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Abstract

Organic reaction prediction is a critical task in drug
discovery. Recently, researchers have achieved
non-autoregressive reaction prediction by modeling
the redistribution of electrons, resulting in state-of-
the-art top-1 accuracy, and enabling parallel sam-
pling. However, the current non-autoregressive de-
coder does not satisfy two essential rules of elec-
tron redistribution modeling simultaneously: the
electron-counting rule and the symmetry rule. This
violation of the physical constraints of chemical re-
actions impairs model performance. In this work,
we propose a new framework called ReactionSink
that combines two doubly stochastic self-attention
mappings to obtain electron redistribution predic-
tions that follow both constraints. We further ex-
tend our solution to a general multi-head atten-
tion mechanism with augmented constraints. To
achieve this, we apply Sinkhorn’s algorithm to iter-
atively update self-attention mappings, which im-
poses doubly conservative constraints as additional
informative priors on electron redistribution mod-
eling. We theoretically demonstrate that our Re-
actionSink can simultaneously satisfy both rules,
which the current decoder mechanism cannot do.
Empirical results show that our approach consis-
tently improves the predictive performance of non-
autoregressive models and does not bring an un-
bearable additional computational cost.

1 Introduction
Reaction prediction is a crucial task in computational chem-
istry. With a reliable prediction model, chemists can ver-
ify the accuracy of retrosynthetic routes and potentially un-
cover new chemical reactions, which could significantly ben-
efit the drug discovery industry. However, given a set of re-
actants, the number of potential products can be combinato-
rially large, necessitating automatic tools to narrow down the
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Figure 1: This figure illustrates chemical reaction from electron re-
distribution perspective. Red circles and arrows denote involved
atoms that form new bond. Green arrow denotes the bond that
breaks. Blue circles and arrows describe the hydrogen atom trans-
fer. With electron redistribution ∆E, reactants GR are transformed
to products GP such that ER +∆E = EP , where ER and EP are
the adjacency matrices of reactants and products respectively. Note
that ER, EP and ∆E does not consider Hydrogen atoms explicitly
and ∆E records the change of attached hydrogen atoms in diagonal.

search space. Consequently, the use of deep learning tech-
niques to automatically infer possible reaction products has
become prevalent and essential.

Translation-based autoregressive models [Schwaller et al.,
2019; Tetko et al., 2020; Tu and Coley, 2021; Lu and Zhang,
2022; Irwin et al., 2022; Zhao et al., 2022] have dominated
the design of template-free end-to-end reaction models in re-
cent years. These models represent molecules as sequences of
characters, called SMILES [Weininger, 1988], and formulate
the reaction prediction problem as a neural machine transla-
tion problem [Sutskever et al., 2014; Vaswani et al., 2017;
Devlin et al., 2019]. This class of models achieves great
predictive performance and does not rely on pre-computed
atom-mapping information. However, autoregressive models
have two major shortcomings. First, autoregressive sampling
is very inefficient because the model has to generate the fi-
nal predictions step-by-step from intermediate parts. Second,
training autoregressive models requires pre-defined genera-
tion orders, while the absolute generation order of molecules
is ambiguous.

To avoid these issues, a non-autoregressive model called
NERF [Bi et al., 2021] has been proposed. It predicts the
redistribution of electrons, which is an important observation
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because chemical reactions can be reflected by bond recon-
nection, since the elements of the involved atoms remain un-
changed. Bond reconnection inherently involves electron re-
distribution. For example, forming a single bond between a
carbon atom and a nitrogen atom involves sharing a pair of
electrons between them. Therefore, predicting electron re-
distribution ∆E is sufficient for inferring possible complete
products. With a novel design for the electron redistribution
decoder, NERF has achieved state-of-the-art top-1 accuracy
and much faster sampling speed with parallel inference.

However, an important issue that has been neglected is that
∆Ê must simultaneously follow the electron counting rule
and the symmetry rule to better approximate ∆E. The chem-
ical reaction that adheres to both of these rules is illustrated
in Figure 1. We can clearly see that ∆E is row-wise con-
servative (conforming to the electron counting rule) and sym-
metric. Currently, the NERF decoder neglects to symmetrize
∆Ê, only ensuring that it follows the electron counting rule
through combinations of BondBreaking and BondFormation
self-attention matrices. This leads to inexact modeling of ∆E
and impairs model performance. The predicted product adja-
cency matrix ÊP is forced to be symmetric, but this operation
implicitly corrupts the row-wise conservatism of ∆Ê.

In this work, we propose a novel framework called Re-
actionSink to refine the decoder. The framework applies
Sinkhorn’s algorithm to iteratively update the BondBreak-
ing and BondFormation self-attention matrices. With a suf-
ficient number of iterations, each self-attention matrix con-
verges to a doubly stochastic matrix. To generalize this so-
lution to multi-head attention mechanisms, we impose aug-
mented constraints on the Sinkhorn normalization operation.
We theoretically show that the NERF decoder leads to an im-
plicit contradiction in preserving both physical constraints.
In contrast, doubly stochastic self-attention mappings lead to
valid ∆Ê, which preserve both rules simultaneously and are
not corrupted by the symmetrization on ÊP . We further dis-
cuss the implicit connections between the reaction prediction
problem and the discrete optimal transport problem to vali-
date the rationality of imposing the doubly stochasticity con-
straint on the decoder as an information prior. Comprehen-
sive empirical results on the open benchmark dataset USPTO-
MIT demonstrate that our approach consistently outperforms
baseline non-autoregressive reaction prediction models. Our
contributions can be summarized as follows:

• We introduce two chemical rules that the predicted elec-
tron redistribution ∆Ê should follow and theoretically
show that the current non-autoregressive decoder in-
evitably violates either of these chemical rules;

• We propose a novel decoder design that conforms to
both chemical rules through leveraging combinations of
doubly stochastic self-attention mappings and we gener-
alize our approach to multi-head attention mechanism;

• We provide some new interpretations on electron re-
distribution modeling, which facilitates further research
on potential connections between the reaction prediction
problem and the optimal transport problem.

2 Related Work
Reaction Prediction. In the early years, template-based
methods were widely adopted for reaction prediction. Ex-
perts deduced possible products with the help of concluded
reaction templates. Although these methods are reliable,
they suffer from poor generalization. Quantum computation
methods [Dral, 2020; Lam et al., 2020; Raucci et al., 2022]
have also been adopted for reaction predictions, but they suf-
fer from low computation speeds, despite being template-
free. With the rise of deep learning, various deep learn-
ing architectures have been utilized in reaction modeling.
Models that learn neural matching between reactions and
templates have been proposed [Segler and Waller, 2017;
Segler and Waller, 2016a]. WLDN [Jin et al., 2017] proposes
a template-free model that splits reaction prediction into a re-
action center identification stage and candidate ranking stage.
MEGAN and GTPN [Sacha et al., 2020; Do et al., 2019]
model reactions as a sequence of graph edits, while Electro
[Bradshaw et al., 2019] regards reactions as a sequence of
electron transfers. A major class of models are translation-
based reaction prediction models [Schwaller et al., 2019;
Tetko et al., 2020; Tu and Coley, 2021; Lu and Zhang, 2022;
Irwin et al., 2022; Zhao et al., 2022], which mainly trans-
fer techniques from language modeling to reaction modeling.
NERF [Bi et al., 2021] refines the decoder to model electron
redistribution and achieves non-autoregressive modeling with
state-of-the-art top-1 accuracy and parallel inference.
Sinkhorn and Attention. The Sinkhorn algorithm
[Sinkhorn, 1966; Cuturi, 2013; Peyré and Cuturi, 2019] is a
well-studied tool for approximating solutions to the optimal
transport problem. For instance, a new set pooling algorithm
is presented in [Mialon et al., 2021], which embeds the opti-
mal transport plan between input sets and reference sets, and
then uses the Sinkhorn algorithm as a fast solver. Sinkhorn
normalization is presented in [Marshall and Coifman, 2019;
Wormell and Reich, 2021], and its convergence properties to
a doubly stochastic matrix have been theoretically validated.
SparseMAP [Niculae et al., 2018] uses doubly stochastic
attention matrices in LSTM-based encoder-decoder net-
works. Sinkhorn updates are also applied for differentiable
ranking over internal representations in [Adams and Zemel,
2011]. Gumbel-Sinkhorn [Mena et al., 2018] applies the
Sinkhorn algorithm to learn stochastic maximization over
permutations. The Sinkhorn algorithm is used to iteratively
generate doubly stochastic matrices for approximating
smooth filters in [Milanfar, 2013]. It has also been ap-
plied to refine self-attention mechanisms in [Vaswani et
al., 2017]. The Sparse Sinkhorn Transformer [Tay et al.,
2020] learns sparse self-attention by introducing a sorting
network that generates a doubly stochastic matrix to permute
input sequence elements. Sinkformer [Sander et al., 2022]
applies the Sinkhorn algorithm to derive doubly stochastic
transformers.

3 Proposed Methods
This section introduces the learning framework of our new
non-autoregressive reaction prediction model, ReactionSink.
We first describe its problem formulation and general training
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Figure 2: This figure illustrates the training procedure of ReactionSink. It adopts the conditional variational autoencoder framework with KL-
divergence loss and reconstruction loss ||EP − ÊP ||22. Red rectangles highlight BondFormation and BondBreaking self-attention mappings.
Orange rectangle highlights the process we aim to analyze. ⊖ denotes the element-wise subtraction, ⊕ denotes the element-wise plus.
With Sinkhorn algorithm applied on BondFormation and BondBreaking, ∆Ê becomes doubly conservative and would not be corrupted by
symmetrization on ÊP . “4×” denotes the multi-head attention with 4 heads.

process. Then we introduce its encoder architecture, which
obtains the conditional reaction latent embedding. Most
importantly, we present our novel decoder mechanism that
leverages doubly stochastic self-attention matrices to obtain
∆E. In the theoretical analysis section, we mathematically
compare our decoder with the NERF [Bi et al., 2021] decoder
to demonstrate the advantages of our approach. Finally, we
briefly discuss the new insights brought by ReactionSink.

Problem Formulation. A chemical reaction is represented
as a pair (GR, GP ), where GR = (V,ER, fR) denotes the set
of reactants and GP = (V,EP , fP ) denotes the set of prod-
ucts, V is the set of |V | atoms, ER and EP denote the adja-
cency matrix of GR and GP respectively, fR and fP denote
the atom feature matrix of GR and GP respectively. Follow-
ing the atom-mapping principle, reactants and products share
the same set of atoms V . Unlike most of the papers represent-
ing E as a 3D tensor, where E ∈ R|V |×|V | is a 2D matrix and
Eij denotes the number of shared electrons between atom i
and atom j (i.e. single bond is 1, double bond is 2). For spe-
cial aromatic bond, we denote it as Eij = 1.5. The goal of
reaction prediction is to predict the set of products GP given
a set of reactants GR.

Following NERF [Bi et al., 2021], we also adopt the con-
ditional variational autoencoder [Sohn et al., 2015] (CVAE)
architecture to approximate p(GP |GR) by introducing a la-
tent variable z. Instead of directly maximizing the log-
likelihood log p(GP |GR), CVAE is to maximize its evidence-
lower bound (ELBO):

ELBO =Eq(z|GP ,GR)[log p(G
P |GR, z)]−

KL(q(z|GP , GR)||p(z|GR)) ≤ log p(GP |GR),
(1)

where q(z|GP , GR) is the reaction encoder with reaction
(GR, GP ) as input and low-dimensional embedding hz as
output, p(GP |GR, z) is product decoder with reactants GR

and latent embedding hz as input, p(z|GR) denotes the prior
distribution of latent variable z. KL term is minimizing
the gap between q(z|GP , GR) and p(z|GR). In real imple-
mentations, the backbone network architectures of the en-
coder q(z|GP , GR) are graph neural networks (GNNs) and
transformers. GNNs capture local interactions within each

molecule and transformers capture global interactions across
different molecules. With this architecture, GR and GP will
be projected to reactants embedding hR and products embed-
ding hP respectively. The cross attention layer is used for
mapping hR to latent hz with hP as teacher forcing during
training. Finally, the latent conditional reaction embedding
is derived such that ĥz = hR + hz . Note that similar reac-
tion embedding networks are widely adopted in many related
works as long as transformer-based reaction encoder archi-
tectures are used. Please refer the detailed architectures in
Appendix 1 and the general architectures of ReactionSink is
illustrated in Figure 2.

3.1 Decoder with Physical Constraints
The core mechanism of the decoder p(GP |GR, z) is first de-
coding electron redistribution matrix ∆Ê from conditional
latent ĥz , and then add it to ER to predict ÊP , i.e., ÊP =

ER+∆Ê. Before presenting ReactionSink decoder in details,
we first introduce two important physical rules, the electron-
counting rule and the symmetry rule, which should be fol-
lowed by the predicted ∆Ê. However, these rules are not
explicitly stated in the previous literature. We will mathemat-
ically characterize these two rules as matrix properties.
Electron Counting Rule. This is an important chemical
rule of thumb: the octet rule. It states that main-group ele-
ments (carbon, nitrogen, oxygen, halogens) tend to bond in
a way that each atom has eight electrons in its valence shell.
Following this rule, electron redistribution of each atom is
conservative, allowing it to maintain eight electrons in its va-
lence shell. For example, when a carbon atom forms a new
bond with one atom, it tends to break an existing bond with
another atom in order to maintain eight electrons in its va-
lence shell. This empirical rule leads to an important math-
ematical property of ∆E, which is row-wise conservative
(i.e.,

∑
j ∆Eij = 0 for each atom i). Note that this rule

is more informative than the charge conservation rule, which
can be mathematically expressed as

∑
i,j ∆Eij = 0.

Symmetry Rule. The ground-truth ∆E should clearly be
symmetric. For example, if the edge number between atom
i and atom j increases by 1, then the edge number between
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atom j and atom i should also increase by 1. To better ap-
proximate ∆E, ∆Ê should also be symmetric.

We have shown that ∆Ê should preserve two mathemat-
ical properties which are

∑
j ∆Êij = 0 for any j and

∆Êij = ∆Êji for any i, j. This can easily come up with
a new conclusion that ∆Ê should also be column-wise con-
servative such that

∑
i ∆Êij = 0 for any j. Therefore, ∆Ê

should be both row-wise conservative and column-wise con-
servative in the strict sense, which is doubly conservative.
Inspired by NERF decoder that leverages the combinations of
row-wise stochastic self-attention mappings to achieve row-
conservative ∆Ê, we achieve doubly conservative ∆Ê by
using combinations of two doubly stochastic self-attention
mappings. Specifically, we decode two self-attention map-
pings BondFormation W+ and BondBreaking W− from the
conditional latent ĥz . BondFormation W+ is to predict bond
addition and BondBreaking W− is to predict bond removal.
The detailed self-attention decoding mechanism is shown in
Appendix 2. Then the combinations of W+ and W− should
satisfy the following equations:

(
∑
j

W+
ij −

∑
j

W−
ij ) =

∑
j

∆Êij = 0, for any i,

(
∑
i

W+
ij −

∑
i

W−
ij ) =

∑
i

∆Êij = 0, for any j.
(2)

To satisfy the above equations, we force W+ and W− to be
doubly stochastic such that:∑

j

W+
ij = 1,

∑
j

W−
ij = 1 for any i,

∑
i

W+
ij = 1,

∑
i

W−
ij = 1 for any j.

(3)

Note that forcing W+ and W− to be doubly stochastic is
probably not the only solution to Eq 2. But stochasticity (sum
to 1) is the most straightforward solution and more compati-
ble with normalization operations. Therefore, if W+ and W−

can be doubly stochastic matrices as stated in Eq 3, their com-
binations can lead to a doubly conservative ∆Ê. Then we can
apply symmetrization operation on ∆Ê such that ∆Ê+(∆Ê)T

2 ,
which is averaging predictions of ∆Êij and ∆Êji for each
i, j. Interestingly, symmetrization in this case would not cor-
rupt the conservative of ∆Ê. We will theoretically validate
these claims in the next section.

Unfortunately, decoding doubly stochastic self-attention
mappings from conditional latent variables is non-trivial. Re-
call that the vanilla self-attention mapping is obtained as
SoftMax(exp(QKT )), where Q and K are queries and
keys linearly projected from latent variable ĥz . Note that
the SoftMax operator is basically a row-wise normalization
technique that forces self-attention mappings to be row-wise
stochastic, while it is not necessarily column-wise stochastic.
Therefore, a specific operator is required to extend Bondfor-
mation W+ and Bondbreaking W− to doubly stochastic ma-
trices. Furthermore, this operator should be differentiable so
that it can be naturally merged into decoder neural networks.

3.2 Sinkhorn’s Algorithm
An iterative algorithm to convert positive matrix to doubly
stochastic matrix is Sinkhorn’s algorithm. The main idea of
Sinkhorn’s algorithm is alternatively applying row-wise nor-
malization and column-wise normalization on the given pos-
itive matrix. Given a positive square matrix X ∈ RN×N , we
define the Sinkhorn operator as follows:

S0(X) = exp(X),

Sl(X) = Tc(Tr(S
l−1(X))),

S∞(X) = liml→∞Sl(X),

(4)

where Tr denotes the row-wise normalization and Tc denotes
the column-wise normalization. They are formally described
as follows:

Tr(X) = X ⊘ (X1N1T
N ),

Tc(X) = X ⊘ (1N1T
NX),

(5)

where ⊘ denotes the element-wise division operator and 1
denotes the all one vector. We only need to apply the above
normalization operations alternatively with enough number
of iterations. In real implementation, to stabilize the updat-
ing process, we put the computation of Eq 5 in log domain.
Details of this implementation are shown in the Appendix 6.

Sinkhorn [Sinkhorn, 1966] proves that S∞(X) belongs
to the Birkhoff polytope, the set of doubly stochastic matri-
ces, such that S∞(X)1N = 1N and S∞(X)T1N = 1N .
Hence, applying this Sinkhorn operator on W+ and W− sep-
arately will make them converge to doubly stochastic matri-
ces. This Sinkhorn operator can be easily coupled with the
self-attention mechanism as an additional layer. In addition, it
can be perfectly suited for backpropagation updates of neural
networks. Specifically, this Sinkhorn operator can be stacked
after the vanilla self-attention, since the vanilla self-attention
mapping can be regarded as Tr(exp(QKT )), which is equiv-
alent to the initialization step plus the row-wise normalization
step in Eq 4. Therefore, in real implementations, we start with
the column-wise normalization Tc after the SoftMax layer
in the vanilla self-attention.

Currently, each entry of ∆Ê is in range [−1, 1] while
edge number changes more than 1 in many cases. There-
fore, we apply multi-head attention mechanism such that
∆Ê =

∑4
d=1 W

+d −
∑4

d=1 W
−d with d = 4 attention

heads. In this way, ∆Êij is in range [−4, 4], which could
cover enough support of edge number changes of chemical
reactions. We only need to slightly change Eq 3 by increas-
ing conservation constraints to 4 and impose the augmented
doubly conservative constraint on the sum of attention heads∑4

d=1 W
+d and

∑4
d=1 W

−d respectively as follows:
4∑

d=1

∑
j

W+d
ij = 4,

4∑
d=1

∑
j

W−d
ij = 4 for any i,

4∑
d=1

∑
i

W+d
ij = 4,

4∑
d=1

∑
i

W−d
ij = 4 for any j.

(6)

For applying the Sinkhorn normalization operator to the
multi-head attention mechanism, we only need to impose the
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augmented constraints to both row-wise normalization and
column-wise normalization such that:

Tr(X) = 4X ⊘ (X1N1T
N ),

Tc(X) = 4X ⊘ (1N1T
NX).

(7)

To conclude, with Sinkhorn’s algorithm, we can efficiently
convert W+ and W− to doubly stochastic matrices, to finally
achieve symmetric doubly conservative ∆Ê.

4 Theoretical Analysis
In this section, we first theoretically show that the NERF
decoder cannot output valid ∆Ê that follows the previously
mentioned two physical constraints. In comparison, we math-
ematically validate that our ReactionSink decoder can gener-
ate valid ∆Ê and the symmetry is not contradictory to the
conservative.

In NERF decoder, it generates two vanilla self-attention
mappings W+ and W− based on conditional latent for Bond-
Formation and BondBreaking respectively and approximates
∆Ê through subtraction with multi-head attention such that
∆Ê =

∑4
d=1 W

+d −
∑4

d=1 W
−d. Then it applies sym-

metrization on the final predicted ÊP = ER +∆Ê such that
EP+(EP )T

2 . Therefore, we begin to verify that ∆Ê has also
been implicitly symmetrized by NERF decoder, which is the
following lemma:

Lemma 4.1 Symmetrization on the final predicted product
adjacency matrix ÊP is equivalent to implicit symmetrization
on the predicted electron redistribution ∆Ê.

The proof procedures are shown in Appendix 2.
Then we argue that NERF decoder design cannot sat-

isfy the two proposed physical constraints simultaneously.
Specifically, the symmetrization operation on ÊP would re-
sult in that ∆Ê violates the first rule. Since we have already
shown that the symmetrization of ÊP is equivalent to the im-
plicit symmetrization of ∆Ê in lemma 4.1, we only need to
further prove the following lemma:

Lemma 4.2 Implicit symmetrization on ∆Ê would result
in that ∆Ê violates the electron counting rule such that∑

j ∆Êij ̸= 0 for some i.

The proof procedures are shown in Appendix 3.
To summarize, electron redistribution predictions gener-

ated by NERF cannot satisfy both constraints simultaneously.
Implicit symmetrization operation applied on ∆Ê makes it
violate the first rule. Otherwise it will violate the second rule
if no symmetrization operation is adopted. In short, NERF
decoder actually leads to a contradiction between two physi-
cal constraints.

In comparison, with doubly stochastic self-attention map-
ping W+ and W−, ReactionSink can conform to both physi-
cal rules concurrently. We can prove the following theorem:

Theorem 4.3 If the self-attention mappings for bondforma-
tion W+ and bondbreaking W− are doubly stochastic, then
∆Ê would be guaranteed to be doubly conservative and its

doubly conservation would not be corrupted by the sym-
metrization of ÊP .

The proof procedures are shown in Appendix 4.
To extend the above conclusion to multi-head attention

mechanism. The following corollary can be easily proved:

Corollary 4.3.1 If the multi-head self-attention mecha-
nisms for bondformation

∑D
d=1 W

+d and bondbreaking∑D
d=1 W

−d are doubly conservative with D-sum constraints,
then ∆Ê would be guaranteed to be doubly conservative and
its doubly conservation would not be corrupted by the sym-
metrization of ÊP .

The proof procedures are shown in Appendix 5.

5 Further Discussions
Our novel framework, ReactionSink, provides new insights
for the non-autoregressive reaction prediction problem. Dou-
bly stochastic matrices usually have special meaning in math-
ematics, with the most well-known being the permutation ma-
trix. This suggests that electron redistribution can be formu-
lated as a learned permutation of electrons. Note that per-
muting a matrix is a multiplication operation, which is dif-
ferent from the current formulation. The permutation formu-
lation is intuitively closer to the discrete nature of electron
redistribution, but the detailed formulation method requires
further research. More generally, reaction prediction can be
connected with the optimal transport (OT) problem. The per-
mutation problem is the most elementary discrete OT prob-
lem. Specifically, electron redistribution can also be regarded
as allocating electrons to lower the energy of the entire re-
action system, which is implicitly connected to the discrete
OT problem. Our work presents these new insights to inspire
future research, although they are still in their nascent stages
and have not been revealed by existing research.

6 Experiments
Dataset. Following previous work, we evaluate our ap-
proach on the open public benchmark dataset USPTO-MIT
[Jin et al., 2017], which contains 479K reactions filtered by
removing duplicates and erroneous reactions from Lowe’s
original data [Lowe, 2012]. An exisitng work discovers that
about 0.3% of reactions in USPTO-479K do not satisfy the
non-autoregressive learning settings for various reasons [Bi
et al., 2021]. Following this work [Bi et al., 2021], we also
filter 0.3% reactions from dataset and deduct 0.3% from the
top-k accuracies of our model correspondingly.

Experimental Setting. We conduct experiments on three
different splits of reaction prediction, which are random split,
tanimoto-0.4 split and tanimoto-0.6 split. Random split is
adopted by most of the previous work. Scaffold splits,
tanimoto-0.4 split and tanimoto-0.6 split, are adopted by [Ko-
vacs et al., 2021] to test the generalization of reaction model
with larger distribution shift between training and testing.
Tanimoto similarity is measuring whether two reactions are
structurally similar. Higher tanimoto index indicates that two
reactions are more similar and otherwise two reactions are
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Category Model Top-1 Top-2 Top-3 Top-5 Top-10 Parallel End-to-end
Template-based Symbolic† 90.4 93.2 94.1 95.0 - ✓ ×

Two-stage WLDN† 79.6 - 87.7 89.2 - ✓ ×

Autoregressive

GTPN† 83.2 - 86.0 86.5 - × ✓
MT-base† 88.8 92.6 93.7 94.4 94.9 × ✓
MEGAN† 89.3 92.7 94.4 95.6 95.4 × ✓

MT† 90.4 93.7 94.6 95.3 - × ✓
Chemformer† 91.3 - - 93.7 94.0 × ✓
Sub-reaction† 91.0 - 94.5 95.7 - × ✓

Graph2Smiles† 90.3 - 94.0 94.8 95.3 × ✓
AT × 100† 90.6 94.4 - 96.1 - × ✓

Non-
autoregressive

NERF 90.7 92.3 93.3 93.7 94.0 ✓ ✓
ReactionSink 91.3 93.3 94.0 94.5 94.9 ✓ ✓

Table 1: Top-K Accuracy % on USPTO-479K with original random split. Best results are bolded. † indicates that the reported results are
copied from the corresponding published papers. We also show the category of each model to reflect its property. “Parallel” indicates whether
the model is capable of parallel inference. “End-to-end” indicates whether the model can make end-to-end inference.

dissimilar with each other (e.g. Tanimoto-0.4 has larger dis-
tribution gap between training and testing). For original ran-
dom split, the training set, validation set and testing set fol-
lows split ratio 409K:30K:40K. For scaffold split, the split
ratio is 392K:30K:50K.
Comparison Baselines. We compare ReactionSink with
the following baseline models: WLDN [Jin et al., 2017]
is a two-stage model, which firstly predicts reaction cen-
ters and then ranks enumerated products; GTPN [Do et al.,
2019] models reaction predictions as a series of graph trans-
formations and use policy networks to learn the transforma-
tions; MT-base [Schwaller et al., 2019] is a transformer-
based autoregressive modeling with both input and output
in SMILES sequence format; MEGAN [Sacha et al., 2020]
models reaction predictions as series of graph edit operations
and generates edit sequences in an autoregressive manner;
MT [Schwaller et al., 2019] is MT-base models with data
augmentation techniques applied to SMILES sequence in-
put; Symbolic [Qian et al., 2020] introduces the chemical
rules to reaction modeling using symbolic inference; Chem-
former [Irwin et al., 2022] leverages molecular SMILES en-
coder pretrained on 100M molecular datasets with three self-
supervised tasks; Graph2Smiles [Tu and Coley, 2021] lever-
ages the similar backbone network of NERF [Bi et al., 2021];
AT×100 [Tetko et al., 2020] leverages molecular transformer
with ×100 SMILES augmentations; Sub-reaction [Zhao et
al., 2022] leverages motif tree to achieve substructure-aware
reaction prediction; NERF [Bi et al., 2021] uses CVAE to
achieve non-autoregressive modeling;
Model Configuration and Reproducibility Setting. The
major encoder and decoder architectures are following NERF
[Bi et al., 2021]. To ensure fair comparison with major base-
line models Molecular Transformer and NERF, we set the
number of transformer encoder layers and transformer de-
coder layers (cross-attention layer) to be 4, the same as pre-
vious work. And we set the dimension of latent embedding

to be 256. For multi-head attention decoder, BondFormation
and BondBreaking both have 4 attention heads. The model
is optimized using Adam optimizer [Kingma and Ba, 2015]
at learning rate 10−4 with linear warm-up and linear learning
rate decay. The number of iterations l of Sinkhorn normaliza-
tion is also an hyperparameter to fine-tune. Larger l indicates
more rounds of Sinkhorn normalization. Finally, we train our
ReactionSink for 100 epochs with a batch size of 128 using 8
Nvidia V100 GPUs in this work.

Evaluation Metrics. Following the convention of previous
work, we adopt the top-k accuracies to evaluate the perfor-
mance of all the compared algorithms. The top-k accuracy is
the percentage of reactions that have the ground-truth prod-
uct in the set of the top-k predicted molecules. As long as
the set of predicted products contains the ground-truth main
product, then the prediction would be counted as a correct
one. In this work, the value of k is set as 5 different values:
{1, 2, 3, 5, 10}.

Sampling Top-k Predictions. Since ReactionSink fol-
lows CVAE architecture, multi-modal outputs are generated
through sampling k different latent vectors ĥz by increasing
temperature values. To sample top-k predictions, we multiply
a scalar temperature parameter t to the variance of standard
Gaussian distribution, such that hzs are sampled from differ-
ent N(0, tI). Increasing the temperature value t would make
the model predict different products. Specifically, we sample
the first k predictions as our top-k predictions. Lower tem-
peratures are set to output predictions with higher rank (e.g.
prediction using t = 1 is treated as the top-1 prediction).

Main Experiments with Random Split and Tanimoto
Splits. We conduct experiments under random split and tan-
imoto splits, which can be seen as a cross-validation process.
Table 1 is the major benchmark adopted by previous work
under random split conducted by WLDN [Jin et al., 2017].
From this table, we can see that our method reaches the state-
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Model Name Top-1 Top-3 Top-5
WLDN5 75.9 86.2 88.8

MT 80.9 88.2 89.6
NERF 85.0 86.7 88.8

ReactionSink 86.0 87.2 89.3

Table 2: Top-K Accuracy % on USPTO-479K with Tanimoto Simi-
larity < 0.6 (left)

Model Name Top-1 Top-3 Top-5
WLDN5 69.3 80.9 84.1

MT 74.6 82.9 84.5
NERF 80.0 82.5 84.4

ReactionSink 82.2 83.2 84.5

Table 3: Top-K Accuracy % on USPTO-479K with Tanimoto Simi-
larity < 0.4 (right)

of-the-art top-1 accuracy over all baseline methods and con-
sistently outperforms the non-autoregressive model NERF
with top-k accuracies. Note that these results are evaluated on
models without knowing reagents, which means these mod-
els do not know which reactant is reagent during inference
stage. We can see that currently non-autoregressive models
are performing worse than autoregressive models when k is
higher. We conjecture that this may be caused by the sim-
ple sampling method for CVAE, or simple latent distribution
assumption on uncertainty modeling (Gaussian distribution).
In the future, it is worth to find better sampling method for
CVAE, and explore stronger generative model than CVAE for
reaction modeling. From Table 2 and Table 3, we can observe
that non-autoregressive models have stronger generalization
than autoregressive models. We conjecture that electron re-
distribution modeling proposed by NERF [Bi et al., 2021] is
closer to the nature of this problem. Under tanimoto splits,
ReactionSink consistently improves the performance of non-
autoregressive models in terms of top-k accuracies.

Ablation Studies on Sinkhorn Iteration. Since the
Sinkhorn algorithm is also an iterative normalization process,
we conduct ablation studies on the number of iterations l to
check its effect on model performance. From table 5, we
can see that the model performance is consistently improved
when increasing l from 1 to 5. However, when l increases to
10, it does not bring further performance gains compared to
l = 3. This demonstrates that the Bondformation and Bond-
Breaking matrices are converted to doubly stochastic matrices
with few iterations of the Sinkhorn normalization.

Computational Efficiency. The main concern about Reac-
tionSink is its computational complexity, which is caused by
the additional layers of Sinkhorn normalization. Fortunately,
with a few iterations of Sinkhorn normalization, the self-
attention matrices will converge to doubly stochastic matrices
with negligible error. Therefore, the computational burden
would not be significantly increased due to additional nor-
malization. Following NERF, we report the wall-time and la-

Model Name Wall-time Latency Speedup
Transformer (b=5) 9min 448ms 1×
MEGAN (b=10) 31.5min 144ms 0.29×

Symbolic >7h 1130ms 0.02×
NERF 20s 17ms 27×

ReactionSink 24s 20ms 26×

Table 4: Computation speedup (compared with Transformer)

Model Name Top-1 Top-3 Top-5
ReactionSink (l=1) 90.9 93.2 93.7
ReactionSink (l=2) 91.0 93.3 94.0
ReactionSink (l=3) 91.3 93.7 94.4
ReactionSink (l=5) 91.3 94.0 94.5

ReactionSink (l=10) 91.3 94.0 94.5

Table 5: Ablation studies on the number of iterations l of Sinkhorn
normalization

tency of the inference model. Wall-time is the total time cost
for inferring all testing samples, and latency is the inference
time cost for a single testing sample. The detailed wall-time
and latency computation standards are stated in NERF [Bi
et al., 2021]. From Table 4, we can see that the proposed
method only adds a few additional seconds to Wall-time and
a few more milliseconds to latency. This demonstrates that
the additional normalization layers do not create a trade-off
between accuracy and speed. Regarding the training process,
additional Sinkhorn normalization only increases the training
time by a few seconds for each epoch, which is almost negli-
gible compared to the total training time. Overall, Reaction-
Sink is more suitable for high-throughput reaction predictions
than auto-regressive methods.

7 Conclusion

In this work, we first introduce two chemical rules that gov-
ern electron distribution and characterize their correspond-
ing mathematical properties. We then identify that the cur-
rent electron redistribution decoder does not maintain these
two physical constraints simultaneously, and we theoretically
prove our claims. To address this issue, we propose the Re-
actionSink architecture to extend the current self-attention
mapping to doubly stochastic matrices. We also prove that
the predicted electron distribution generated by our proposed
methods better adheres to the physical constraints. Addition-
ally, we establish the connections between electron redistri-
bution and the learned optimal transport problem. This new
perspective has the potential to lead to a new problem formu-
lation for reaction prediction. Experimental results demon-
strate that ReactionSink consistently outperforms the state-
of-the-art non-autoregressive reaction prediction model and
does not require expensive computational costs.
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Computational optimal transport: With applications to
data science. Foundations and Trends® in Machine Learn-
ing, 11(5-6):355–607, 2019.

[Qian et al., 2020] Wesley Wei Qian, Nathan T. Russell,
Claire L. W. Simons, Yunan Luo, Martin D. Burke, and
Jian Peng. Integrating deep neural networks and sym-
bolic inference for organic reactivity prediction. Chem-
Rxiv, 2020.

[Raucci et al., 2022] Umberto Raucci, Valerio Rizzi, and
Michele Parrinello. Discover, sample, and refine: Explor-
ing chemistry with enhanced sampling techniques. The
Journal of Physical Chemistry Letters, 13:1424–1430, 02
2022.

[Sacha et al., 2020] Mikolaj Sacha, Mikolaj Blaz, Piotr
Byrski, Pawel Wlodarczyk-Pruszynski, and Stanislaw Jas-
trzebski. Molecule edit graph attention network: Model-
ing chemical reactions as sequences of graph edits. CoRR,
abs/2006.15426, 2020.

[Sander et al., 2022] Michael E. Sander, Pierre Ablin, Math-
ieu Blondel, and Gabriel Peyré. Sinkformers: Transform-
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