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Abstract
Most systems integrating data-driven machine learn-
ing with knowledge-driven reasoning usually rely
on a specifically designed knowledge base to enable
efficient symbolic inference. However, it could be
cumbersome for the nonexpert end-users to prepare
such a knowledge base in real tasks. Recent years
have witnessed the success of large-scale knowledge
graphs, which could be ideal domain knowledge re-
sources for real-world machine learning tasks. How-
ever, these large-scale knowledge graphs usually
contain much information that is irrelevant to a spe-
cific learning task. Moreover, they often contain
a certain degree of noise. Existing methods can
hardly make use of them because the large-scale
probabilistic logical inference is usually intractable.
To address these problems, we present ABductive
Learning with Knowledge Graph (ABL-KG) that
can automatically mine logic rules from knowledge
graphs during learning, using a knowledge forget-
ting mechanism for filtering out irrelevant informa-
tion. Meanwhile, these rules can form a logic pro-
gram that enables efficient joint optimization of the
machine learning model and logic inference within
the Abductive Learning (ABL) framework. Exper-
iments on four different tasks show that ABL-KG
can automatically extract useful rules from large-
scale and noisy knowledge graphs, and significantly
improve the performance of machine learning with
only a handful of labeled data.

1 Introduction
The integration of machine learning and logical reasoning is
a long-standing holy grail problem of Artificial Intelligence
(AI). It is also argued that the next generation of AI calls
for integrating the power of machine learning and logical
reasoning [Bengio, 2017]. In recent years, Neuro-Symbolic
(NeSy) Learning [Garcez et al., 2019; Raedt et al., 2020]
and Statistical Relational AI (StarAI) [Raedt et al., 2016] are
representative progress. NeSy systems usually aim to build
an explainable neural network structure with external domain
knowledge. StarAI [Koller et al., 2007] shares a similar idea,
where a probabilistic graphical model is constructed based

on domain knowledge expressed in first-order logic (FOL).
Probabilistic Logic Program (PLP) [De Raedt and Kimmig,
2015] combines these two paradigms by extending FOL to
accommodate probabilistic groundings such that probabilistic
inference can be conducted.

Abductive Learning (ABL) [Zhou, 2019; Zhou and Huang,
2022] is a flexible framework that integrates a machine learn-
ing model with a FOL reasoning model while preserving the
full expressive power of both sides: the machine learning
model learns to convert input data into primitive logic facts,
named pseudo-labels, which serve as input to symbolic reason-
ing; the reasoning model tries to infer the truth-value of these
facts to update the machine learning model. The integration of
the two systems adopts abduction, a.k.a. abductive reasoning,
to reason about the pseudo-labels based on background FOL
knowledge in the reasoning model.

In order to exploit logical reasoning in machine learning,
most of the above systems assume a specifically-designed
background knowledge base (KB) containing FOL rules for
the learning task, which could be unrealistic in real-world
tasks. Although recent progress on ABL [Dai and Muggleton,
2021] has shown its capability of learning with incomplete
background knowledge, the knowledge bases are still manually
prepared by human experts. A specific expert knowledge base
would undoubtedly benefit machine learning tasks, however, it
could be hard to obtain in reality due to the following reasons:
(1) Domain expertise may be very expensive and developing a
large knowledge base consisting of abundant and correct rules
is time-consuming. (2) These knowledge bases are highly
task-specific and can hardly be reused in different tasks.

Recently, knowledge graphs (KGs), as a structured form
of human knowledge, have drawn great attention from both
academia and industry [Nickel et al., 2015; Wang et al., 2017;
Ji et al., 2022; Hogan et al., 2022]. KGs model information
in the form of a graph, consisting of entities (nodes) and re-
lations between them (edges). A large number of KGs have
been created, including YAGO [Rebele et al., 2016], DB-
pedia [Lehmann et al., 2015], NELL [Carlson et al., 2010],
Freebase [Bollacker et al., 2008], ConceptNet [Speer et al.,
2017], etc. They contain millions of nodes and billions of
edges [Nickel et al., 2015]. If existing KGs could be used
as resources for domain knowledge, from which we extract a
segment of knowledge related to the machine learning task,
the problem of lacking knowledge can be alleviated to a cer-
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tain extent. Note that the words knowledge base (KB) and
knowledge graph (KG) may share the same meaning in some
papers. In this paper, we distinguish between KB and KG,
where KG contains triplets and KB consists of FOL rules.

Three challenges hinder machine learning systems from
exploiting knowledge in KGs. First, large-scale and general-
purpose KGs often contain much information irrelevant to the
machine learning task, causing inefficiency or inconsistency
in reasoning. Second, a KG that is not tailored for the learning
task may use different expressions for entities and relations,
bringing semantic challenges in entity matching, e.g., “father”
in the KG but “dad” in the machine learning task. Third, large-
scale KGs are usually mined from data, the noise within could
bring obstacles to rule extraction and logical inference.

This paper proposes to tackle the above challenges under the
abductive learning (ABL) framework and presents an approach
to facilitate ABL systems with knowledge graphs. Given a
learning task with a large-scale and general-purpose KG, the
proposed ABL-KG (ABductive Learning with Knowledge
Graph) first mines logic rules from a knowledge sub-graph
relevant to the learning task. Then, it adapts the rules for
the learning task by aligning their names. We propose a re-
membering algorithm to extract and transform the mined rules
to a weighted logic program while resolving the contradic-
tions caused by KG noise. Finally, ABL-KG leverages the
logic program as background knowledge in ABL by utilizing a
consistency measure to handle noisy and uncertain FOL rules.

We assess the effectiveness and generalization of ABL-KG
on a diverse range of tasks, including a classification task
on tabular data, two representation learning tasks on graph
data, and a classification task on image data. Experiments
show that ABL-KG can exploit the knowledge in KGs without
manual efforts, and improve machine learning performance
by automatically extracting task-relevant domain knowledge
from large-scale and general-purpose KGs.

2 Related Work
Probabilistic Logic Program (PLP) [De Raedt and Kimmig,
2015] and Statistical Relational Learning (SRL) [Koller et al.,
2007; Raedt et al., 2016] are two typical paradigms for inte-
grating logical reasoning and machine learning. PLP extends
FOL to accommodate probabilistic groundings and conduct
probabilistic inference. SRL tries to construct a probabilis-
tic graphical model based on domain knowledge expressed
in FOL. Various novel approaches have been proposed in re-
cent years, including DeepProbLog [Manhaeve et al., 2018],
Abductive Learning [Zhou, 2019] and NGS [Li et al., 2020].

A knowledge graph (KG) has a multi-relational graph
structure, with each node representing an entity and each
edge indicating the relation between two connected entities.
Such structured commonsense or factual knowledge has been
widely used in intelligent applications [Ji et al., 2022]. There
are two typical approaches to exploiting KGs. The con-
ventional symbolic methods either mine logic rules to in-
fer new facts [Galárraga et al., 2013; Galárraga et al., 2015;
d’Amato et al., 2016], or use keyword or SPARQL queries
executed on a KG to retrieve answers [Unger et al., 2012].
Recently, representation learning can capture KG semantics

in vector space and use the acquired embeddings to improve
downstream tasks such as link prediction [Wang et al., 2017]
and entity alignment [Sun et al., 2020].

Some approaches attempt to combine deep neural networks
with KGs [Marino et al., 2017; Wang et al., 2018] by build-
ing an end-to-end graph neural network (GNN), which often
demand a large number of labeled data for training and the
expressiveness of knowledge is limited. Instead of using GNN,
Scallop [Huang et al., 2021a] scales up DeepProblog by us-
ing approximate probabilistic logic inference, and it can use
small-scale KGs as knowledge resources. Different from these
approaches, ABL-KG could leverage reasonably large-scale
KGs with unlabeled data by abductive learning and preserve
the expressiveness of FOL at the same time.

The ability to discard irrelevant information is a key fea-
ture for an intelligent agent, which is referred to as forget-
ting [Lin and Reiter, 1994]. Forgetting preserves all logi-
cal consequences of relevant symbols while removing the
irrelevant ones, which enables a logic program to adequately
and efficiently handle reasoning tasks such as query answer-
ing. Various forgetting operations [Lin and Reiter, 1994;
Wang et al., 2005; Delgrande, 2014] have been proposed
for different types of logic programs. For a comprehensive
overview of forgetting, please refer to [Eiter and Kern-Isberner,
2019]. While these works usually focus on forgetting a small
subset of irrelevant information in a logic program, our work
would discard a large proportion of them efficiently.

3 Preliminaries
3.1 Abductive Learning
Abductive Learning (ABL) [Zhou, 2019; Zhou and Huang,
2022] is a framework that integrates a machine learning model
and a logical reasoning model. The machine learning model f
maps the unlabeled input data x ∈Xu into discrete symbols
y ∈ Y , which are called pseudo-labels since no supervision
on y. The reasoning model receives the symbols y and ver-
ifies their consistency with a knowledge base KB of FOL
rules. If inconsistent, the reasoning model would correct the
pseudo-labels y to abduced labels ȳ by abductive reasoning.
For instance, given a crayfish’s features x, an under-trained
classifier f may output the pseudo-label y = fish, then the
reasoning model is expected to identify the inconsistency and
revise it to ȳ = crustacean.

Abductive reasoning (abduction) is a form of logical infer-
ence that seeks grounded facts explaining observations based
on background knowledge. To illustrate clearly, this paper
denotes logical symbols as follows: “∧” is conjunction (and);
“∨” is disjunction (or); “←” is implication, which means that if
premises on the right of “←” hold, then the conclusion on the
left holds. For example, consider a KB containing the rules:

backbone(X)← fish(X), (1)
¬backbone(X)← insect(X) ∨ crustacean(X), (2)

false← insect(X) ∧ crustacean(X), (3)

where the first two rules describe the characteristics of fish,
insect and crustacean, and the last rule specifies that an
animal cannot be both an insect and a crustacean simultane-
ously. Given the observation that an animal (e.g., a crayfish)
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Figure 1: The ABL-KG framework. The first step involves mining rules that are relevant to the machine learning task from the knowledge
graph. Then, it conducts a remembering procedure to generate rules containing the target predicates without loss of other information. Finally,
the rules are utilized for abductive learning with a newly designed consistency measure for noisy and uncertain rules.

.
has no backbone, Rule (1) implies that it should not be a
fish (inconsistent with the pseudo-label). Continuing this rea-
soning process, based on Rules (2) and (3), both insect and
crustacean could be two possible explanations. If other rules
in KB indicate that it is not an insect, then a crustacean
would be the only explanation (abduced label).

Usually, there are multiple candidate abduced labels (de-
noted by Ȳ), and ABL minimizes inconsistency to choose the
best ȳ ∈ Ȳ based on a consistency measure. After revising y
to ȳ, ABL treats them as ground-truth labels to update the ma-
chine learning model f . The above process repeats iteratively
and f improves its performance by performing abduction on
the unlabeled data Xu with knowledge base KB.

3.2 Knowledge Graph
In this work, we focus on the RDF (Resource Description
Framework) KGs [Schreiber and Raimond, 2014]. It is a
structured representation of facts regarding entities and re-
lations. Each fact is a triplet of the form (h,r, t), e.g.,
(bird,HasA, feather). Subject h and object t are entities,
which can be real-world instances or concepts, and r is their
relation. In predicate logic, (h,r, t) is equivalent to r(h, t).

3.3 Forgetting and Remembering
Forgetting, originally proposed in [Lin and Reiter, 1994], aims
at removing irrelevant information from a knowledge base
KB. In this paper, we denote the signature (i.e., all the
predicates) of KB by Σ, and Σ′ ⊆ Σ is the part to forget.
forget(KB,Σ′) is the result of forgetting Σ′ from KB. The
dual of forgetting is remembering [Lin and Reiter, 1994], de-
noted by remember(KB,Σ′) = forget(KB,Σ \ Σ′), which
means forgetting the remaining signature while preserving all
logical consequences in KB w.r.t. Σ′.

For instance, assume that KB consists of two rules
backbone(X) ← vertebrate(X) and vertebrate(X) ←
fish(X). The predicate “vertebrate” is irrelevant to the
learning task and we want to forget it. In this case, signature
Σ = {fish, vertebrate, backbone} and Σ′ = {vertebrate},
and the result of forget(KB,Σ′) is {backbone(X) ←
fish(X)}. Obviously, forgetting vertebrate not only keeps
information of the remaining signature, but also leads to a new
knowledge base that could perform reasoning more efficiently.

4 The ABL-KG Framework
4.1 Problem Setting
We are given unlabeled data Xu, a large-scale knowledge
graph KG, and an initial machine learning model f . To utilize
the semantics of data, a task specification S of Xu is available,
e.g., the set of class names and attribute names such as bird or
backbone in a classification task. The goal is to leverage Xu

and KG to improve the performance of f .

4.2 Framework
The ABL-KG framework can be roughly divided into three
main steps: rule mining, remembering, and abductive learning
with KG rules. Figure 1 and Algorithm 1 show its outline.
Rule Mining. Given a large-scale knowledge graph KG and
a machine learning task, KG contains numerous irrelevant
information to the task. Therefore, ABL-KG first extracts a
sub-graph KG′ ⊂ KG relevant to the machine learning task,
where the number of triplets |KG′| ≪ |KG|. The relevance is
measured by the semantics of the relations and entities in KG
and S. Then, a rule mining algorithm is employed to mine
FOL rules from the sub-graph KG′, which forms the initial
knowledge base KBmine. The upper part of Figure 1 shows
an illustration, further details are introduced in Section 4.3.
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Algorithm 1 Abductive Learning with Knowledge Graph
Input: Knowledge graph KG; Unlabeled data Xu; Task spec-
ification S; Initial model f ; Labeled data Xl

Output: Machine learning model f
1: KG′ ← SubGraph(KG, S, d) // Sub-graph depth d
2: KBmine ← MineRules(KG′)
3: Σ′ ← SigMatch(KBmine, S)
4: KB ← Remember(KBmine,Σ

′)
5: KB ← PostProcess(KB,Xl)
6: for t = 1 to T do
7: Yu ← f(Xu)
8: Ȳu ← Abduce(Yu,Xu,KB) // Solve Eq. (4)
9: f ← Update(f,Xu, Ȳu) // Update f with Ȳu

10: end for

Remembering. To preserve the connectivity of the extracted
sub-graph, the FOL rule set KBmine may still contain some
predicates not matched to the names in the task specification
S, and hence, it could further be reduced. As shown in the top
right of Figure 1, the predicates backbone, fish, legs, bird
and tails should be directly mapped to S, while the predicate
vertebrate has no matched words in S and can be removed.
Thus, we propose a remembering algorithm to do this. The
new KB only consists of the target predicates (signature) Σ′

without the loss of other information, e.g., keeping the relation
between predicates fish and backbone as shown on the right
side of Figure 1. In addition, since KG inevitably contains
noise, we design a strategy to handle contradictory rules inKB
during the remembering process. More details are introduced
in Section 4.4.

Abductive Learning with KG Rules. The lower part of Fig-
ure 1 and Lines 6–10 in Algorithm 1 show the basic procedures
in abductive learning (ABL). Here a key challenge is how to
utilize the noisy KB in ABL. If a small amount of labeled data
is available, ABL-KG can use it to post-process and filter un-
reliable rules in KB. Besides, in abductive learning, one needs
to minimize the inconsistency between abduced labels andKB.
Due to the inherent noise in KB, a fully consistent abduced
label may not even exist. Therefore, we propose to formulate
KB as a weighted logic program and introduce a new con-
sistency measure to handle the uncertainty in the abductive
reasoning process. Details can be found in Section 4.5.

4.3 Rule Mining
Sub-graph Extraction
Sub-graph extraction aims at extracting a sub-graph KG′ of
KG relevant to the given machine learning task. Let R =
πrelation(KG) denote the set of relations in KG and E =
πentity(KG) the set of entities. ABL-KG first finds a set
ER ⊆ R ∪ E of entities and relations in KG that have the
same names as elements in task specification S. Then, a
sub-graph KG′ = {(h, r, t) ∈ KG | {h, r, t} ∩ ER ̸= ∅}
consists of the triplets that contain the relations or entities in
ER. Furthermore, we could construct a larger KG′ based on
current KG′ by iteratively performing the above procedure.
ABL-KG limits the size of the sub-graph KG′ by a parameter
d, which controls the depth of graph expansion.

Rule Mining for Knowledge Graph
ABL-KG could use any rule mining algorithms designed
for KG to mine association rules from the extracted sub-
graph KG′. The outputs (knowledge base KBmine) are
typically weighted first-order Horn rules. Each rule’s liter-
als are triplets with variables, e.g., isCitizenOf(C, S) ←
hasChild(P,C) ∧ isCitizenOf(P, S) with confidence 0.9
estimated from data provided by the rule mining algorithm.

We also propose a simple strategy that directly converts
triplets in KG′ into rules. We first define a subset of relations
in KG′ related to the learning task, and the corresponding
direction of implication and confidence in logic rules. Then,
the entities are directly converted into predicates with the
same name. If a number exists in an entity, it serves as the
second argument in its corresponding atom. For example, the
triplets (fish, IsA, vertebrate) and (bird,HasA, two legs)
can be transformed into rules vertebrate(X) ← fish(X)
and legs(X, 2)← bird(X), respectively. The confidence of
the mined rules is generated by a user-defined tolerance w.r.t.
the relation in the triplets to reflect the estimated noise level in
KG′, and details are provided in the experiment section.

4.4 Remembering
Signature Matching
Let Σ be the signature in the mined knowledge base
KBmine. Then, the target signature (signature to remem-
ber) is Σ′ = {σ ∈ Σ | MaxSimilarity(σ, S) > τ}, where
MaxSimilarity() returns the maximum similarity between
predicate σ and the elements in the task specification S, esti-
mated from word embeddings, and τ is a threshold.

Remembering Algorithm
We propose a remembering algorithm that produces a new
knowledge base KB from KBmine that only contains the tar-
get signature Σ′ without any loss of other information. The
signature to remember in ABL-KG is often much smaller than
the entire signature of KBmine, i.e., |Σ′| ≪ |Σ|.

Algorithm 2 shows an outline. The algorithm starts from
a subset Rnew of input KBmine, where the signature Sig(r)
of each rule r contains at least one element of the target sig-
nature Σ′. In the outer loop (cf. Lines 3–16), it derives a set
of new clauses Rres by resolving every clause in Rnew and
every clause in KB w.r.t. the signature to forget (Σ \ Σ′), i.e.,
ResolutionOn(rnew, r,Σ\Σ′) = {α∨β | rnew = α∨p, r =
β ∨ ¬p, p ∈ Σ \ Σ′}. If resolution succeeds and the resolvent
is not in Rres, it is added to Rres and the current KB. The
resolvent’s confidence would be set as the product of the con-
fidence of the two resolved clauses. In the next iteration, the
set of new resolvents Rres will be used as Rnew and resolves
with the current KB. The above routine conducts reasoning re-
lated to Σ′ on KB until saturated, i.e., there exists no “hidden”
information about Σ′ that is entailed by KB but not directly
asserted in it. Finally, a new knowledge base is returned by
retrieving the clauses in the current KB that only contain Σ′.

The basic idea of our remembering algorithm is to avoid
unnecessary resolutions by restricting one of the clauses in
resolution to contain target signatures. For example, given a
knowledge base KBmine = {a ← b, b ← c, d ← e, e ← d},
we want to remember literals a and c, and the result is {a← c}.
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Algorithm 2 Remembering
Input: Knowledge base KBmine; Entire signature Σ; Target
signature Σ′

Parameter: Iteration limit T
Output: Reduced knowledge base KB

1: Rnew ← {r ∈ KBmine | Sig(r) ∩ Σ′ ̸= ∅}
2: KB ← KBmine

3: while t ≤ T and Rnew ̸= ∅ do
4: Rres ← ∅
5: for rnew ∈ Rnew do
6: for r ∈ KB do
7: rres ← ResolutionOn(rnew, r,Σ \ Σ′)
8: if rres ̸= ∅ and rres ̸∈ KB then
9: Rres ← Rres ∪ {rres}

10: end if
11: end for
12: end for
13: Rnew ← Rres

14: KB ← KB ∪Rres

15: t← t+ 1
16: end while
17: KB ← {r ∈ KB | Sig(r) ⊆ Σ′}

If resolving on b, d, e succeeds, the resolution on d and e would
be unnecessary because they are completely irrelevant to a
and c. In short, our algorithm improves the efficiency of for-
getting. Moreover, even if irrelevant symbols are unsatisfiable,
e.g., KBmine becomes {a ← b, b ← c, d,¬d}, it would not
influence the ABL-KG framework, since we only care about
the relations within the target signature Σ′ = {a, c}.
Theorem 1. LetKBmine be any finite consistent propositional
or grounded first-order answer set program [Lifschitz, 2002]
consisting of Horn clauses, if the iteration limit T is sufficiently
large, Algorithm 2 always terminates and returns a result of
forgetting about Σ \ Σ′ in KBmine.

We defer the proof to Appendix. Theorem 1 shows that the
algorithm can output a correct logic program of forgetting.

Contradiction Handling
The rules mined from KG′ may contain contradictory rules.
For example, animal(X)← bird(X) and ¬animal(X)←
bird(X) may both exist in KB (due to (bird,IsA, animal)
and (bird,Antonym, animal) in ConceptNet [Speer et al.,
2017]). They would result in an incorrect rule ¬bird(X) after
remembering, which means that everything is not a bird. We
define contradictory rules as follows: if both p ← α and
¬p← α exist in KB, then they are contradictory rules. ABL-
KG detects contradictions during the remembering process. If
r1 and r2 are contradictory rules, it removes r1, r2 and their
resolvents from the current KB.

4.5 Abductive Learning with KG Rules
Rule Post-processing
If a small amount of labeled data are available, they could be
used not only for training the initial machine learning model f ,
but also for rule post-processing. By evaluating the quality of
rules, ABL-KG drops low-quality rules and adjusts the rules’

confidence to β ·confrule+(1−β)·confdata, where confrule
is the rule’s confidence given by KG, and confdata given by
labeled data.

Consistency Measure for Noisy and Uncertain Rules
Previous ABL methods adopt a consistency measure for ab-
duction to find the best abduced labels, which usually requires
that the abduced labels should be consistent with KB, i.e., all
the rules in KB are satisfied. However, faced with inevitably
noisy KG, even though the mined rules are post-processed,
they would not always be satisfied (unless all of them have
confidence 1.0), in which case the abduced labels that are con-
sistent with KB may not even exist. Therefore, we propose a
new consistency measure for noisy and uncertain rules, where
the optimization problem can be formalized as:
max
ȳ∈Ȳ

ModelScore(f,x, ȳ) + α ·KBScore(KB,x, ȳ), (4)

where Ȳ is the set of candidate abduced labels, and x and ȳ
are unlabeled data and abduced labels, respectively.

ModelScore(f,x, ȳ) represents the consistency between
abduced labels and model. For example, it can be defined as:

ModelScore(f,x, ȳ) =
∑
xi∈x

Conf(xi, ȳi), (5)

where Conf(xi, ȳi) denotes the confidence by model f that
sample xi belongs to label ȳi. Alternatively, other consistency
measures, e.g., [Huang et al., 2020; Cai et al., 2021; Huang et
al., 2021b; Huang et al., 2023], could also be used.

KBScore(KB,x, ȳ) represents the consistency between ab-
duced labels and knowledge base KB, which is defined as:

KBScore(KB,x, ȳ) = −
∑

r∈InconsRules(KB,x,ȳ)

Weight(r), (6)

where r is a ground rule in KB which is inconsistent with
x, ȳ, i.e., r ∪ x ∪ ȳ is inconsistent. A ground rule is a rule
where all variables are replaced by specific instances. Take the
example in Figure 1, if abduced label ȳ is fish, the ground
rule backbone(x)← fish(x) is violated and therefore incon-
sistent with abduced labels. Weight(r) is the weight of rule r,
which can be calculated based on the rule’s confidence, e.g.,
2 · confrule − 1 in our framework.

The measure of ModelScore in Eq. (5) prefers abduced la-
bels not far from the model’s current prediction. The measure
of KBScore in Eq. (6) shares a similar form of weighted max-
imum satisfiability (Weighted MAX-SAT) problem, where it
prefers abduced labels that have a small combined weight of
inconsistent rules. The weighting coefficient α in Eq. (4) com-
bines these two scores to form the final consistency measure.
When optimizing Eq. (4), if the search space is large, we can
solve with derivative free optimization [Yu et al., 2016]. Oth-
erwise, as in this work, we can directly search all candidates.

Our proposed consistency measure is general, which can be
regarded as a generalization of previous measures:
Proposition 1. The consistency measure of previous abductive
learning approaches [Dai et al., 2019; Cai et al., 2021; Huang
et al., 2021b] is a special case of Eq. (4) where KBScore = 0.

This conclusion is clear because previous methods require
the abduced labels to be consistent with the whole knowledge
base, and therefore there are no inconsistent ground rules.
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Method Accuracy ABL-KG Accuracy

RF 0.859±0.077 w/o Rem 0.890±0.046
PL 0.862±0.075 w/o Contr 0.773±0.063
Tri 0.865±0.093 w/o Post 0.878±0.066

ABL-KG 0.915±0.042 ABL-Expert 0.929±0.035

Table 1: Test accuracy of different methods (left) and ablation studies
(right) on animal classification task. “Rem”, “Contr” and “Post” de-
note “remembering”, “contradiction handling” and “post-processing”,
respectively. “Expert” means domain knowledge from an expert.

Step Origin Mined Rem (w/ Contr) Post

# Triplets/Rules 34M 44214 51 40
Abduced Acc. - 85.9% 90.5% 94.2%

Table 2: Statistics of rules after each step in ABL-KG. “Origin”
contains triplets and the others contain rules.

5 Experiments
This section presents the experimental results on three differ-
ent types of tasks, including a task on tabular data, two tasks
on graph data and a task on image data, to demonstrate that
ABL-KG is a general framework that can automatically extract
domain knowledge rules from large-scale KGs and leverage
them for improving the performance of machine learning mod-
els. The code is available for download1.

5.1 Animal Classification
The zoo animal classification dataset [Dua and Graff, 2017]
contains animals’ attributes (e.g., backbone, legs) and their cat-
egories (e.g., bird, fish), along with the names of each attribute
and class (task specification). In our experiment, we use only
one labeled sample of each class for model initialization. The
remaining is randomly split into 70% unlabeled data and 30%
test data. We use ConceptNet [Speer et al., 2017], a large-
scale semantic network with 34 million edges, as our KG. We
use GloVe [Pennington et al., 2014] for signature matching
(cf. Section 4.4). Rules are mined using our algorithm in
Section 4.3, where d is set to 2, and we set the confidence of
IsA relation to be 1.0 and others 0.9.

The left part of Table 1 shows the test accuracy. Here, the
random forest (RF) [Breiman, 2001] is used as the classifier in
all methods. ABL-KG is compared with two types of baselines,
i.e., RF using only labeled data and semi-supervised learning
methods leveraging unlabeled data, including Pseudo-Label
(PL) [Lee, 2013] and Tri-training (Tri) [Zhou and Li, 2005].
It is obvious that the performance of ABL-KG is significantly
superior to other approaches. Intriguingly, the performance
of ABL-KG is close to that of ABL with manually designed
rules, which take an expert about one hour to write. Since all
rules come from the mining of ConceptNet, it demonstrates
that ABL-KG is able to leverage a large-scale and noisy KG
for the training of a machine learning model.

The ablation studies are presented on the right part of Ta-
ble 1. The performance of ABL-KG drops if skipping any

1https://github.com/AbductiveLearning/ABL-KG

Method Hits@1 Hits@10 MRR

AlignE 0.504±0.013 0.863±0.007 0.626±0.010
AlignE+ 0.580±0.014 0.890±0.005 0.676±0.011
AlignE++ 0.615±0.011 0.895±0.005 0.706±0.019
ABL-KG 0.645±0.005 0.891±0.004 0.732±0.004
ABL-Expert 0.688±0.005 0.905±0.002 0.765±0.004

Table 3: Entity alignment results on DBP-EN-FR.

of the “remembering”, “contradiction handling” and “post-
processing” steps, indicating that all procedures play a sig-
nificant role in ABL-KG. Specifically, without “contradiction
handling”, ABL-KG reaches the lowest performance. We
check the generated rules in this case, and find that they con-
tain some false rules, e.g., “¬bird(X)” (“nothing is a bird”),
which would result in great performance degradation. Further
analysis reveals that this is caused by forgetting animal on
two contradictions from KG, i.e., “animal(X)← bird(X)”
and “¬animal(X) ← bird(X)”. Contradiction handling
would remove these contradictory rules and avoid this error.

We analyze the rules after each step, as shown in Table 2.
Starting from 34 million triplets, ABL-KG gradually mines
useful rules and drops irrelevant ones, leading to the improve-
ment of abduced label accuracy. We compare the mined rules
with the expert’s ones. Although the former lacks some do-
main knowledge due to KG incompleteness, most of the rules
written by the expert have been discovered by ABL-KG.

5.2 Entity Alignment
The task seeks to find the identical entities from two KGs (in-
put data). The entity alignment model learns embeddings for
the two KGs to measure entity similarity. In our experiment,
we consider the widely-used cross-lingual dataset DBP-EN-
FR, which was proposed in the OpenEA benchmark study [Sun
et al., 2020]. It aims to align the entities in the English and
French DBpedia [Lehmann et al., 2015]. It has 15000 entity
alignment pairs and we use 20% of them as training data. We
choose the popular entity alignment model AlignE [Sun et al.,
2018] as the basic aligner in our experiment, and implement
two semi-supervised variants, i.e., AlignE+ and AlignE++, as
baselines. AlignE+ employs self-training [Yarowsky, 1995]
and selects the predicted entity alignment pairs whose embed-
ding similarity is greater than 0.9 to augment training data.
AlignE++ improves AlignE+ by using entity dependencies
to reduce the noise in augmented training data [Liu et al.,
2023]. We use Wikidata [Vrandecic and Krötzsch, 2014] and
YAGO3 [Rebele et al., 2016] as the background KGs to ac-
quire a KB for entity alignment, and use GloVe [Pennington
et al., 2014] for relation matching during remembering.

We report the Hits@1, Hits@10, and MRR results of five-
fold cross-validation in Table 3. Our ABL-based methods,
ABL-KG and ABL-Expert, bring significant improvement to
AlignE. They also outperform the semi-supervised variants.
This is because by leveraging mined/manual knowledge base,
abductive reasoning can identify and resolve the alignment in-
consistency issue, which improves the quality of new training
data. An example of the automatically mined rules in ABL-
KG is “sameAs(X,Y )← spouse(X,A)∧ father(C,B)∧
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Method Hits@1 Hits@10 MRR

TransE 0.199±0.002 0.500±0.004 0.300±0.003
TransE+ 0.183±0.002 0.508±0.004 0.294±0.002
ABL-KG 0.216±0.006 0.551±0.004 0.334±0.004
ABL-Expert 0.235±0.004 0.557±0.002 0.348±0.003

Table 4: Link prediction results on FB15K-237.

mother(C, Y ) ∧ sameAs(A,B)”, which means that a per-
son’s father and mother are spouses. In the abductive learning
stage, these rules form a logic program that can check the
dependency of predicted entity alignment pairs and resolve
alignment inconsistency. ABL-Expert achieves better perfor-
mance than ABL-KG, because the expert rules are superior to
our automatic rule mining method in terms of rule noise.

5.3 Link Prediction
Link prediction is the task of predicting the missing entity of
an incomplete triple like (IJCAI-2023,location, ?). We
consider the benchmark dataset FB15K-237 [Toutanova and
Chen, 2015] and choose the most popular model, TransE [Bor-
des et al., 2013], as the basic learning model in the experiment.
Given a triplet, TransE interprets the relation as a translation
vector between the subject and object. The translation error is
defined as the energy of the triplet. We also use self-training
to implement a semi-supervised baseline, denoted by TransE+.
We mine rules from DBpedia [Lehmann et al., 2015] and use
GloVe [Pennington et al., 2014] for relation matching in the
remembering process to build a KB targeted to FB15K-237.

We follow the training/validation/test data splits of FB15K-
237, and report the average test results of five runs in Table 4.
We find that the semi-supervised method TransE+ even under-
performs TransE. This is because link prediction is a difficult
task and the low accuracy results in much noise in the ab-
duced data, which hurts the model training. By contrast, both
ABL-KG and ABL-Expert offer performance improvement.
The rules extracted from other background KGs can provide
additional capability for accurately inferring new triplets and
correcting incorrectly predicted triplets. It is noteworthy that
the performance of ABL-KG is close to that of ABL-Expert,
showing that the automatically mined rules in ABL-KG have
a similar quality to the expert’s rules, which could reduce the
human efforts on knowledge engineering.

5.4 Image Classification
The task’s input is images from ADE20K [Zhou et al., 2017].
We reform it as a multi-label classification task, which re-
quires a model to determine the objects (e.g., bed, sidewalk)
in images. From totally 150 categories of objects, we ran-
domly select 12 frequently appearing objects as labels. In our
task, only 5% or 10% of all 20k images are labeled. Each
image, labeled or not, comes with a scene description (e.g.,
bedroom, street), with 1055 possible scenes. ABL-KG uses
ConceptNet [Speer et al., 2017] as the KG, and the confidence
of mined rules is set to 1.0 for the IsA relation and 0.8 for
the rest. In addition, we use an initial knowledge base that
contains only 40 rules to cover the incompleteness of Con-
ceptNet, and the final KB contains 590 rules. All methods

Method 5% 10%

ResNet 0.604±0.022 0.646±0.016
PL 0.612±0.028 0.653±0.014

VAT 0.620±0.015 0.669±0.008
ABL-Init 0.613±0.029 0.654±0.020
ABL-KG 0.649±0.018 0.680±0.014

Table 5: F1-score of image classification with different label rates.
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Figure 2: Learning curves on the image classification task. Shaded
regions represent standard deviation.

use a ResNet-50 [He et al., 2016] pre-trained on ImageNet as
the learning model, in which the last layer is replaced to fit
the multi-label task, and the model is fine-tuned on the given
labeled and abduced labels.

Table 5 presents the F1-scores (macro-averaging) of com-
pared approaches, including supervised (ResNet [He et al.,
2016]) and semi-supervised methods (Pseudo-Label (PL) [Lee,
2013] and Virtual Adversarial Training (VAT) [Miyato et al.,
2018]). With different label rates, ABL-KG achieves the high-
est F1. When there are fewer labeled data, the performance
gain of ABL-KG compared with supervised methods is greater.
An ablation study only using the initial knowledge base (ABL-
Init) indicates that the performance gain mainly comes from
the mined KG rules. The learning curves of various approaches
are shown in Figure 2. Starting with the same performance,
ABL-KG achieves higher accuracy than other methods.

6 Conclusion
Previous works that integrate machine learning and logical
reasoning usually require a manually engineered knowledge
base. To reduce this burden, we propose to exploit existing
large-scale knowledge graphs as knowledge resources. In this
paper, we propose the ABL-KG framework which can extract
an interpretable knowledge base automatically in the form of
logic rules and use them for abductive learning.

Experiments on various tasks validate that the extracted
knowledge contributes to an improvement of machine learning
models under the abduction strategy that employs the consis-
tency measure designed for noisy and uncertain rules. The
limitation of ABL-KG is that it assumes the existing knowl-
edge graphs contain the needed knowledge, which may not
always be sufficient due to the limited expressive power of
triplets. In future work, it would be intriguing to exploit other
knowledge representation forms such as ontology.
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