsistent. For this situation, if in-
terested to the proportion of potential issues (i.e., MISs) to be
resolved, IrM could be a good candidate unless other criteria
take precedence. The computational cost is also relevant. For
definite DBs, IrM and Imv , which coincides with IrP , can be
computed in polynomial time by standard SQL. For indefinite
DBs, IrH and IrC look to be the cheaper measures. In this re-
gard, a dichotomy for FDs for the problem of computing the
cost of a cardinality repair (that is equivalent to computing
the numerator of IrH ) for definite DBs has been presented
in [Livshits et al., 2020]. This entails that there are cases
where computing IrH is polynomial, but also cases where it is
APX-complete (it cannot be approximated better than some
constant) and it has a polynomial-time 2-approximation.

We envisage several interesting directions for future work.
They include: i) considering other forms of incomplete in-
formation (not just disjunctive tuples) such as maybe infor-
mation [Liu and Sunderraman, 1990] and dealing with DBs
with null values; ii) extending our work to other types of
integrity constraints, particularly to inclusion dependencies;
iii) devising IMs working at the attribute-level and able to
distinguish inconsistencies arising from different (sets of) at-
tributes (by following the idea of dimensional inconsistency
measures proposed in [Grant et al., 2021]); and finally iv) de-
veloping an ASP-based implementation by exploiting e.g. the
DB-oriented features of DLVDB [Alviano et al., 2010] in or-
der to evaluate relative IMs.
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