Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Some Might Say All You Need Is Sum

Eran Rosenbluth*, Jan Toenshoff’ and Martin Grohe
RWTH Aachen University
{rosenbluth, toenshoff, grohe} @informatik.rwth-aachen.de

Abstract

The expressivity of Graph Neural Networks
(GNNp5s) is dependent on the aggregation functions
they employ. Theoretical works have pointed to-
wards Sum aggregation GNNs subsuming every
other GNNs, while certain practical works have ob-
served a clear advantage to using Mean and Max.
An examination of the theoretical guarantee iden-
tifies two caveats. First, it is size-restricted, that
is, the power of every specific GNN is limited to
graphs of a specific size. Successfully processing
larger graphs may require an other GNN, and so
on. Second, it concerns the power to distinguish
non-isomorphic graphs, not the power to approxi-
mate general functions on graphs, and the former
does not necessarily imply the latter.

It is desired that a GNN’s usability will not be lim-
ited to graphs of any specific size. Therefore, we
explore the realm of unrestricted-size expressivity.
We prove that basic functions, which can be com-
puted exactly by Mean or Max GNNs, are inap-
proximable by any Sum GNN. We prove that under
certain restrictions, every Mean or Max GNN can
be approximated by a Sum GNN, but even there,
a combination of (Sum, [Mean/Max]) is more ex-
pressive than Sum alone. Lastly, we prove fur-
ther expressivity limitations for GNNs with a broad
class of aggregations.

1 Introduction

Message passing graph neural networks (GNNs) are a fun-
damental deep learning architecture for machine learning on
graphs. Most state-of-the-art machine learning techniques for
graphs are based on GNNs. It is therefore worthwhile to un-
derstand their theoretical properties. Expressivity is one im-
portant aspect: which functions on graphs or their vertices can

“Funded by the German Research Council (DFG), RTG 2236
(UnRAVeL)

"Funded by the German Research Council (DFG), grants GR
1492/16-1; KI 2348/1-1 “Quantitative Reasoning About Database
Queries”

4172

be computed by GNN models? To start with, functions com-
puted by GNNs are always isomorphism invariant, or equiv-
ariant for node-level functions. A second important feature
of GNNss is that a GNN can operate on input graphs of ev-
ery size, since it is defined as a series of node-level compu-
tations with an optional graph-aggregating readout computa-
tion. These are desirable features that motivated the intro-
duction of GNNS in the first place and may be seen as a cru-
cial factor for their success. Research on the expressivity of
GNNss has had a considerable impact in the field.

A GNN computation transforms a graph with an initial fea-
ture map (a.k.a. graph signal or node embedding) into a new
feature map. The new map can represent a node-level func-
tion or can be “read out” as a function of the whole graph.
The computation is carried out by a finite sequence of sep-
arate layers. On each layer, each node sends a real-valued
message vector which depends on its current feature vector,
to all its neighbours. Then each node aggregates the mes-
sages it receives, using an order-invariant multiset function,
typically being entrywise summation (Sum), mean (Mean),
or maximum (Max). Finally, the node features are updated
using a neural network which receives as arguments the ag-
gregation value and the node’s current feature. In the eyes of
a GNN all vertices are euqal: the message, aggregation and
update functions of every layer are identical for every node,
making GNNSs auto-scalable and isomorphism-invariant.

By now, numerous works have researched the expressiv-
ity of GNNs considering various variants of them. However,
many of the theoretical results have the following caveats:

1. The expressivity considered is non-uniform: for a func-
tion that is defined on graphs of all sizes, it is asked if for
every n there exists a GNN that expresses the function on
graphs of size n. The expressing GNN may depend on n, and
it may even be exponentially large in n. For some proofs,
this exponential blow-up is necessary [Abboud et al., 2021;
Xu et al., 2019]. This notion of expressivity is in contrast to
uniform expressivity: for a function that is defined on graphs
of all sizes, asking whether there exists one GNN that ex-
presses the function on graphs of all sizes. In addition to
being a significantly weaker theoretical notion, non-uniform
expressivity leaves much to be desired also from a practical
standpoint: It implies that a GNN may be no good for graphs
of sizes larger than the sizes well-represented in the training
data. This means that training may have to be done on very

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

large graphs, and may have to be often repeated.

2. The expressivity considered is the power to distinguish
non-isomorphic graphs. A key theoretical result is the char-
acterisation of the power of GNNs in terms of the Weisfeiler-
Leman (WL) isomorphism test [Morris et al., 2019; Xu et
al., 2019], and subsequent works have used WL as a yard-
stick (see ’Related Work’). In applications of GNNs though,
the goal is not to distinguish graphs but to regress or classify
them or their nodes. There seem to be a hidden assumption
that higher distinguishing power implies better ability to ex-
press general functions. While this is indeed the case in some
settings [Chen er al., 2019], it is not the case with uniform
expressivity notion.

Our goal is to better understand the role that the aggrega-
tion function plays in the expressivity of GNNs. Specifically,
we ask: Do Sum aggregation GNNs subsume Mean and Max
GNNS, in terms of uniform expressivity of general functions?
A common perception is that an answer is already found in
[Xu er al., 2019]: Sum-GNNs strictly subsume all other ag-
gregations GNNs. Examining the details though, what is
actually proven there is: in the non-uniform notion, con-
sidering a finite input domain, the distinguishing power of
Sum-GNNs subsume the distinguishing power of all other
aggregations GNNs. Furthermore, in practice it has been
observed that for certain tasks there is a clear advantage to
using Mean and Max aggregations [Cappart ef al., 2021;
Hamilton et al., 2017; Tonshoff et al., 2022], with one of the
most common models in practice using a variation of Mean
aggregation [Kipf and Welling, 2017]. While the difference
between theoretical belief and practical evidence may be at-
tributed to learnability rather than expressivity, it calls for bet-
ter theoretical understanding of expressivity.

1.1 Our Contribution

All our results are in the uniform expressivity notion. Mainly,
we prove that Sum-GNNs do not subsume Mean-GNNs nor
Max-GNNs (and vice versa), in terms of vertices-embedding
expressivity as well as graph-embedding expressivity. The
statements in this paper consider additive approximation, yet
the no-subsumption ones hold true also for multiplicative ap-
proximation.

o Advantage Sum. For the sake of completeness, in Sec-
tion 3 we prove that even with single-value input fea-
tures, the neighbors-sum function which can be trivially
exactly computed by a Sum-GNN cannot be approxi-
mated by any Mean-GNN or Max-GNN.

e Sum subsumes. In Section 4 we prove that if the in-
put features are bounded, Sum-GNNs can approximate
all Mean-GNNs or Max-GNNs, though not without an
increase in size which depends polynomially on the re-
quired accuracy, and exponentially on the depth of the
approximated Mean-GNNs or Max-GNNs.

o Advantage Mean and Max. In Section 5.1 we show that
if we allow unbounded input features then functions that
are exactly computable by Mean-GNNs ; Max-GNNs;
and others, cannot be approximated by Sum-GNNs.

e Essential also with finite input-features domain. In Sec-
tion 5.2 we prove that even with just single-value in-

4173

put features, there are functions that can be exactly
computed by a (Sum, Mean)-GNN (a GNN that use
both Sum-aggregation and Mean-aggregation) or by a
(Sum, Max)-GNN, but cannot be approximated by Sum-
GNNE.

e The world is not enough. In Section 6, we examine
GNNs with any finite combination of Sum; Mean; Max
and other aggregations, and prove upper bounds on their
expressivity already in the single-value input features
setting.

Lastly, in Section 7 we experiment with synthetic data and
observe that what we proved to be expressible is to an ex-
tent also learnable, and that in practice inexpressivity is man-
ifested in a significantly higher error than implied in theory.

All proofs, some of the lemmas, and extended illustration
and analysis of the experimentation, are found in the full ver-

sion!.

1.2 Related Work

The term Graph Neural Network, along with one of the basic
models of GNNs, was introduced in [Scarselli et al., 2008].
Since then, more than a few works have explored aspects of
expressivity of GNNs. Some have explored the distinguish-
ing power of different models of GNNs [Abboud et al., 2021;
Barcel6 et al., 2021; Geerts and Reutter, 2022; Maron et al.,
2019; Morris et al., 2019; Morris et al., 2020; Sato et al.,
2021], and some have examined the expressivity of GNNs
depending on the aggregations they use [Corso et al., 2020;
Xu et al., 2019]. In [Chen et al., 2019], a connection be-
tween distinguishing power and function approximation is
described. In all of the above, the non-uniform notion was
considered. In the uniform notion, it was proven that Sum-
GNNss can express every logical formula in Guarded Count-
able Logic with 2 variables (GC2) [Barcel6 et al., 2020b;
Barcel6 et al., 2020al. A theoretical survey of the expressiv-
ity of GNNG is found in [Grohe, 2021], and a practical survey
of different models of GNNs is found in [Wu et al., 2020].

2 Preliminaries

By N, N, Q,R we denote the sets of nonnegative integers,
positive integers, rational numbers, an d real numbers, respec-
tively. For a,beN:a <b we denote the set {neN:a<n<b}
by [a..b]. For beN., we denote the set [1..b] by [b]. For
a,beR:a<b, we denote the set {reR:a<r<b} by [a,b] .
We may use the terms “average” and “mean” interchangeably
to denote the arithmetic mean. We use ”{}” as notation for a
multiset. Let xeR,beN,, we define ((;}) ={x,...,x} the
multiset consisting of b instances of x. Let d €N, and let a
vector veR?, we define |[v|:= max(|vilieiq))- Let two vectors
u,veR?, we define’ <’: u<ve Vie[dlu; <v,.

2.1 Graphs

An undirected graph G =(V(G), E(G)) is a pair, V(G) being
a set of vertices and E(G) C {{u, v} |u,v e V(G)} being a set of
undirected edges. For a vertex v € V(G) we denote by N(v) :=

Isee https://arxiv.org/abs/2302.11603

https://arxiv.org/abs/2302.11603

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

{weV(G)|{w,v} € E(G)} the neighbourhood of v in G, and
we denote the size of it by n,, := |N(v)|.

A (vertex) featured graph G =(V(G), E(G),5¢,Z(G)) is a
4-tuple being a graph with a feature map Z(G): V(G) — S¢,
mapping each vertex to a d-tuple over a set S. We de-
note the set of graphs featured over S by Gga, we define
Gs = Ugen G4, and we denote the set of all featured graphs
by G.. The special set of graphs featured over {1} is denoted
G1. We denote the set of all feature maps that map to S¢ by
Zsa, we denote | J e Lse by Zs, and we denote the set of all
feature maps by Z.. Let a featured-graph domain DC G., a
mapping f: Gp — Z. to new feature maps is called a feature
transformation.

For a featured graph G and a vertex ve V(G) we define
sum(v) :=Z,en i Z(G)(w), avg(v) = % sum(v), and max(v) :=
max(Z(G)(w):we N(v)). In this paper, we consider the size
of a graph G to be its number of vertices, that is, |G| :=|V(G))|.

2.2 Feedforward Neural Networks

A feedforward neural network (FNN) § is directed acyclic
graph where each edge e carries a weight w? eR, each
node v of positive in-degree carries a bias b €R, and each
node v has an associated continuous activation function
a§ :R—R. The nodes of in-degree 0, usually Xi,...,X),
are the input nodes and the nodes of out-degree 0, usually
Yi,...,Y,, are the output nodes. We denote the underlying
directed graph of an FNN § by (V(&), E(%)), and we call
(V(F), E(B), (a?)vev(m) the architecture of §, notated A(F).
We drop the indices & at the weights and the activation func-
tion if § is clear from the context.

The input dimension of an FNN is the number of input
nodes, and the output dimension is the number of output
nodes. The depth depth(F) of an FNN § is the maximum
length of a path from an input node to an output node.

To define the semantics, let ¥ be an FNN of input dimen-
sion p and output dimension ¢g. For each node ve V({¥), we
define a function fy, : R” = R by fz x,(x1,. .., x,) = x; for the
ith input node X; and

k
fi‘?,v()?) =ay [bv + Z fTs,u/()a : We/]
=1

for every node v with incoming edges e; = (u;,v). Then §
computes the function f5 : R” — R? defined by

S‘(f) = (fTS’,Yl ()_C))’ s ’fTS',Yq()?))

Let & an FNN, we consider the size of § to be the size of
its underlying graph. That is, || =|V(%)|.

A common activation function is the ReL U activation, de-
fined as ReLU(x) :=max(0, x). In this paper, we assume all
FNNs to be ReLLU activated. ReLLU activated FNNs subsume
every finitely-many-pieces piecewise-linear activated FNN,
thus the results of this paper hold true for every such FNNs.
Every ReLU activated FNN & is Lipschitz-Continuous. That
is, there exists a minimal ag € Ry such that for every input
and output coordinates (i, j), for every specific input argu-
ments xp, ..., X,, and for every ¢ > 0, it holds that

|f;§()€1,. . .,Xn)j —fg(xl,...x,-_l,xi +(5,...,Xn)j| /6Sag
We call ag the Lipschitz-Constant of f.

4174

2.3 Graph Neural Networks

Several GNN models are described in the literature. In this
paper, we define and consider the Aggregate-Combine (AC-
GNN) model [Xu et al., 2019; Barcel? et al., 2020b]. Some of
our results extend straightforwardly to the messaging scheme
of MPNN [Gilmer er al., 2017], yet such extensions are out
of scope of this paper.

A GNN layer, of input and output (I/O) dimensions p; g,
is a pair (§,agg) such that: § is an FNN of /O di-
mensions 2p; g, and agg is an order-invariant p-dimension
multiset-to-one aggregation function. An m-layer GNN N =
(F1,ag81)s- - - » (Fm>aggm)), of I/O dimensions p; g, is a se-
quence of m GNN layers of I/O dimensions p®; ¢ such that:
pV=p, ¢ =g and Vie[m - 1] p@™*D = gD, It determines a
series of m feature transformations as follows: Let a graph
G € Gry and vertex v € V(G), then NO(G, v) :=Z(G)(v), and
for i € [m] we define a transformation

NG, v) = f5, NG, v), aggi NG, w): we N()))

We notate by N(G,v):=N"(G,v) the final output of
N for v. We define the size of N to be |N|:=Zicp il
the sum of its underlying FNNs’ sizes. We call
((A(F1),agg1), . . ., (A(En), aggm)) the architecture of N, no-
tated A(N), and say that N realizes A(N). For an
aggregation function agg, we denote by agg-GNNs the
class of GNNs for which Vie[m] agg;=agg. For ag-
gregation functions aggi,agg,, we denote by (aggi,agg»)-
GNNs the class of GNNs with m=2n layers such that
Vi€ [n] aggri-1 = agg, aggri = aggy.

2.4 Expressivity

Let p,geN, and a set S. Let F={f:Gs»r — Zre} a set
of feature transformations, and let a feature transformation
h:Gsr — Zre. We say F uniformly additively approximates
h, notated F =~ h, if and only if

Ve>03df e F:YGeGs,VveV(G) |f(G)v)—hG)V)|<Le

The essence of uniformity is that one function ”works” for
graphs of all sizes, unlike non-uniformity where it is enough
to have a specific function for each specific size of input
graphs. The proximity measure is additive - as opposed

to multiplicative where it is required that W

In this paper, approximation always means uniform addi-
tive approximation and we use the term “approximates” syn-
onymously with expresses. Although our no-approximation
statements consider additive approximation, they hold true
also for multiplicative approximation, and the respective
proofs (in the full version) require not much additional ar-
gumentation to show that.

Let F, H be sets of feature transformations f: Gs» — Zga,
we say F subsumes H, notated F' > H if and only if for every
h:Gsr — Zre it holds that H~h= F ~ h. If the subsump-
tion holds only for graphs featured with a subset 77 Cc S? we
notate it as F >" H.

Let p,geN. We call an order-invariant mapping
f:Zre = R, from feature maps to g-tuples, a readout func-
tion. Both sum and avg are commonly used to aggregate
feature maps, possibly followed by an FNN that maps the

<e.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

aggregation value to a final output. We call a mapping
f:Gsr » RY, from featured graphs to g-tuples, a graph em-
bedding. Let weN, let a set of feature transformations
F={f:Gs»r — Zrs}, and let a readout r: Zrs — R", we no-
tate the set of embeddings {ro f: f € F} by ro F. We use the
expressivity terms and notations defined for feature transfor-
mations, for graph embeddings as well.

3 Mean and Max Do Not Subsume

It has already been stated that Sum-GNNs can express func-
tions that Mean-GNNs and Max-GNNs cannot [Xu ef al.,
2019]. For the sake of completeness we provide formal
proofs that Mean-GNNs and Max-GNNs subsume neither
Sum-GNNs nor each other.

3.1 Mean and Max Do Not Subsume Sum

Neither Mean-GNNs nor Max-GNNs subsume Sum-GNNss,
even when the input-feature domain is a single value.

We define a featured star graph with (a parameter) k leaves,
Gy (see Figure 1): For every k € Ny :

o V(G ={up Ufvi,...,w}

o E(Gp) = Uiepglu, vit}

o Z(Gr) ={(u, D} Uiy {(vi, D}
Let N be an m-layer GNN. We define .’ := N(Gy, u), the
feature of ue V(Gy) after operating the first ¢ layers of N.
Note that u,(cm) = N(Gy, u).
Lemma 3.1. Assume N is a Mean-GNN or a Max-GNN . Let
the maximum input dimension of any layer be d, and let the
maximum Lipschitz-Constant of any FNN of N be a. Then,
for every k it holds that |u§<m)| <(da)™.
Theorem 3.2. Let f:G,— Zr a feature transformation

such that for every k it holds that f(Gp)(u)=k. Then,
Mean-GNNs # f and Max-GNNs # f.

Note that by Theorem 3.2, a function such as neighbors-
count is inexpressible by Mean-GNNs and Max-GNNs .

Corollary 3.3. We have that Mean-GNNs #" Sum-GNNs,
Max-GNNs %" Sum-GNNs.

3.2 Mean and Max Do Not Subsume Each Other

Mean-GNNs and Max-GNNs do not subsume each other,
even in a finite input-feature domain setting. We define a
parameterized graph in which, depending on the parameters’
arguments, the average of the center’s neighbors is in [0, %]
while their max can be either 0 or 1. For every k€N and
be{0,1}:

o V(Girp)={u} U {vi,..., v} U {w}
o E(Grp) = Uiy, vil} U {{u, wh
o Z(Grp) = {(u, 0)} Uicpig{(vi, 0)} U {(w, b)}
Theorem 3.4. Let f:G.1) = Zr a feature transformation

such that for every k it holds that f(Gyp)(u)= % Then,
Max-GNNs # f.

Theorem 3.5. Let f: G0, — Zr a feature transformation
such that for every k it holds that f(Gyp)(u) = b. Then, Mean-
GNN s # f.

Corollary 3.6. We have that Mean-GNNs 2" Max-GNNs ,
Max-GNNs 21 Mean-GNNs .

4 Sometimes Sum Subsumes

In a bounded input-feature domain setting, Sum-GNNs can
express every function that Mean-GNNs and Max-GNNs can.
The bounded input-feature domain results in a bounded range
for Mean and Max, a fact which can be exploited to approx-
imate the target GNN with a Sum-GNN. The approximating
Sum-GNNss, that we describe, come at a size cost. We do not
know if an asymptotically-lower-cost construction exist.

4.1 Mean by Sum

Sum-GNNs subsume Mean-GNNss in a bounded input-feature
domain setting.

Lemma 4.1. For every € >0 and d € N+, there exists a Sum-
GNN N of size O(d é) such that for every featured graph
G € G(0,11cre 1t holds that Vv € V(G) |N(G, V) — avg(v)| <e.
Theorem 4.2. Let a Mean-GNN Ny, consisting of m layers,
let the maximum input dimension of any layer be d, and let the
maximum Lipschitz-Constant of any FNN of Ny be a. Then,
for every € >0 there exists a Sum-GNN Ny such that:

1. YG€Go1 Ve V(G) INu(G,v) - Ns(G,v)| <.

dmad(1-Qad)")
2. INsISO(Nul + = Tgeay)

Corollary 4.3. Sum-GNNs > Mean-GNNs.

4.2 Max by Sum

Sum-GNNs subsume Max-GNNs in a bounded input-feature
domain setting.

Lemma 4.4. For every e >0 and d € Ny, there exists a Sum-
GNN N of size O(dé) such that for every featured graph G €
Gro.ay and vertex v € V(G) it holds that IN(G, v) — max(v)| <L .
Theorem 4.5. Let a Max-GNN Ny, consisting of m layers, let
the maximum input dimension of any layer be d, and let the
maximum Lipschitz-Constant of any FNN of Ny be a. Then,
for every € >0 there exists a Sum-GNN Ny such that:

1. YG€Gio1e WeV(G) INu(G,v) — Ns(G,v)| <&

d-m-ad(1-2ad)™
2. [Ns|<O(Nul + W)

Corollary 4.6. Sum-GNNs > Max-GNNs.

5 Mean and Max Have Their Place

In two important settings, Mean and Max aggregations en-
able expressing functions that cannot be expressed with Sum
alone. As in Section 3, we define a graph G, parameterized
by 6 over domain ®. We define a feature transformation f on
that graph and prove that it cannot be approximated by Sum-
GNNs. The line of proofs (in the full version) is as follows:

1. We show that for every Sum-GNN N there exists a finite
set Fn of polynomials of 6, those polynomials obtain a
certain property ¢, and it holds that:

VOe® Juge V(Gy) Ap € Fn : N(Gy, ug) = p(0)
2. We show that for every finite set F' of polynomials (of 6)
that obtain ¢, it holds that:
Ve>030€®: VpeF |p0) — f(Go)up)l > e

4175

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Figure 1: A star graph with k leaves, featured over a single-value input-feature domain (left); a star graph with k leaves, featured over N,
(middle); a tripartite graph, with k intermediates fully connected to ¢ leaves, featured over a single-value input-feature domain (right).

5.1 Unbounded, Countable, Input-Feature
Domain
In an unbounded input-feature domain setting, Mean;Max

and other GNNs are not subsumed by Sum-GNNs. We de-
fine a graph Gy (see Figure 1): For (k,c) € N>O,

o V(Gre)={uy Ufvi,..., v}
o E(Gyc)= Uie[k]{{u, vit}
® Z(Gie) = {(u, 0)} Uiep{(vi,)}

Theorem 5.1. Let f: Gy — Zr a feature transformation,
such that for every k,c it holds that f(Gy.)(u)=c. Then,
Sum-GNNs # f.

Corollary 5.2. Denote by S the set of all multisets over Ns.
Let g:S — R an aggregation such thatVa, b € Ny g((‘z})) =aq,
that is, g aggregates every homogeneous multiset to its single
unique value. Then, Sum-GNNs #" g-aggregation GNNs.

Corollary 5.2 implies a limitation of Sum-GNNs compared
to GNNs that use Mean; Max; or many other aggregations.

Graph Embedding

Sum-GNNs are limited compared to Mean; Max; and other
GNNs, not only when used to approximate vertices’ feature
transformations but also when used in combination with a
readout function to approximate graph embeddings. Consider
another variant of Gy .: For (k, c) € N>0,

o V(Gro)={ur,....,up2} Ufvy, ..., v}
o E(Gre) = Uieper, jemaliui, vill
® Z(Gre) = Uieper{(ui, 0} Usepg{(vis ©)}

Theorem 5.3. Let f Gt =R a graph embedding such
that Yk, c f(ch)— k+1 Let an aggregation a€ {sum,avg}
and an FNN §, and define a readout vo:=fg o a. Then,
ro o Sum-GNNs # f.

Corollary 5.4. Denote by S the set of all multisets over Ny.
Let g:S — Ran aggregation such thatVa,b € Ny g((l‘b‘})) =a.
Let an aggregation a € {sum, avg} and an FNN §, and define a
readout o := f o a. Then, vo o Sum-GNNs #" avgo g-GNNs.

We have shown that Sum-GNNs do not subsume Mean and
Max (and many other) GNNs. The setting though, consisted
of an input-feature domain N, that is, countable unbounded.

4176

5.2 Finite Input-Feature Domain

Mean and Max aggregations are essential also when the
input-feature domain is just a single value i.e. when the in-
put is featureless graphs. We define a new graph Gy, (see
Figure 1): For every (k,c) eN?%,

o V(Gro)={u}Ufvy,...,vi} U{wr,...,w}
d E(ch) Uze[k]{ u, V, UzE[k]]E[L]{{vl’ Wj}}
o Z(Gie) ={(u, D} Uiepivis DY Uigre{(wi, 1}

Theorem 5.5. Let f:G) — Zr a feature transformation,
such that for every k, c it holds that f(Gyc)(u) = c. Then, Sum-
GNNs # f.

Corollary 5.6. Denote by S the set of all multisets over
N.o, and let g:S - R an aggregation such that Va,be

N.o g((%)) = a. Then, Sum-GNNs 2 (Sum, g)-GNNs.

Corollary 5.6 implies a limitation of Sum-GNNs compared
to stereo aggergation GNNs that combine Sum with Mean;
Max; or many other aggregations. The limitation exists even
when the input-feature domain consists of only a single value.

Graph Embedding

Completing the no-subsumption picture, Sum-GNNs are not
subsuming, in a 2-values input-feature domain setting, also
when used in combination with a readout function to ap-

proximate graph embeddings. We define Gy .: For every
2
(k,c) eNZ,
o V(Gre)=Tlur,...,upU{vi,..., vt U{wy, ..., Wi}

o E(Gre) = Ujeperiennug, vitt Uieer, jetkertvis wilh
® Z(Gre) = Uieper{ @i, 00} Uiepe {(vis O} Uieprer { Wi, D}

Theorem 5.7. Let f:Gp — R a graph embedding such

thatVk,c f(Gie) = g:ﬁ‘:]]ﬁz Let an aggregation a € {sum, avg}
and an FNN §, and define a readout vo:= f5 o a. Then,

ro o Sum-GNNs # f.

Corollary 5.8. Denote by S the set of all multisets
over Nsy. Let g:S —R an aggregation such that
Va,beN, g(({Z]))za. Let an aggregation a€ {sum,avg}
and an FNN §, and define a readout vo:= f5 o a. Then,
ro o Sum-GNNs #©V avg o (Sum, g)-GNNs.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

6 Sum and More Are Not Enough

In previous sections we showed that Sum-GNNs do not sub-
sume Mean-GNNsand Max-GNNs , by proving that they can-
not express specific functions. In this section, rather than
comparing different GNNs classes we focus on one broad
GNNs class and show that it is limited in its ability to express
any one of a certain range of functions.

Denote by S the set of all multisets over R, and let an ag-
gregation a:S — R. We say that a is a uniform polynomial
aggregation (UPA) if and only if for every homogeneous mul-
tiset (%’), x€R, beN,y it holds that a((‘;')) is either a polyno-
mial of x or a polynomial of (bx). Note that Sum; Mean; and
Max are all UPAs. We say that a GNN N = (LW, ..., L)
is an MUPA-GNN (Multiple UPA) if and only if the aggrega-
tion input to each of its layers is defined by a series of UPAs.
That is, £ = (F?, (a(li), e a(?)), for some b; UPAs.

We define a parameterized graph Gy (see Figure 1): For
every ke Nyq:

o V(G ={u}U{v,...,v}

o E(Gy) = Uiepglu, vi}

* Z(Gi) = {(u, D} Uiep{(vi, D}

Lemma 6.1. Let A an m-layer MUPA-GNN architecture, let
I be the maximum depth of any FNN in A, and let d be the
maximum in-degree of any node in any FNN in A. Then,
there exists r € N such that: for every GNN N that realizes A
it holds that N(Gy, u) is piecewise-polynomial (of k) with at
most ((d + 1)'Y" pieces, and each piece is of degree at most r.

Lemma 6.1 implies that the architecture bounds (from
above) the number of polynomial pieces, and their degrees,
that make the function computed by any particular realiza-
tion of the architecture. With Lemma 6.1 at our disposal, we
consider any feature transformation that does not converge
to a polynomial when applied to u € V(Gy) and viewed as a

function of k. We show that such a function is inexpressible
by MUPA-GNN:S.

Theorem 6.2. Let f: G| — Zr afeature transformation, and
define g(k) .= f(Gy)(u). Assume that g does not converge to
any polynomial, that is, there exists €>0 such that for ev-
ery polynomial p, for every Ky, there exists k > Ky such that
lg(k) — p(k)| = €. Then, MUPA-GNNs# f.

The last inexpressivity property we prove, concerns a
class of functions which we call PIL (Polynomial-Intersection
Limited). For n € N denote by P, the set of all polynomials of
degree <n. We say that a function f : N — R is PIL if and only
if for every n € N there exists &, € N such that for every poly-
nomial p € P, there exist at most k, — 1 consecutive integer
points on which p and f assume the same value. Formally,

sup (k:VpeP,¥xeNVye[x.(x+k— 1] f(y)=p(y)eN

We consider every feature transformation f such that for
g(k) := f(Gy)(u) it holds that g is PIL. This is a different
characterization than “’no polynomial-convergence” (in Theo-
rem 6.2), and neither one implies the other. The result though,
is weaker for the current characterization. We show that ev-
ery MUPA-GNN architecture can approximate such a func-
tion only down to a certain £>0. That is, every GNN that

4177

realizes the architecture - no matter the specific weights of
its FNNs - is far from the function by at least € (at least
in one point). The following lemma is an adaptation of the
Polynomial of Best Approximation theorem [Mayans, 2006;
Golomb, 1962] which is a step in the proof of the Equioscil-
lation theorem attributed to Chebyshev.

Lemma 6.3. For x,keNdefine I, :={x,x+1,...,x+k—1}
the set of consecutive k integers starting at x. Let f:N—>R
be a PIL, let n €N, and define k,, :=

I +max(k:VpeP,VxeNVye[x..(x + k- 1)] f(y) = p()))

Then, for every x € N there exists &y, > 0 such that: for every
p € P, there exists y € Iy, for which |p(y) — f(V)| = &xx,. That
is, for every starting point x there is a bounded interval Iy,
and a gap &xy,, such that no polynomial of degree <n can
approximate f on that interval below that gap.

Lemma 6.4. For every q,n€N there exists a point T,, €N
and a gap 6r,, >0 such that: for every PIL f:N—R, and
every piecewise-polynomial g with q many pieces of degree
<n, there exists yeN, 0<y<T,, for which |g(y) — f()|=
0t,,- That is, the number of pieces and the max degree of

a piecewise-polynomial g determine a guaranteed minimum
gap by which g misses f within a guaranteed interval.

Theorem 6.5. Let f: G| — Zr a feature transformation, let
g(k) = f(Gy)(u), and assume that g is PIL. Then, for every
MUPA-GNN architecture A, there exists €7 > 0 such that for
every MUPA-GNN N that realizes A there exists k such that
IN(Gr,) = f(G(w)| z e

7 Experimentation

We experiment with vertex-level regression tasks. In previous
sections we formally proved certain expressivity properties of
Sum; Mean; and Max GNNs. Our goal in experimentation is
to examine how these properties may affect practical learn-
ability: searching for an approximating GNN using stochas-
tic gradient-descend. With training data ranging over only a
small subsection of the true-distribution range, does the ex-
istence of a uniformly-expressing GNN increase the chance
that a well-generalizing GNN will be learned?

Specific details concerning training and architecture, as
well additional illustrations and extended analysis, can be
found in the full version?3.

7.1 Data and Setup

For the graphs in the experiments, and with our GNN archi-
tecture consisting of two GNN layers (see full version), Mean
and Max aggregations output the same value for every vertex,
up to machine precision. Thus, it is enough to experiment
with Mean and assume identical results for Max.

We conduct experiments with two different datasets, one
corresponds to the approximation task in Section 5.1, and the
other to the task in Section 5.2:

2see https://arxiv.org/abs/2302.11603
3code for running the experiments is found at https://github.com/
toenshoff/Uniform_Graph_Learning

https://arxiv.org/abs/2302.11603
https://github.com/toenshoff/Uniform_Graph_Learning
https://github.com/toenshoff/Uniform_Graph_Learning

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

10—5 4

1076 4 === Sum,k=500
Sum,k=1000

10—7 4

—— Mean,k=500
1078 —--- Mean,k=1000

T T T T T T T T T T T
1 100 200 300 400 500 600 700 800 900 1000
C

107° 4 === Sum,k=500
Sum,k=1000

—— Sum+Mean, k=500

1078 A --- Sum+Mean,k=1000

T T T T T T T T T T T
1 100 200 300 400 500 600 700 800 900 1000
C

Figure 2: Relative Error of different aggregations on Unbounded Countable Features (left) and Single Value Features (right)

1. Unbounded Countable Feature Domain (UC): This
dataset consists of the star graphs {Gy.} from Sec-
tion 5.1, for k,c€[1..1000]. The center’s ground truth
value is ¢, and it is the only vertex whose value we want
to predict.

2. Single-Value Feature Domain (SV): This dataset con-
sists of the graphs {G.} from Section 5.2, for k,ce
[1..1000]. Again, the center’s ground truth value is c,
and we do not consider the other vertices’ predicted val-
ues.

As training data, we vary k€[1..100] and c€[1..100]. We
therefore train on 10K graphs in each experiment. After-
wards, we test each GNN model on larger graphs with ke
[101..1000} and c€[101..1000]. Here, we illustrate our re-
sults for two representing values of k: 500, 1000, for all val-
ues of c. Illustrations of the full results can be found in the
full version. The increased range of k and c in testing simu-
lates the scenario of unbounded graph sizes and unbounded
feature values, allowing us to study the performance in terms
of uniform expressivity with unbounded features.

7.2 Results

Our primary evaluation metric is the relative error. Formally,
if ypreq 18 the prediction of the GNN for the center vertex of an
input graph G, with truth label ¢, we define the relative error
as
RE (€)= 5

A relative error greater or equal to 1 is a strong evidence for
inability to approximate, as the assessed approximation is no-
better than an always-0 output. It is also reasonable that in
practice, when judging the regression of a function whose
range vary by a factor of 1000, relative error would be the
relevant measure.

Unbounded, Countable, Feature Domain

Figure 2 provides the test results for UC. We plot the relative
error against different values of ¢. Note that the error has
a logarithmic scale. Mean-GNNs achieve very low relative
errors of less than 10~* across all considered combinations of

4178

k and c. Their relative error falls to less than 107® when ¢
is within the range seen during training (< 100), Therefore,
Mean-GNNs do show some degree of overfitting. Notably,
the value of k has virtually no effect on the error of Mean-
GNNs . This is expected, since mean aggregation should not
be affected by the degree k of a center vertex whose neighbors
are identical, up to machine precision. Sum-GNNs yield a
substantially higher relative error. For k=500 and ¢ <100
the relative error is roughly 1, but this value increases as ¢
grows beyond the training range. Crucially, the relative error
of Sum-GNNss also increases with k. For k£ = 1000, the relative
error is above 1 even when c is within the range seen during
training. Therefore, Sum-GNNs do generalize significantly
worse than Mean-GNNs in both parameters k and c. *

Single-Value Feature Domain

Figure 2 provides the test results for SV. Again, we plot the
relative error against different values of c. Sum-GNNs yield
similar relative errors as in the UC experiment. As expected,
learned (Sum,Mean)-GNNs do perform significantly better
than Sum-GNNs. However, the learning of (Sum,Mean)-
GNNss is not as successful as the learning of Mean-GNNs
in the UC experiment: relative error is around 107! for
k=500, and slightly larger for k=1000, clearly worse than
the UC-experiment performance. In particular, the learned
(Sum,Mean)-GNN is sensitive to increases in k. Note that
each (Sum,Mean)-GNN layer receives both Sum and Mean
aggregations arguments and needs to choose the right one,
thus it is a different learning challenge than in the first exper-
iment.

References

[Abboud et al., 2021] Ralph Abboud, Ismail ilkan Ceylan,
Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node ini-
tialization. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI 2021, Virtual Event /| Montreal, Canada,
19-27 August 2021, pages 2112-2118. ijcai.org, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

[Barcel6 et al., 2020a] Pablo Barceld, Egor V Kostylev,
Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo
Silva. The logical expressiveness of graph neural net-

works. In 8th International Conference on Learning Rep-
resentations (ICLR 2020), 2020.

[Barcel? et al., 2020b] Pablo Barcel6, Egor V Kostylev,
Mikaél Monet, Jorge Pérez, Juan L Reutter, and Juan-
Pablo Silva. The expressive power of graph neural net-
works as a query language. ACM SIGMOD Record,
49(2):6-17, 2020.

[Barceld et al., 2021] Pablo Barceld, Floris Geerts, Juan
Reutter, and Maksimilian Ryschkov. Graph neural net-
works with local graph parameters. Advances in Neural
Information Processing Systems, 34:25280-25293, 2021.

[Cappart et al., 2021] Quentin Cappart, Didier Chételat,
Elias B. Khalil, Andrea Lodi, Christopher Morris, and
Petar Velickovic. Combinatorial optimization and reason-
ing with graph neural networks. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pages 4348-4355.
ijcai.org, 2021.

[Chen et al., 2019] Zhengdao Chen, Soledad Villar, Lei
Chen, and Joan Bruna. On the equivalence between
graph isomorphism testing and function approximation

with gnns. Advances in neural information processing sys-
tems, 32, 2019.

[Corso et al., 2020] Gabriele Corso, Luca Cavalleri, Do-
minique Beaini, Pietro Li0, and Petar Velickovié. Principal
neighbourhood aggregation for graph nets. Advances in
Neural Information Processing Systems, 33:13260-13271,
2020.

[Geerts and Reutter, 2022] Floris Geerts and Juan L. Reut-
ter. Expressiveness and approximation properties of graph
neural networks. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

[Gilmer et al., 2017] Justin Gilmer, Samuel S Schoenholz,
Patrick F Riley, Oriol Vinyals, and George E Dahl. Neu-
ral message passing for quantum chemistry. In Interna-
tional conference on machine learning, pages 1263-1272.
PMLR, 2017.

[Golomb, 1962] Michael Golomb. Lectures on theory of
approximation. Argonne National Laboratory, Applied
Mathematics Division, 1962.

[Grohe, 2021] Martin Grohe. The logic of graph neural net-
works. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1-17. 1IEEE,
2021.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing sys-
tems, 30, 2017.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional

4179

networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017.

[Maron et al., 2019] Haggai Maron, Heli Ben-Hamu, Hadar
Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing sys-
tems, 32, 2019.

[Mayans, 2006] Robert Mayans. The polynomial of best
approximation. https://www.maa.org/sites/default/files/
images/upload_library/4/vol6/Mayans/Best.html, ~ 2006.
Accessed: 2023-06-03.

[Morris et al., 2019] Christopher Morris, Martin Ritzert,
Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-

ings of the AAAI conference on artificial intelligence, vol-
ume 33, pages 4602—4609, 2019.

[Morris et al., 2020] Christopher Morris, Gaurav Rattan, and
Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in
Neural Information Processing Systems, 33:21824-21840,
2020.

[Sato et al., 2021] Ryoma Sato, Makoto Yamada, and
Hisashi Kashima. Random features strengthen graph neu-
ral networks. In Proceedings of the 2021 SIAM Interna-
tional Conference on Data Mining (SDM), pages 333-341.
SIAM, 2021.

[Scarselli et al., 2008] Franco Scarselli, Marco Gori,
Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE
transactions on neural networks, 20(1):61-80, 2008.

[Tonshoff et al., 2022] Jan Tonshoff, Berke Kisin, Jakob
Lindner, and Martin Grohe. One model, any csp: Graph
neural networks as fast global search heuristics for con-
straint satisfaction. arXiv preprint arXiv:2208.10227,
2022.

[Wu er al., 2020] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. IEEE trans-

actions on neural networks and learning systems, 32(1):4—
24, 2020.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

https://www.maa.org/sites/default/files/images/upload_library/4/vol6/Mayans/Best.html
https://www.maa.org/sites/default/files/images/upload_library/4/vol6/Mayans/Best.html

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Graphs
	Feedforward Neural Networks
	Graph Neural Networks
	Expressivity

	Mean and Max Do Not Subsume
	Mean and Max Do Not Subsume Sum
	Mean and Max Do Not Subsume Each Other

	Sometimes Sum Subsumes
	Mean by Sum
	Max by Sum

	Mean and Max Have Their Place
	Unbounded, Countable, Input-Feature Domain
	Graph Embedding

	Finite Input-Feature Domain
	Graph Embedding

	Sum and More Are Not Enough
	Experimentation
	Data and Setup
	Results
	Unbounded, Countable, Feature Domain
	Single-Value Feature Domain

