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Abstract
We study the Improving Multi-Armed Bandit
(IMAB) problem, where the reward obtained from
an arm increases with the number of pulls it re-
ceives. This model provides an elegant abstraction
for many real-world problems in domains such as
education and employment, where decisions about
the distribution of opportunities can affect the fu-
ture capabilities of communities and the disparity
between them. A decision-maker in such settings
must consider the impact of her decisions on fu-
ture rewards in addition to the standard objective of
maximizing her cumulative reward at any time. We
study the tension between two seemingly conflict-
ing objectives in the horizon-unaware setting: a)
maximizing the cumulative reward at any time, and
b) ensuring that arms with better long-term rewards
get sufficient pulls even if they initially have low
rewards. We show that, surprisingly, the two objec-
tives are aligned with each other. Our main contri-
bution is an anytime algorithm for the IMAB prob-
lem that achieves the best possible cumulative re-
ward while ensuring that the arms reach their true
potential given sufficient time. Our algorithm miti-
gates the initial disparity due to lack of opportunity
and continues pulling an arm until it stops improv-
ing. We prove the optimality of our algorithm by
showing that a) any algorithm for the IMAB prob-
lem, no matter how utilitarian, must suffer Ω(T )
policy regret and Ω(k) competitive ratio with re-
spect to the optimal offline policy, and b) the com-
petitive ratio of our algorithm is O(k).

1 Introduction
Machine Learning (ML) algorithms are increasingly being
used to make or assist critical decisions that affect commu-
nities (or, people) in areas such as education, employment,
and loan lending. The distribution of opportunities in such
critical domains can affect the future abilities of the im-
pacted communities. Consequently, ML algorithms can in-
fluence the disparity between different communities. Though
a significant amount of research has been aimed at ensur-
ing fairness in ML algorithms, most of this work has fo-

cused on static settings without considering the long-term im-
pacts of algorithmic decisions over time [Barocas et al., 2019;
Hardt et al., 2016].

Multi-Armed Bandits (MAB) is a classical framework that
captures sequential decision-making in uncertain environ-
ments [Robbins, 1952]. In MAB, a decision-maker pulls one
of k arms at each time step and obtains a reward determined
by a function or a reward distribution corresponding to that
arm. The goal of the decision-maker is to maximize the to-
tal reward over multiple time steps when the reward function
is not known to her a priori. A variant of MAB, called the
Improving MAB (IMAB) model, was introduced by [Heidari
et al., 2016] to model the long-term impacts of algorithmic
decisions on the underlying population. In IMAB, the arms
represent communities (or, people), and pulling an arm corre-
sponds to allocating opportunities to the corresponding com-
munity. The instantaneous reward obtained from pulling an
arm is the current ability of the community in utilizing the
opportunity. This reward improves with the number of pulls
the arm receives, which imitates the likely improvement in
abilities of communities given more opportunities. Inspired
by the motivating examples and numerous studies on human
learning, the reward functions in IMAB are assumed to be
bounded, monotonically increasing, and having decreasing
marginal returns (diminishing returns) [Son and Sethi, 2006].

In this work, we initiate the study of IMAB in the horizon-
unaware (anytime) setting. The key technical challenge of
this problem is the seemingly conflicting set of objectives:
we wish to maximize the cumulative reward at any time and
ensure that arms with high long-term but low short-term re-
wards also get pulled sufficiently often. The IMAB problem
has been previously studied in the horizon-aware setting with
asymptotic regret guarantees [Heidari et al., 2016] (see Sec-
tion 1.1). However, their non-asymptotic performance guar-
antee is not good (see Section 1.1). Further, in many practi-
cal applications, the time horizon is not known to the algo-
rithm beforehand. In contrast to horizon-aware algorithms,
anytime algorithms do not know the time horizon beforehand
and hence cannot tailor their decisions to the given time hori-
zon. Thus, an anytime algorithm must perform well for any fi-
nite time horizon without having prior knowledge of it, which
poses interesting technical challenges. Due to its theoretical
and practical significance, the design of anytime algorithms
has been of prime interest to the MAB research community
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(e.g., the popular UCB1 algorithm for stochastic MAB [Auer
et al., 2002a]).

The nature of the IMAB model and its applications also
call for an investigation of any IMAB algorithm through the
lens of fairness. Fairness through awareness [Dwork et al.,
2012] is a well-accepted notion of fairness that enforces that
similar individuals or communities be treated similarly. In
the IMAB model, one could quantify similarity (or equiva-
lently, disparity) based on the arms’ current rewards (abili-
ties). However, we argue that such a blind comparison may
be fallacious. For instance, historical marginalization could
lead to differences in the abilities of different individuals or
communities to perform a given task, for example, the racial
gap observed in SAT scores [V. Reeves and Halikias, 2017].
One way of mitigating such differences that has been studied
in the MAB literature [Li et al., 2019; Patil et al., 2021], is via
affirmative action, where the decision-maker allocates some
opportunities to individuals based on attributes such as their
race, gender, caste, etc. Such policies have been in place for
decades in some countries (see reservation system in India
[Sahoo, 2009]), while they are banned in several US states
[J. Baker, 2019]. Another popular notion of fairness in the
MAB literature is meritocratic fairness [Joseph et al., 2016],
where arms are compared solely based on their current re-
wards. In IMAB however, meritocracy would identify indi-
viduals that are gifted early and provide them more oppor-
tunities which would suppress the growth of late bloomers,
i.e., the individuals that would go on to perform well had
they been given more opportunities. This detrimental effect
of meritocracy has also been observed in the real world; for
example, the education system in Singapore [Staff, 2018].
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Figure 1: Two-armed IMAB Instance

We give a simple example to highlight the challenges in
the anytime IMAB problem. Figure 1 shows a two-armed
IMAB instance. We emphasize here that the reward of an
arm changes only when the arm is pulled. That is, the x-axis
denotes the number of arm pulls of an arm and not the time
horizon. As the figure shows, arm 1 is an early gifted arm and
arm 2 is a late bloomer. Here, a myopic decision-maker that
pulls arms based only on the instantaneous rewards will sel-
dom pull arm 2. An algorithm that majorly plays arm 1 may
obtain a high cumulative reward for shorter horizons. How-

ever, for larger horizons, this algorithm could perform poorly.
Additionally, an algorithm that mostly plays arm 1 will in-
crease the disparity between the two arms. This highlights
the challenges faced by an anytime algorithm in balancing
exploitation (pull arm 1) and exploration (pull arm 2) such
that the total reward is maximized.

Our Results. Our contributions in this paper are twofold.
First, we contribute strong theoretical results to the long
line of literature on non-stationary bandits, particularly rested
bandits, where the rewards obtained from an arm can change
when pulled [Besbes et al., 2014; Levine et al., 2017]. We
refer the reader to Section 1.1 for a discussion on why exist-
ing algorithms for the non-stationary MAB problem do not
work for the IMAB problem. Second, we make an important
conceptual and technical contribution to the study of fairness
in the IMAB problem. We study the IMAB problem in the
horizon-unaware setting with the following objective: how
does a decision-maker maximize her reward while ensuring
the participants (arms) are provided with sufficient opportu-
nities to improve and reach their true potential?

Our first result shows that any algorithm for the IMAB
problem, how much ever utilitarian, suffers Ω(T ) regret and
has competitive ratio Ω(k) (Theorem 2). Our main contri-
bution is an efficient anytime algorithm (Algorithm 1) which
has a competitive ratio of O(k) for the IMAB problem in the
horizon-unaware case (Theorem 4).1 An interesting and im-
portant property of our proposed algorithm is that it continues
pulling an arm until it reaches its true potential (Theorem 5),
thus mitigating the disparity that existed due to lack of oppor-
tunity. We note that this is not accomplished by imposing any
fairness constraints but by establishing that it is in the best in-
terest of a decision-maker that wishes to have good anytime
regret, to enable arms to achieve their true potential (see ex-
ample in Figure 1). The proofs of Theorems 4 and 5 require
intricate analysis (see Sections 4.2 and 4.3). Our theoretical
guarantees rest crucially on several important and non-trivial
properties that our algorithm satisfies (e.g., see Lemmas 6, 9,
and 10) and are the key technical contributions of our paper.
We also analyze the performance of the round-robin (RR) al-
gorithm. We show that while RR gives equal opportunity to all
arms, its competitive ratio is Θ(k2) and hence, is sub-optimal
for the decision maker (Theorem 3). Finally, we further high-
light the significance our theoretical results via experiments.

1.1 Related Work
The IMAB problem was introduced by [Heidari et al., 2016],
who studied the horizon-aware IMAB problem. Our work
differs from theirs in two key aspects. First, they study the
horizon-aware setting and their algorithm uses the knowledge
of T at every time step. In particular, if their algorithm has run
for some time steps with horizon set as T1, and it is then de-
cided to run it for some more rounds for a horizon T2 > T1,
then the algorithm would need to be restarted from the first
time step. Importantly, for two different horizons T1 and T2,
the sequence of arm pulls by this algorithm could vary sig-
nificantly. In contrast, our algorithm does not have prior

1Informally, the competitive ratio (Definition 2) is the worst-case
ratio of the reward of the offline optimal to that of the algorithm.
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knowledge of T and must work well for any stopping time
T . Second, they provide an asymptotically sub-linear regret
bound in terms of instance-dependent parameters.2 On the
other hand, our results hold for any finite time horizon T . In
fact, in Appendix G, we show that for any time horizon T
there is an instance for which the algorithm of [Heidari et al.,
2016] will have competitive ratio Ω(k2) which is similar to
RR. We note here that our results are with respect to two stan-
dard performance metrics in the MAB literature, policy re-
gret [Arora et al., 2012; Heidari et al., 2016] and competitive
ratio [Immorlica et al., 2019; Daniely and Mansour, 2019;
Andrew et al., 2013] (see Section 2 for the definitions).

IMAB is a variant of the non-stationary MAB problem.
Non-stationary MAB problems have been extensively stud-
ied in the literature under various assumptions [Tekin and Liu,
2012; Levine et al., 2017]. The work of [Lindner et al., 2021]
shows that existing non-stationary MAB algorithms such as
R-EXP3 [Besbes et al., 2014], DUCB, and SW-UCB [Gariv-
ier and Moulines, 2011] and popular MAB algorithms such as
greedy-selection and EXP3 [Auer et al., 2002b] do not per-
form well for the IMAB problem even when the time horizon
is known a priori. In recent parallel work, [Metelli et al.,
2022] have studied the stochastic variant of the IMAB prob-
lem. However, they provide only a O(T ) regret guarantee for
the problem in the horizon-unaware setting and no competi-
tive ratio analysis. We hope that the ideas in our paper and
[Metelli et al., 2022] can be leveraged to obtain an anytime
competitive ratio guarantee for the stochastic IMAB problem.

The area of fairness in ML has received tremendous atten-
tion in recent years [Barocas et al., 2019]. However, much of
this attention has been focused on fairness in static, and one-
shot settings such as classification [Kleinberg et al., 2017;
Hardt et al., 2016; Dwork et al., 2012]. Recent work has stud-
ied the fairness aspects of sequential decision-making mod-
els, such as MABs [Joseph et al., 2016; Patil et al., 2021;
Li et al., 2019; Hossain et al., 2021] and Markov Decision
Processes (MDPs) [Jabbari et al., 2017; Wang et al., 2021;
Ghalme et al., 2022]. However, these works do not con-
sider the impact of the decisions on the population on which
they operate. With a motivation similar to ours, [Lindner et
al., 2021] recently studied a problem called the single-peaked
bandit model, where the reward functions are monotonically
increasing before and decreasing after the peak. This class of
reward functions subsumes the class of reward functions con-
sidered in [Heidari et al., 2016]. The algorithm and the results
in [Lindner et al., 2021], which are again for the horizon-
aware case only, match the results in [Heidari et al., 2016] for
the class of reward functions considered in IMAB.

2 Model and Preliminaries
Let R and N denote the set of real and natural numbers, re-
spectively, and [k] denote the set {1, 2, . . . , k} for k ∈ N.

Model and Problem Definition. The IMAB model was
introduced in [Heidari et al., 2016]. Formally, an instance
I of IMAB is defined by a tuple ⟨k, (fi)i∈[k]⟩ where k is

2Asymptotically sub-linear regret: as the horizon tends to infin-
ity, the ratio of the algorithm’s regret to the horizon is zero.

the number of arms. Each arm i ∈ [k] is associated with a
fixed underlying reward function denoted by fi(·). When the
decision-maker pulls arm i for the n-th time, it obtains an in-
stantaneous reward fi(n). Further, Rewi(N) denotes the cu-
mulative reward obtained from arm i after it has been pulled
N times, i.e., Rewi(N) = fi(1) + fi(2) + . . . + fi(N). We
assume that the reward functions fi, i ∈ [k] are bounded in
[0, 1]3, i.e., fi : N → [0, 1]. In our motivating examples,
the reward functions fi correspond to the ability of commu-
nities to utilize an opportunity. In the IMAB model, fi’s
are assumed to be monotonically increasing with decreasing
marginal returns (aka diminishing returns).4 This assumption
about the progression of human abilities is well-supported by
literature in cognitive sciences [Son and Sethi, 2006] and mi-
croeconomics [Jovanovic and Nyarko, 1995]. The decreasing
marginal returns property states that for all i ∈ [k]

fi(n+ 1)− fi(n) ≤ fi(n)− fi(n− 1) for all n ≥ 1.

It is to be noted that the main technical hurdle for an any-
time algorithm is the lack of knowledge of the time horizon,
which is in no way alleviated by the non-stochastic nature of
the reward functions. Next, let ai denote the asymptote of
fi, i.e., ai = limn→∞ fi(n). Since fi’s are monotonically in-
creasing and bounded, this asymptote exists and is finite. We
call ai the true potential of the arm. It represents the ability
of communities if they are given enough opportunities.

Let ALG be a deterministic algorithm for the IMAB prob-
lem and T be the time horizon (unknown to ALG). Let it ∈ [k]
denote the arm pulled by ALG at time step t ∈ [T ]. We
use Ni(t) to denote the number of pulls of arm i made by
ALG until (not including) time step t, and ALG(I, T ) to de-
note the cumulative reward of ALG on instance I at the end
of T time steps. Then, ALG(I, T ) =

∑T
t=1 fit(Nit(t) + 1).

We note that the cumulative reward of ALG after T time steps
only depends on the number of pulls of each arm and not
on the order of pulls. Hence, we can write ALG(I, T ) =∑

i∈[k] Rewi(Ni(T + 1)). For brevity, we write Ni(T + 1)

as Ni. Hence, ALG(I, T ) =
∑

i∈[k] Rewi(Ni). When I is
clear from context, we use ALG(T ) to denote ALG(I, T ).

Offline Optimal Algorithm for IMAB. Let I =
⟨k, (fi)i∈[k]⟩ be an IMAB instance. We use OPT(I, T ) to
denote the offline algorithm maximizing the cumulative re-
ward for instance I and horizon T . Here, offline means that
OPT(I, T ) knows the IMAB instance I and the time horizon
T beforehand. With slight abuse of notation, we also denote
the cumulative reward of this algorithm by OPT(I, T ). When
I is clear from context, we use OPT(T ) instead of OPT(I, T ).
The following proposition shows that for the IMAB problem,
OPT(I, T ) corresponds to pulling a single arm for all the T
rounds. We give an alternate proof in Appendix B.

Proposition 1. [[Heidari et al., 2016]] Suppose I =
⟨k, (fi)i∈[k]⟩ is an instance of the IMAB problem and T is the

3We only need that the reward functions are bounded in some
interval [0, c], c ∈ R+ but we work with [0, 1] following prior work.

4If think of fi’s as being continuous functions, in which case
monotonically increasing and diminishing returns imply concavity.
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time horizon. Then there exists an arm j∗T such that the op-
timal offline algorithm consists of pulling arm j∗T for T time
steps.

We emphasize that j∗T defined above depends on the time
horizon T , and may differ for different values of T . We com-
pare the performance of an online algorithm at any time T
with OPT(T ) using the performance metrics defined next.
Performance Metrics. In this work, our objective is to
minimize the stronger notion of regret, viz. policy regret, as
opposed to external regret [Arora et al., 2012]. We refer the
reader to Example 1 in [Heidari et al., 2016] or Appendix A.2
for insight into how the two regret notions differ in IMAB. We
next define policy regret for the IMAB problem. Henceforth,
we use regret to denote policy regret unless stated otherwise.
Definition 1. Let I denote the set of all problem instances
for the IMAB problem with k arms. The policy regret of an
algorithm ALG for time horizon T , is defined as

RegretALG(T ) = sup
I∈I

[
OPT(I, T )− E[ALG(I, T )]

]
(1)

where the expectation is over any randomness in ALG.
In Section 3, we show that any algorithm for the IMAB

problem must suffer regret that is linear in T . This motivates
our choice to study the competitive ratio of an algorithm with
respect to the offline optimal algorithm. We note that com-
petitive ratio is a well-studied notion used to evaluate per-
formance of online algorithms [Borodin and El-Yaniv, 2005;
Buchbinder et al., 2012] and is also studied in the MAB liter-
ature [Immorlica et al., 2019; Kesselheim and Singla, 2020;
Andrew et al., 2013; Daniely and Mansour, 2019].
Definition 2. Let I denote the set of all problem instances
for the IMAB problem with k arms. and ALG be an algorithm
for the IMAB problem. Then the (strict) competitive ratio of
ALG for time horizon T is defined as
CRALG(T ) = inf

α≥1
{∀I ∈ I, α · ALG(I, T ) ≥ OPT(I, T )} (2)

We will henceforth refer to this as the competitive ratio of
an algorithm. To lower bound the competitive ratio of an al-
gorithm ALG by α, it is sufficient to provide an instance I such
that OPT(I,T )

ALG(I,T ) ≥ α. Naturally, the goal of the decision-maker is
to design an algorithm with a small competitive ratio. Finally,
we note that although we have defined Rewi(N) and ALG(T )
as a discrete sum, in some of our proofs, we use definite inte-
grals (area under the curves defined by fi) to approximate the
value of the discrete sum. This approximation does not affect
our results (see Appendix A.1).

3 Lower Bound and Round Robin
In this section, we begin by proving the hardness of IMAB. In
particular, we show that for any finite time horizon T , there
is an instance such that any algorithm for IMAB suffers a re-
gret that is linear in T and has a competitive ratio Ω(k). This
implies that even an algorithm that solely wants to maximize
its cumulative reward, without any fairness consideration to-
wards the arms, must suffer linear regret. We also show that
the competitive ratio of simple round-robin (RR) is Θ(k2), and
hence RR, even though it equally distributes pulls to the arms,
is sub-optimal for the decision-maker.
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Figure 2: Instance Im for Lower Bound

Lower Bound: In Theorem 2, we show that for any algo-
rithm ALG and any time horizon T , there exists a problem
instance I = ⟨k, (fi)i∈[k]⟩, such that the competitive ratio
CRALG(T ) ≥ k/2. The lower bound shows that we cannot give
anytime guarantees with competitive ratio o(k) for IMAB.5

Theorem 2. Let ALG be an algorithm for the IMAB prob-
lem with k arms. Then, for any finite time horizon T , there
exists a problem instance defined by the reward functions
(f1, f2, . . . , fk) such that
(a) RegretALG(T ) ≥ c · T , for some constant c,
(b) CRALG(T ) ≥ k/2.

The proof of our lower bound also shows that even when
T is known to the algorithm, an instance-independent sub-
linear regret is not possible. Note that [Heidari et al., 2016]
give an instance-dependent asymptotically sublinear regret.
In contrast, we seek an instance-independent anytime regret
guarantee (i.e., one that does not depend on the parameters
of problem instance). We prove this lower bound by con-
structing a family of k IMAB instances and showing that no
algorithm can achieve sub-linear regret and o(k) competitive
ratio on all k instances. We briefly provide intuition about the
construction of these problem instances and defer the detailed
proof to Appendix C.1. Let N = ⌈T/k⌉. The k problem in-
stances are as follows: For m ∈ [k], instance Im is such that

∀i ̸= m, fi(n) =


n

kN
If n ≤ N

1

k
If n > N

fm(n) =


n

kN
If n ≤ kN

1 If n > kN

See Figure 2 for a depiction of instance Im. An algorithm
cannot differentiate between the arms in instance Im until the

5In Appendix C.2, we show that the regret lower bound holds
even if the algorithm knows the functions fi and only T is unknown.
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optimal arm m has been pulled at least N times. Given the
construction of the reward functions, at least one arm, say arm
j, would be pulled < N times by any algorithm. Hence, the
algorithm will suffer linear regret on instance Ij .

Round Robin: The RR algorithm pulls arms 1 to k in a
cyclic manner, and at the end of T rounds, for any T ∈ N en-
sures that each arm is pulled at least ⌊T/k⌋ times irrespective
of the reward obtained from the arm. Although this ensures
equal distribution of arm pulls, in Theorem 3, we show that
RR is sub-optimal in terms of its competitive ratio.

Theorem 3. Let RR denote the round-robin algorithm. Then,
8k2 ≥ CRRR(T ) ≥ k2

2 .

The proof is in Appendix C.3. The first inequality above
says that the competitive ratio of RR is at most 8k2, whereas
the second inequality shows that our analysis for RR is tight
(up to constants). Theorems 2 and 3 together show a gap of
factor k. In the next section, we propose an algorithm whose
competitive ratio is optimal up to constants and which allo-
cates the pulls to arms in a manner that ensures each arm
attains its true potential given sufficient time.

4 Optimal Algorithm for Improving Bandits
In this section, we propose an algorithm that mitigates dispar-
ity due to lack of opportunities while achieving the best pos-
sible cumulative reward at any time. We first give an intuitive
idea about how our algorithm works. Then, we formally state
the two-way guarantee that our algorithm provides; first, the
tight anytime guarantee for the cumulative reward, and sec-
ond, the mitigation of disparity by helping arms reach their
true potential given sufficient time. In Section 4.1, we state
our algorithm along with the main results (Theorems 4 and
5). In Section 4.2, we provide a proof sketch of Theorem 4
along with the supporting lemmas. Finally, in Section 4.3, we
give a proof sketch of Theorem 5.

4.1 Algorithm and its Guarantees
Our proposed algorithm is Algorithm 1. Throughout this sec-
tion, we use ALG to denote Algorithm 1 unless stated other-
wise. In addition to having strong performance guarantees,
ALG is simple (in terms of the operations used) and efficient
(in terms of time complexity). Before stating the theoreti-
cal guarantees of our algorithm, we provide an intuitive ex-
planation of how it works. For each arm i ∈ [k], recall
Ni(t) denotes the number of times arm i has been pulled
until (not including) time step t, and for notational conve-
nience, we use Ni to denote the number of times ALG pulls
arm i in T time steps. Initialization is done by pulling each
arm twice (Step 3). This lets us compute the rate of change
of the reward function between the first and second pulls of
each arm, i.e., ∆i(2) = fi(2) − fi(1) (as defined in Step
6). This takes 2k time steps. At each time step t > 2k, let
i∗t denote the arm that has been pulled the maximum num-
ber of times so far, i.e., i∗t ∈ argmaxi∈[k] Ni(t). Then, for
every arm i ∈ [k], we compute an optimistic estimate of
its cumulative reward had it been pulled Ni∗t

(t) times, de-
noted by pi(t). The optimistic estimate pi(t) is computed by
adding the actual cumulative reward obtained from arm i in

Algorithm 1: Horizon-Unaware Improving Bandits
ALG

1 Initialize:
2 Ni(0) = 0 for all arms i ∈ [k] Number of arm pulls
3 Pull each arm twice, Ni(t) = 2 for all i ∈ [k]
4 t = 2k + 1 Current time step
5 for t = 2k + 1, . . . , T do
6 ∆i(Ni(t)) = fi(Ni(t))− fi(Ni(t)− 1)
7 i∗t ∈ argmaxi∈[k] Ni(t)
8 for i = 1, 2, . . . , k do
9 pi(t) = Rewi(Ni(t)) +∑Ni∗ (t)−Ni(t)

n=1 [fi(Ni(t)) + n ·∆i (Ni(t))]
10 end
11 C = argmaxi∈[k] pi(t)
12 Pull arm it = argmini∈C Ni(t)
13 for i = 1, 2, . . . , k do
14 Ni(t+ 1) = Ni(t) + 1{it = i}
15 end
16 end

Ni(t) pulls, denoted Rewi(Ni(t)), and the maximum cumu-
lative reward that can be obtained from the arm in additional
Ni∗t

(t) − Ni(t) pulls, i.e., if it continues to increase at the
current rate, ∆i(Ni(t)).We then pull an arm with the largest
value of pi(t). Ties are first broken based on the minimum
value of Ni(t) and then arbitrarily.

Our goal is to provide an upper bound on CRALG(T ). The
following theorem, one of our key technical contributions,
proves that Algorithm 1 has O(k) competitive ratio. From
Theorem 2 in Section 3 it follows that the competitive ratio
of our algorithm is optimal (up to constants).
Theorem 4. The competitive ratio of ALG is O(k). Further,
the time complexity of ALG is O(k log k) per time step.

The per-round time complexity of ALG follows from the
argmax operation (step 11) performed at each time step,
which is standard in MAB literature. This shows that our
algorithm, in addition to being simple, is also efficient. The
proof of the above theorem relies on some elegant attributes
of our algorithm and the class of reward functions. We dis-
cuss some of these in Section 4.2. We next show in Theorem
5 that ALG ensures that each arm reaches its true potential
given sufficient time.
Theorem 5. For an arm i ∈ [k], let ai = limN→∞ fi(N).
Then, for every ε ∈ (0, ai], there exists T ∈ N such that ALG
ensures that ai − fi(Ni(T )) ≤ ε .

Theorem 5 shows that all arms reach arbitrarily close to
their true potential given sufficient time. In particular, this
shows that our algorithm mitigates the initial disparities in
the arms due to a lack of opportunities by enabling the arms
to reach their true potential given sufficient time. We give
a proof sketch in Section 4.3. We recognize that Theorem
5 is not very interesting in and of itself. In particular, even
RR satisfies this property. However, what is interesting is that
our algorithm satisfies this while Theorem 4 also holds. This
further underlines our observation that the arm-pull decisions
of our algorithm are delicately balanced at each time step.
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4.2 Proof Sketch of Theorem 4
The proof of the theorem hinges upon Lemmas 6, 7, and 9
and Corollary 8 stated below. We elaborate upon these lem-
mas along with the proof sketches for a few of them and then
explain how the proof is completed using these lemmas. The
complete proof of Theorem 4 along with the proofs of the
lemmas and corollaries is in Appendix D.

Let I = ⟨k, (fi)i∈[k]⟩ be an arbitrary instance of the IMAB
problem and let T be the time horizon. To upper bound the
competitive ratio of our algorithm at T , it is sufficient to up-
per bound OPT(I,T )

ALG(I,T ) (since instance I has been chosen arbi-
trarily). Throughout, and without loss of generality, assume
N1 ≥ N2 ≥ . . . ≥ Nk. We begin with a crucial lemma which
captures an important feature of our algorithm: the first arm
to cross N pulls has to be the optimal arm for the time horizon
N , that is, as per Proposition 1, it has to be the arm that max-
imizes the cumulative reward for horizon N . This property is
of key importance in proving the optimality of our algorithm.
Lemma 6. If arm i ∈ [k] is the first arm to cross N pulls,
i.e., to be pulled N + 1-th time, then

Rewi(N) = OPT(I,N).

We note that if our algorithm runs for T time steps then the
above lemma holds for any N between 1 and T . The proof
of the above lemma relies on how we compute pi(t), the op-
timistic estimate of the cumulative reward of arm i, at each
time step. We remark here that previous works that study the
IMAB problem assume that the horizon T is known to the
algorithm beforehand. This significantly simplifies the prob-
lem of estimating the optimistic estimate of the cumulative
reward of any arm using a linear extrapolation. This also al-
lows certain arms to be eliminated based on these estimates.
However, such an approach is not possible in the anytime set-
ting. In fact, in Theorem 5, we show that our algorithm keeps
pulling an arm until it is improving.

Next, we state Lemma 7 that lower bounds the ratio
Rewi(N)/Rewi(T ), which is the ratio of the cumulative re-
ward of pulling arm i for N pulls to that of pulling it for T
pulls, for each arm i ∈ [k]. Part (a) of the following lemma
considers the case when N > T/2 and part (b) looks at the
case when N ≤ T/2.
Lemma 7. For each arm i ∈ [k],

(a)
Rewi(αT )

Rewi(T )
≥ 1

5
for α ≥ 1

2
,

(b)
Rewi(αT/k)

Rewi(T )
≥ 16α2

25k2
for 0 ≤ α ≤ k

2
.

The proof of the above lemma crucially relies on the prop-
erties of fi, in particular, the properties that fi’s are mono-
tonically increasing, bounded in [0, 1], and have decreas-
ing marginal returns. To prove part (a), we first show that
Rewi(αT ) can be lower bounded by the area of triangle de-
fined by O, E, and B in Figure 3 which is equal to αTfi(αT )

2 .
Further, for α ≥ 1/2 we show that Rewi(T ) ≤ 5T

4 fi(αT )
(see Claim 4 in Appendix D). This gives us part (a) of the
lemma. To prove part (b), we show that Rewi(αT/k) is lower
bounded by the area of the triangle defined by O, E, and B

in Figure 4 which is equal to α2T 2mOE

2k2 , where mOE is the
slope of the line segment passing through points O and E
in Figure 4. Using arguments leveraging certain geometric
properties satisfied by fi, we show that Rewi(T ) ≤ 25T 2mOE

32
(see Claim 5 in Appendix D). This gives us part (b) of the
lemma.

Next, we have the following interesting corollary to
Lemma 7 which compares the optimal rewards at T and N
where N spans values in {1, . . . , T} depending on the value
of α.

Corollary 8. For any finite time horizon T , we have

(a)
OPT(I, αT )

OPT(I, T )
≥ 1

5
for

1

2
≤ α ≤ 1 ,

(b)
OPT(I, αT/k)

OPT(I, T )
≥ 16α2

25k2
for 0 < α ≤ k

2
.

The proof of the above corollary uses Proposition 1 and
Lemma 7. From Proposition 1, we know that the optimal
policy for time horizon T pulls a single arm. Let j∗T ∈ [k] de-
note this arm. Further, note that OPT(I, αT ) ≥ Rewj∗T (αT ),
by definition of OPT(I, αT ). Since, OPT(I, T ) = Rewj∗T (T ),
part (a) of the corollary follows from part (a) of Lemma 7.
Part (b) is also proved using a similar argument.

Now, observe that ALG(I, T ), i.e., the cumulative reward
of our algorithm after T time steps can be written as the
sum of the rewards obtained from each arm. In particular,
ALG(I, T ) =

∑
i∈[k] Rewi(Ni), where Ni is the number of

times arm i has been pulled in T time steps. Recall that,
our goal is to provide an upper bound on OPT(I,T )

ALG(I,T ) , or equiv-

alently, OPT(I,T )∑
i∈[k] Rewi(Ni)

. The following lemma provides an

upper bound on OPT(I,T )
Rewi(Ni)

in terms of only Ni and the time
horizon T , when N1 ≤ T/2. We handle the (easier) case of
N1 > T/2 separately (see proof of Thm. 4 in Appendix D).

Lemma 9. If N1 ≤ T/2 then for any arm i ∈ [k],

OPT(I, T )

Rewi(Ni)
≤ 200T 2

N2
i

.

The proof of the above lemma requires intricate case analy-
sis using different properties of our algorithm and the reward
functions, and crucially uses Lemmas 7 and 9, and Corollary
8. Finally, with all the components in place, we provide a
brief proof sketch of Theorem 4.

Proof Sketch of Theorem 4. Consider the following two
cases: 1) N1 > T/2, and 2) N1 ≤ T/2.

Case 1 implies that arm 1 is the first, and hence
the only arm to cross T/2 pulls. From Lemma
6, we get, Rew1(T/2) = OPT(I, T/2). Therefore,
ALG(I, T ) ≥ Rew1(T/2) = OPT(I, T/2). Hence, we ob-
tain, OPT(I, T )/ALG(I, T ) ≤ OPT(I, T )/OPT(I, T/2) ≤ 5 ≤
200k. Here, the second inequality follows from Corollary 8.
Since the above inequality holds for any instance I , we get
CRALG(T ) ≤ 200k.6

6For ease of exposition, we have not optimized the constants.
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Figure 4: 0 < α ≤ k/2

For Case 2, we use Lemma 9 and obtain∑
i∈[k] Rewi(Ni)

OPT(I, T )
≥

∑
i∈[k] N

2
i

200T 2
≥

(
∑

i∈[k] Ni/
√
k)2

200T 2

=
T 2

200kT 2
=

1

200k
.

Here, the second inequality follows from Cauchy-Schwarz
inequality (see Observation 3 in Appendix D). This implies
OPT(I, T )

ALG(I, T )
≤ 200k. Since this holds for an arbitrary instance

I ∈ I, we have CRALG(T ) ≤ 200k, i.e., O(k).

4.3 Proof Sketch for Theorem 5
The theorem is proved using Lemma 10 stated below. See
Appendix E for the detailed proofs of Lemma 10 and Theo-
rem 5). In Lemma 10, we show that ALG pulls an arm finitely
many times only if the arm stops improving.
Lemma 10. Let Li = maxt∈N{Ni(t)} for all i ∈ [k]. Then
for any i ∈ [k], Li is finite implies that ∆i(Li) = 0.

Li as defined above captures the number of times the algo-
rithm pulls arm i as T → ∞. It is easy to see that there is
at least one arm i ∈ [k] such that Li is not finite, and hence,
the property holds for this arm vacuously. The proof of the
lemma argues via contradiction that the property has to be
satisfied for all the arms. Suppose there is an arm j ∈ [k]
such that Lj is finite but ∆j(Lj) ̸= 0. Then we consider a
time horizon larger than when arm j was pulled for the Lj-th
time and use the definition of pj(t) to show that such an arm
is indeed pulled again, contradicting the assumption.

Using this lemma, the theorem is proved as follows. Sup-
pose Li is finite for an arm i ∈ [k]. Then the diminishing
returns property of fi ensures that arm i has reached its true
potential, i.e, fi(Li) = ai. Further, if Li is not finite then
the arm is pulled infinitely many times, and hence from the
properties of fi we have that for every ε ∈ (0, ai], there exists
T ∈ N such that ALG ensures that ai − fi(Ni(T )) ≤ ε .

5 Experiments
In this paper, we focused on a self-contained theoretical study
of the IMAB problem. Our algorithm provides O(k) compet-

itive ratio, whereas HKR can only achieve Θ(k2) competitive
ratio (see Appendix G). In fact, in Appendix G we show that
the ratio in the reward obtained by of our algorithm and that
of HKR is Ω(k2) on some instances. Thus, our analysis of the
worst-case performance guarantee is quite revealing in and
of itself. Given this and the space constraint, we have pro-
vided some experimental analysis in Appendix F that further
underlines our results in the main body of the paper. We com-
pared the performance of the two algorithms on the instances
in [Heidari et al., 2016] (see Figure 10). We observe that for
finite time horizons, our algorithm can match or even beat
the performance of horizon-aware HKR on many instances,
despite not knowing T . We also compared the performance
of our algorithm, HKR, and Round Robin on some randomly
generated IMAB instances (see Figure 11). In Figure 12, we
also show some additional experiments that provide a visual
depiction of Theorem 5 and compare it with the HKR algo-
rithm. We refer the reader to Appendix F for details regarding
the experiments and the figures referred to above.

6 Conclusion and Future Work
We studied the IMAB problem in the horizon-unaware set-
ting. A direction that is of immediate future interest is to
study the Single-Peaked MAB model when the horizon is
not known. This model, where the reward function is mono-
tonically increasing before and decreasing after the peak has
been studied when the time horizon is known [Lindner et al.,
2021]. It would be interesting to see if our ideas can be ex-
tended to the Single-Peaked model to obtain anytime guar-
antees. Another question of immediate interest is to define
alternate regret notions for IMAB that are natural and provide
better regret bounds. As mentioned in Section 1.1, it would
also be interesting to see if our results extend to the stochas-
tic setting where the expected rewards of the arms change as
a function of pulls.
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