
c-TPE: Tree-Structured Parzen Estimator with Inequality Constraints
for Expensive Hyperparameter Optimization

Shuhei Watanabe and Frank Hutter
Department of Computer Science, University of Freiburg, Germany

{watanabs, fh}@cs.uni-freiburg.de

Abstract
Hyperparameter optimization (HPO) is crucial for
strong performance of deep learning algorithms
and real-world applications often impose some
constraints, such as memory usage, or latency on
top of the performance requirement. In this work,
we propose constrained TPE (c-TPE), an extension
of the widely-used versatile Bayesian optimization
method, tree-structured Parzen estimator (TPE), to
handle these constraints. Our proposed extension
goes beyond a simple combination of an existing
acquisition function and the original TPE, and in-
stead includes modifications that address issues that
cause poor performance. We thoroughly analyze
these modifications both empirically and theoreti-
cally, providing insights into how they effectively
overcome these challenges. In the experiments, we
demonstrate that c-TPE exhibits the best average
rank performance among existing methods with
statistical significance on 81 expensive HPO with
inequality constraints. Due to the lack of baselines,
we only discuss the applicability of our method to
hard-constrained optimization in Appendix D. See
https://arxiv.org/abs/2211.14411 for the latest ver-
sion with Appendix.

1 Introduction
While deep learning (DL) has achieved various breakthrough
successes, its performance highly depends on the proper set-
tings of its hyperparameters [Chen et al., 2018; Melis et al.,
2018]. Furthermore, practical applications often impose sev-
eral constraints on memory usage or latency of inference,
making it necessary to apply constrained hyperparameter op-
timization (HPO).

Recent developments in constrained HPO have led to the
emergence of new acquisition functions (AFs) [Gardner et
al., 2014; Lobato et al., 2015; Eriksson and Poloczek, 2021]
in Bayesian optimization (BO) with Gaussian process (GP),
which judge the promise of a configuration based on the sur-
rogate model. While GP-based methods offer theoretical
advantages, recent open source softwares (OSS) for HPO,
such as Optuna [Akiba et al., 2019], Hyperopt [Bergstra et
al., 2013], and Ray [Liaw et al., 2018], instead employ the

tree-structured Parzen estimator (TPE) [Bergstra et al., 2011;
Bergstra et al., 2013; Watanabe, 2023], a variant of BO us-
ing the density ratio of kernel density estimators for good and
bad observations, as the main algorithm, and Optuna played
a pivotal role for HPO of DL models in winning Kaggle com-
petitions [Alina et al., 2019; Addison et al., 2022]. Despite
its versatility for expensive HPO problems, the existing AFs
are not directly applicable to TPE and no study has been con-
ducted on TPE’s extension to constrained optimization.

In this paper, we propose c-TPE, a constrained optimiza-
tion method that generalizes TPE. We first show that it is
possible to integrate the original TPE into the existing AF
proposed by Gelbart et al. [2014], which uses the product
of AFs for the objective and each constraint, and thus TPE
can be generalized with constrained settings. Then, a naı̈ve
extension, which calculates AF by the product of density ra-
tios for the objective and each constraint with the same split
algorithm, could be simply obtained; however, the naı̈ve ex-
tension suffers from performance degradation under some cir-
cumstances. To circumvent these pitfalls, we propose (1) the
split algorithm that includes a certain number of feasible so-
lutions, and (2) AF by the product of relative density ratios,
and analyze their effects empirically and theoretically.

In the experiments, we demonstrate (1) the strong perfor-
mance of c-TPE with statistical significance on expensive
HPO problems and (2) robustness to changes in the con-
straint level. Notice that we briefly discuss the applicability of
our method to hard-constrained optimization in Appendix D,
and we discuss the limitations of our work in Appendix E
caused by our choices of search spaces that are limited to tab-
ular benchmarks to enable the stability analysis of the perfor-
mance variations depending on constraint levels.

In summary, the main contributions of this paper are to:
1. prove that TPE can be extended to constrained settings

using the AF proposed by Gelbart et al. [2014],
2. present two pitfalls in the naı̈ve extension and describe

how our modifications mitigate those issues,
3. provide the stability analysis of the performance varia-

tions depending on constraint levels, and
4. demonstrate that the proposed method outperforms ex-

isting methods with statistical significance on average
on 9 tabular benchmarks with 27 different settings.

The implementation and the experiment scripts are available
at https://github.com/nabenabe0928/constrained-tpe/.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4371

https://arxiv.org/abs/2211.14411
https://github.com/nabenabe0928/constrained-tpe/

2 Background
2.1 Bayesian Optimization (BO)
Suppose we would like to minimize a validation loss metric
f(x) = L(x,A,Dtrain,Dval) of a supervised learning algo-
rithm A given training and validation datasets Dtrain,Dval,
then the HPO problem is defined as follows:

xopt ∈ argmin
x∈X

f(x). (1)

Note that x ∈ X is a hyperparameter configuration, X =
X1 × · · · × XD is the search space of the hyperparame-
ter configurations, and Xd ⊆ R (for d = 1, . . . , D) is
the domain of the d-th hyperparameter. In Bayesian opti-
mization (BO) [Brochu et al., 2010; Shahriari et al., 2016;
Garnett, 2022], we assume that f(x) is expensive and con-
sider the optimization in a surrogate space given a set of ob-
servations D := {(xn, fn)}Nn=1. In each iteration of BO, we
build a predictive model p(f |x,D) and optimize an AF to
yield the next configuration. A common choice for AF is the
following expected improvement (EI) [Jones et al., 1998]:

EIf? [x|D] =

∫ f?

−∞
(f? − f)p(f |x,D)df. (2)

Another common choice is the following probability of im-
provement (PI) [Kushner, 1964]:

P[f ≤ f?|x,D] =

∫ f?

−∞
p(f |x,D)df. (3)

2.2 Tree-Structured Parzen Estimator (TPE)
TPE [Bergstra et al., 2011; Bergstra et al., 2013] is a variant
of BO methods and it uses EI. See Watanabe [2023] to better
understand the algorithm components. To transform Eq. (2),
we assume the following:

p(x|f,D) =

{
p(x|D(l)) (f ≤ fγ)
p(x|D(g)) (f > fγ)

(4)

where D(l),D(g) are the observations with fn ≤ fγ and
fn > fγ , respectively. Note that fγ is the top-γ quantile ob-
jective value in D at each iteration and p(x|D(l)), p(x|D(g))
are built by the kernel density estimator [Bergstra et al., 2011;
Bergstra et al., 2013; Falkner et al., 2018]. Combining
Eqs. (2), (4) and Bayes’ theorem, the AF of TPE is computed
as [Bergstra et al., 2011]:

EIf? [x|D]
rank' r(x|D) := p(x|D(l))/p(x|D(g)) (5)

where φ(x)
rank' ψ(x) implies the order isomorphic and

∀x,x′ ∈ X , φ(x) ≤ φ(x′) ⇔ ψ(x) ≤ ψ(x′) holds and
we use f? = fγ at each iteration. In each iteration, TPE
samples configurations from p(x|D(l)) and takes the config-
uration that achieves the maximum r(x|D).

2.3 Bayesian Optimization with Unknown Constraints
We consider unknown constraints ci(x) =
Ci(x,A,Dtrain,Dval), e.g. memory usage of the algo-
rithm A given the configuration x. Then the optimization is
formulated as follows:

xopt ∈ argmin
x∈X

f(x)

subject to ∀i ∈ {1, . . . , C}, ci(x) ≤ c?i
(6)

where c?i ∈ R is a threshold for the i-th constraint. Note
that we reverse the sign of inequality if constraints must be
larger than a given threshold. To extend BO to constrained
optimization, the following expected constraint improvement
(ECI) has been proposed [Gelbart et al., 2014]:

ECIf? [x|c?,D] = EIf? [x|D]P(c1 ≤ c?1, . . . , cC ≤ c?C |x,D).
(7)

where c? = [c?1, . . . , c
?
C] ∈ RC and D = {(xn, fn, cn)}Nn=1

is a set of observations, and cn = [c1,n, . . . , cC,n] ∈ RC is
the n-th observation of each constraint. However, the follow-
ing simplified factorized form is the common choice:

ECIf? [x|c?,D] = EIf? [x|D]
C∏
i=1

P(ci ≤ c?i |x,D), (8)

Since there are few methods available for hard-constrained
optimization, we only discuss the applicability of our method
to hard-constrained optimization in Appendix D.

3 Constrained TPE (c-TPE)
In this section, we first prove that TPE can be extended to
constrained settings via the simple product of AFs. Then we
describe an extension naı̈vely inspired by the original TPE
and discuss two pitfalls hindering efficient search. Finally,
we present modifications for those pitfalls and analyze the
effects on toy problems.

Note that throughout this paper, we use the terms γ-
quantile value fγ as the top-γ quantile function value, γc?
as the quantile of c?, and Γ-feasible domain as the feasible
domain in the search space X that covers 100 × Γ% of X .
For the formal definitions, see Appendix A.1. Furthermore,
we consider two assumptions mentioned in Appendix A.2 and
those assumptions allow the whole discussion to be extended
to search spaces with categorical parameters.

3.1 Naı̈ve Acquisition Function
Suppose we would like to solve constrained optimization
problems formalized in Eq. (6) with ECI. To realize ECI in
TPE, we first show the following proposition.
Proposition 1 EIf? [x | D] ∝ P(f ≤ f? | x,D) holds under
the TPE formulation.
The proof is provided in Appendix A.3. Since PI and EI are
equivalent under the TPE formulation, we obtain the follow-
ing by combining Proposition 1 and Eq. (8):

ECIf? [x|c?,D] ∝ P(f ≤ f?|x,D)︸ ︷︷ ︸
rank
' r0(x|D)

C∏
i=1

P(ci ≤ c?i |x,D)︸ ︷︷ ︸
rank
' ri(x|D)

.

(9)
Note that we provide the definition of ri(x|D) for i ∈
{0, 1, . . . , C} in the next section.

3.2 Two Pitfalls in Naı̈ve Extension
Naı̈ve Extension and Modifications
From the discussion above, we could naı̈vely extend the orig-
inal TPE to constrained settings using the split in Eq. (4) and
the AF in Eq. (5). More specifically, the naı̈ve extension com-
putes the AF as follows:

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4372

Algorithm 1 c-TPE algorithm (With modifications)

1: Ninit (The number of initial configurations), Ns (The
number of candidates to consider in the optimization of
the AF)

2: D ← ∅
3: for n = 1, . . . , Ninit do
4: Randomly pick x
5: D ← D ∪ {(x, f(x), c1(x), . . . , cC(x))}
6: while Budget is left do
7: S = ∅
8: for i = 0, . . . , C do
9: Split D into D(l)

i and D(g)
i , γ̂i ← |D(l)

i |/|D|
10: Build p(·|D(l)

i), p(·|D(g)
i)

11: {xj}Ns
j=1 ∼ p(·|D

(l)
i),S ← S ∪ {xj}Ns

j=1

12: . See Appendix D for the hard-constrained version
13: Pick xopt ∈ argmaxx∈S

∏C
i=0 r

rel
i (x|D)

14: D ← D∪{(xopt, f(xopt), c1(xopt), . . . , cC(xopt))}

1. Pick the dγ|D|e-th best objective value f? in D,

2. Split D into D(l)
0 and D(g)

0 at f?, and D into D(l)
i and

D(g)
i at c?i for i ∈ {1, . . . , C},

3. Build kernel density estimators p(x|D(l)
i), p(x|D(g)

i) for
i ∈ {0, . . . , C}, and

4. Take the product of density ratios
∏C
i=0 ri(x|D) :=∏C

i=0 p(x|D
(l)
i)/p(x|D(g)

i) as the AF.

Note that as c?i is a user-defined threshold, c?i is fixed dur-
ing the optimization. Although this implementation could be
naturally inspired by the original TPE, Operations 1 and 4
could incur performance degradation under (1) small over-
laps in top domains for the objective and feasible domains, or
(2) vanished constraints.

For this reason, we change Operations 1 and 4 as follows:

• Pick the dγ|D|e-th best feasible objective value f? in
D (Line 9), and

• Take the product of relative density ratios∏C
i=0 r

rel
i (x|D) :=

∏C
i=0(γ̂i + (1 − γ̂i)ri(x|D)−1)−1

as the AF (Line 13).

Note that we color-coded the modifications in Algorithm 1
and we define γ̂i := |D(l)

i |/|D|. Intuitively, when all configu-
rations satisfy the i-th constraint, i.e. |D(l)

i | = |D| ⇒ γ̂i = 1,
we trivially yield rreli = 1; therefore, the i-th constraint will
be ignored and it is equivalent to ∀x ∈ X ,P[ci ≤ c?| x,D] =

1. Additionally, the following corollary guarantees the math-
ematical validity of our algorithm:

Corollary 1 ECIf? [x|c?,D] ∝
∏C
i=0 r

rel
i (x|D) under the

TPE formulation.

We provide the proof in Appendix A.4.
The split algorithm in the original TPE by Bergstra et al.

[2013] first sorts the observations D by f and takes the first
d
√
N/4e observations as D(l)

0 and the rest as D(g)
0 . On the

other hand, our method includes all the observations until the

d
√
N/4e-th feasible observations into D(l)

0 and the rest into
D(g)

0 , and this split algorithm matches the original algorithm
when Γ = 1. For the split of constraints, we first check the
upper bound of {ci,n}Nn=1 that satisfies a given threshold c?i
and let this value be c′i. Note that ci,n is the i-th constraint
value in the n-th observation. If such values do not exist,
we take the best value min{ci,n}Nn=1 so that the optimiza-
tion of this constraint will be strengthened (see Theorem 1).
Then we split D into D(l)

i and D(g)
i so that D(l)

i includes only
observations that satisfy ci,n ≤ c′i and vice versa. We de-
scribe more details in Appendix B and the applicability to
hard-constrained optimization in Appendix D. We start the
discussion of why these modifications mitigate the issues in
the next section.

Issue I: Vanished Constraints
We refer to constraints that are satisfied in almost all con-
figurations as vanished constraints. In other words, if the
i-th constraint ci is a vanished constraint, its quantile is
γ̂i := γ̂c?i ' 1. In this case, ri(x|D) should be a constant
value as P(ci ≤ c?i |x,D) = 1 holds for almost all config-
urations x. As discussed in Section 3.2, the relative density
ratio rreli (x|D) resolves this issue and it can be written more
formally as follows:

Corollary 2 Assuming the feasible domain quantile Γ = 1,

then
∏C
i=0 r

rel
i (x|D)

rank' r0(x|D) holds.

Recall that we previously defined r0(x|D) :=

p(x|D(l)
0)/p(x|D(g)

0) for D(l)
0 ,D(g)

0 obtained by split-
ting D at f?. The proof is provided in Appendix A.6.
Corollary 2 indicates that the AF of c-TPE is equivalent
to that of the original TPE when Γ = 1 and it means that
our formulation achieves P(ci ≤ c?i |x,D) = 1 if γ̂i = 1.
Corollary 2 is a special case of the following theorem:

Theorem 1 Given a pair of constraint thresholds c?i , c
?
j and

the corresponding quantiles γ̂i, γ̂j(γ̂i ≤ γ̂j), if ri+ γ̂i
1−γ̂i r

2
i ≤

rj +
γ̂j

1−γ̂j r
2
j holds, then

∂
∏C
k=0 r

rel
k (x|D)

∂ri
≥
∂
∏C
k=0 r

rel
k (x|D)

∂rj
≥ 0 (10)

holds where the first equality holds if γ̂i = γ̂j and ri = rj
and the second one holds iff γ̂j = 1.

The proof is provided in Appendix A.5. Roughly speaking,
Theorem 1 implies that our modified AF puts more priority
on the variations of the density ratios with lower quantiles,
i.e. ri in the statement above, when ri = rj .

We empirically and intuitively present the effect of Theo-
rem 1 in Figure 1. We used the objective function f(x, y) =
(x+2)2+(y+2)2 and the constraint c1(x, y) = (x−1)2+(y−
1)2 ≤ c?1 ∈ {4, 16} and visualize the heat maps of the AF us-
ing exactly the same observations for each figure. Note that
all used parameters are described in Appendix G. As men-
tioned earlier, since the naı̈ve extension (Left column) does
not decay the contribution from the objective or the constraint
with a large γ̂i, it has two peaks. For our algorithm, how-
ever, we only have one peak between the top-10% domain

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4373

Figure 1: Heat maps of the AF in the naı̈ve extension (Left column)
and our c-TPE (Right column) with a tight (Top row, c1 = 4) or
loose (Bottom row, c1 = 16) constraint. For fair comparisons, we
use a fixed set of 200 randomly sampled configurations to compute
the AF for all settings. In principle, red regions have higher AF
values and the next configuration is likely to be picked from here.

and the feasible domain because our AF decays the contribu-
tion from either the objective or the constraint based on their
quantiles γ̂i as mentioned in Theorem 1. More specifically,
for the tight constraint case (Top right), since the feasible
domain quantile γ̂1 ' 0.12 is relatively small compared to
the top-solution quantile γ̂0 ' 0.3, the peak in the top-10%
domain vanishes. Notice that we discuss why we have the
peak not at the center of the feasible domain, but between
the feasible domain and the top-10% domain in the next sec-
tion. For the loose constraint case (Bottom right), γ̂1 ' 0.50
is much larger than γ̂0 ' 0.02 and this decays the contribu-
tion from the center of the feasible domain where we have the
largest r1(x|D). As mentioned in Corollary 2, rreli (x|D) = 1
holds for i ∈ {1, . . . , C} when Γ = 1, and thus the AF co-
incides with that for the single objective optimization. Note
that since we yield γ0 = 1.0 in the case of all observations
being infeasible, the objective function will be ignored and
only constraints will be optimized.

Issue II: Small Overlaps in Top and Feasible Domains
Since the original TPE algorithm just takes the top-γ quan-
tile observations, it does not guarantee that D(l) has feasible
solutions. We explain its effect using Figure 1. For the tight
constraint case (Top row), an overlap between the feasible
domain and the top-10% domain does not exist and it causes
the two peaks in the AF for the original split algorithm (Top
left); however, it is necessary for constrained optimization to
sample intensively within feasible domains. In turn, we mod-
ify the split algorithm to include a certain number of feasible
solutions. This modification leads to the large white circle
that embraces the top-10% domain (Top right). As a result,
our algorithm yields a peak at the overlap between the large
white circle and the feasible domain.

In Figure 2, we visualize how our algorithm and the naı̈ve
extension samples configurations using a toy example. We
used the objective function f(x, y) = x2 + y2 and the con-
straint c1(x, y) = (x − z)2 + (y − z)2 ≤ c?1 = 3 where
z ∈ {0.5, 2.3}. This experiment also follows the settings
used in Appendix G and both algorithms share the initial con-
figurations. For the large overlap case (Top row), both algo-

Figure 2: Scatter plots of observations obtained by the naı̈ve exten-
sion (Left column) and our c-TPE (Right column) on a large (Top
row, z = 0.5) or small (Bottom row, z = 2.3) overlap between
the top-10% domain and feasible domain. Each figure shows the 2D
search space for each task and the observations obtained during opti-
mization are plotted. Earlier observations are colored black and later
observations are colored white. Each figure has 50 observations.

rithms search similarly. In contrast to this case, the small
overlap case (Bottom row) obtained different sampling be-
haviors. While our algorithm (Bottom right) samples inten-
sively at the boundary between the feasible domain and the
top-10% domain, the naı̈ve extension (Bottom left) does not.
Furthermore, we can see a trajectory from the top right of the
feasible domain to the boundary for our algorithm and it ex-
ists only in our algorithm although both methods have some
observations, which are colored by strong gray, meaning that
they were obtained at the early stage of the optimization, in
the top right of the feasible domain. Based on Figure 1 (Top
right), we can infer that this is because we include some fea-
sible solutions in D(l)

0 and the peak of the AF will be shifted
toward the top-10% domain in our algorithm.

4 Experiments
4.1 Setup
The evaluations were performed on the following 10 tabular
benchmarks:

1. HPOlib (Slice Localization, Naval Propulsion, Parkin-
sons Telemonitoring, Protein Structure) [Klein and Hut-
ter, 2019]: All with 6 numerical and 3 categorical pa-
rameters;

2. NAS-Bench-101 (CIFAR10A, CIFAR10B, CI-
FAR10C) [Ying et al., 2019]: Each with 26 categorical,
14 categorical, and 22 numerical and 5 categorical
parameters, respectively; and

3. NAS-Bench-201 (ImageNet16-120, CIFAR10, CI-
FAR100) [Dong and Yang, 2020]: All with 6 categorical
parameters.

The reason behind this choice is that tabular benchmarks en-
able us to control the quantiles of each constraint γtruei , which
significantly change the feasible domain size and the quality
of solutions. For example, suppose a tabular dataset has Nall

configurations {(xn, fn, cn)}Nall
n=1 and the dataset is sorted so

that it satisfies ci,1 ≤ ci,2 ≤ · · · ≤ ci,Nall
where ci,n is the

i-th constraint value in the n-th configuration, then we fix the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4374

Quantiles γtruei = 0.1 γtruei = 0.5 γtruei = 0.9
Methods / # of configs 50 100 150 200 50 100 150 200 50 100 150 200

Naı̈ve c-TPE 26/0/1 27/0/0 27/0/0 27/0/0 25/0/2 25/0/2 25/1/1 25/0/2 21/5/1 23/1/3 21/1/5 24/1/2
Vanilla TPE 27/0/0 27/0/0 27/0/0 27/0/0 25/0/2 26/0/1 26/1/0 24/0/3 14/11/2 18/8/1 15/5/7 16/7/4
Random 25/0/2 26/1/0 27/0/0 27/0/0 27/0/0 26/0/1 26/0/1 27/0/0 27/0/0 27/0/0 27/0/0 27/0/0
CNSGA-II 25/0/2 27/0/0 24/0/3 24/0/3 26/0/1 26/0/1 26/0/1 25/0/2 26/1/0 27/0/0 27/0/0 26/0/1
NEI 24/1/2 27/0/0 27/0/0 27/0/0 27/0/0 26/0/1 26/0/1 27/0/0 27/0/0 27/0/0 27/0/0 27/0/0
HM2 23/2/2 26/1/0 25/2/0 25/2/0 22/3/2 23/2/2 25/1/1 23/0/4 27/0/0 27/0/0 23/0/4 26/0/1

Table 1: The table shows (Wins/Loses/Ties) of c-TPE against each method for optimizations with different constraint levels (9 benchmarks
× 3 constraint choices = 27 settings). The number of wins was counted by comparing medians of performance over 50 random seeds in
each setting between two methods. Non-bold numbers indicate p < 0.01 of the hypothesis “The other method is better than c-TPE” by the
Wilcoxon signed-rank test.

threshold for the i-th constraint c?i as ci,bNall/10c in the set-
ting of γtruei = 1/10. We evaluated each benchmark with
9 different quantiles γtruei for each constraint and 3 different
constraint choices. Constraint choices are network size, run-
time, or both. The search space for each benchmark followed
Awad et al. [2021].

As the baseline methods, we chose:

1. Random search [Bergstra and Bengio, 2012],

2. CNSGA-II [Deb et al., 2002], 1 (population size 8),

3. Noisy ECI (NEI) [Letham et al., 2019] 2,

4. Hypermapper2.0 (HM2) [Nardi et al., 2019] 3,

5. Vanilla TPE (Optimize only loss as if we do not have
constraints), and

6. Naı̈ve c-TPE (The naı̈ve extension discussed in Sec-
tion 3).

We describe the details of each method and their control pa-
rameters in Appendix G. Note that all experiments were per-
formed 50 times with different random seeds and we eval-
uated 200 configurations for each optimization. Addition-
ally, since the optimizations by NEI and HM2 on CIFAR10C
failed due to the high-dimensional (22 dimensions) continu-
ous search space for NEI and an unknown internal issue for
HM2, we used the results on 9 benchmarks (other than CI-
FAR10C) for the statistical test and the average rank compu-
tation. The results on CIFAR10C by the other methods are
available in Appendix H and the source code is available at
https://github.com/nabenabe0928/constrained-tpe along with
complete scripts to reproduce the experiments, tables, and fig-
ures. A query of c-TPE with {50, 100, 150, 200} observations
took {0.22, 0.24, 0.26, 0.28} seconds for a 30D problem with
8 cores of core i7-10700.

4.2 Robustness to Feasible Domain Size
This experiment shows how c-TPE performance improves
given various levels of constraints. We optimized each bench-
mark with the aforementioned three types of constraints and
chose γtruei ∈ {0.1, 0.5, 0.9} for each constraint. All results

1Implementation: https://github.com/optuna/optuna
2Implementation: https://github.com/facebook/Ax
3Implementation: https://github.com/luinardi/hypermapper

on other benchmarks are available in Appendix H. Table 1
presents the numbers of wins/loses/ties and statistical signif-
icance by the Wilcoxon signed-rank test and Figure 3 shows
the performance curves for each benchmark.

As a whole, while the performance of c-TPE is stable
across all constraint levels, that of NEI, HM2, and CNSGA-II
variates depending on constraint levels. Furthermore, Table 1
shows that c-TPE is significantly better than other methods in
almost all settings. This experimentally validates the robust-
ness of c-TPE to the variations in constraint levels.

For ImageNet of NAS-Bench-201 (Bottom row), the naı̈ve
c-TPE is completely defeated by the other methods while c-
TPE achieves the best or indistinguishable performance from
the best performance. This gap between c-TPE and the naı̈ve
c-TPE is caused by the small overlaps discussed in Sec-
tion 3.2. For example, only 59% of the top-10% configu-
rations belong to the feasible domain in NAS-Bench-201 of
γtruei = 0.9 although we can usually expect that 90% of them
belong to the feasible domain, and 84% and 77% of those in
HPOlib and NAS-Bench-101 actually belong to the feasible
domain for γtruei = 0.9, respectively. The small overlap leads
to the performance gap between c-TPE and the vanilla TPE
as well. As TPE is not a uniform sampler and tries to sample
from top domains, γ̂i will not necessarily approach γtruei . In
our case, it is natural to consider γ̂i to be closer to 59% rather
than 90% as only 59% of top-10% configurations are feasi-
ble. As mentioned also in Theorem 1, c-TPE is advantageous
to such settings compared to the vanilla TPE and the naı̈ve
c-TPE.

For CIFAR10A of NAS-Bench-101 (Middle row), the re-
sults show different patterns from the other settings due to
the high-dimensional (D = 26) nature. For γtruei = 0.1, 0.5
(Left, center), most methods exhibit indistinguishable per-
formance from random search especially in the beginning be-
cause little information on feasible domains is available in
the early stage of optimizations due to the high dimensional-
ity although c-TPE outperforms in the end. In γtruei = 0.9
(Right), the naı̈ve c-TPE is slightly better than c-TPE due to
large overlaps (84% of the top-10% configurations are feasi-
ble). It implies that if search space is high dimensions and
overlaps in top domains and feasible domains are large, it
might be better to greedily optimize only the objective rather
than regularizing the optimization of the objective as in our

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4375

https://github.com/nabenabe0928/constrained-tpe
https://github.com/optuna/optuna
https://github.com/facebook/Ax
https://github.com/luinardi/hypermapper

Figure 3: The performance curves on Slice Localization in HPOlib (Top row), CIFAR10A in NAS-Bench-101 (Middle row), and
ImageNet16-120 in NAS-Bench-201 (Bottom row) with constraints of runtime and network size. We picked γtrue

i = 0.1 (Left column), 0.5
(Center column), 0.9 (Right column). The vertical axis shows the absolute percentage loss (fobserved − foracle)/foracle where foracle is
determined by looking up all feasible configurations in each benchmark. Note that each row shares the vertical axis except NAS-Bench-101.
For γtrue

i = 0.1 in NAS-Bench-101, we separately scaled for the readability. Further results are available in Appendix H.

modification.
For Slice Localization of HPOlib (Top row), c-TPE out-

performs the other methods. Furthermore, its performance
almost coincides with that of the vanilla TPE in γtruei = 0.9
and it implies that our method gradually decays the prior-
ity of each constraint as γtruei becomes larger. In fact, the
naı̈ve c-TPE does not exhibit stability when the constraint
level changes as it does not consider the priority of each con-
straint and the objective. This result empirically validates
Theorem 1.

4.3 Average Rank over Number of Evaluations
This experiment demonstrates how c-TPE performance im-
proves compared to the other methods over the number of
evaluations. Table 2 presents the numbers of wins/loses/ties
and statistical significance by the Wilcoxon signed-rank test
and Figure 4 shows the average rank over 81 settings (9
benchmarks × 9 quantiles).

According to Figure 4, c-TPE quickly takes the top and
keeps the rank until the end. From the figures, we can see
that CNSGA-II improves in rank as the number of evaluations
grows. In fact, since such slow-starting is often the case for

evolutionary algorithms such as CMA-ES [Loshchilov and
Hutter, 2016], the quick convergence achieved by c-TPE is
appealing. For the multiple-constraint setting (Right), while
the naı̈ve c-TPE is worse than random search due to the small
overlap, c-TPE overcomes this problem as discussed in Sec-
tion 3.2. Table 2 confirmed the anytime performance of c-
TPE by the statistical test over all the settings. All results on
individual settings and quantile-wise average rank are avail-
able in Appendices H and I.

5 Related Work & Discussion
ECI was introduced by Gardner et al. [2014] and Gelbart et
al. [2014]. Furthermore, there are various extensions of these
prior works. For example, NEI is more robust to the noise
caused in experiments [Letham et al., 2019] and SCBO is
scalable to high dimensions [Eriksson and Poloczek, 2021].
Another technique for constrained BO is entropy search, such
as predictive entropy search [Lobato et al., 2015; Garrido-
Merchán et al., 2023] and max-value entropy search [Perrone
et al., 2019]. They choose the next configuration by approx-
imating the expected information gain on the value of the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4376

Constraints Runtime & Network size Network size Runtime
Methods / # of configs 50 100 150 200 50 100 150 200 50 100 150 200

Naı̈ve c-TPE 77/3/1 79/0/2 78/0/3 79/0/2 75/4/2 77/1/3 76/1/4 80/0/1 66/8/7 71/5/5 70/3/8 69/2/10
Vanilla TPE 73/7/1 75/5/1 72/3/6 73/4/4 69/10/2 74/6/1 74/3/4 72/6/3 62/12/7 67/10/4 62/6/13 60/9/12
Random 80/0/1 81/0/0 81/0/0 80/0/1 80/0/1 79/2/0 80/1/0 81/0/0 80/0/1 78/0/3 79/0/2 81/0/0
CNSGA-II 80/0/1 79/0/2 76/1/4 75/2/4 77/3/1 78/1/2 75/2/4 75/1/5 74/1/6 76/0/5 74/0/7 74/0/7
NEI 79/1/1 81/0/0 81/0/0 81/0/0 79/1/1 80/1/0 80/1/0 81/0/0 77/0/4 78/0/3 79/0/2 81/0/0
HM2 74/5/2 77/3/1 77/1/3 76/2/3 76/4/1 78/2/1 76/2/3 78/0/3 71/4/6 73/2/6 67/3/11 70/2/9

Table 2: The table shows (Wins/Loses/Ties) of c-TPE against each method for optimizations with different constraints (9 benchmarks × 9
quantiles = 81 settings). The number of wins was counted by comparing medians of performance over 50 random seeds in each setting
between two methods. In this table, All results indicate p < 0.01 of the hypothesis “The other method is better than c-TPE” by the Wilcoxon
signed-rank test.

Figure 4: The average rank of each method over the number of evaluations. The horizontal axis shows the number of evaluated configu-
rations in optimizations and the vertical axis shows the average rank over 81 settings. The title of each figure shows the constraint that the
optimizations handled.

constrained minimizer. While entropy search could outper-
form c-TPE on multimodal functions by leveraging the global
search nature, slow convergence due to the global search na-
ture and the expensive query cost hinder practical usages.
Note that as the implementations of these methods are not
provided in the aforementioned papers except NEI, we used
only NEI in the experiments. The major advantages of TPE
over standard GP-based BOs, used by all of these papers,
are more natural handling of categorical and conditional pa-
rameters (see Appendix F) and easier integration of cheap-to-
evaluate partial observations due to the linear time complexity
with respect to |D|. The concept of the integration of partial
observations and its results, which showed a further accelera-
tion of c-TPE, are available in Appendix C.

Also in the evolutionary algorithm (EA) community, con-
strained optimization has been studied actively, such as
genetic algorithms (e.g. CNSGA-II [Deb et al., 2002]),
CMA-ES [Arnold and Hansen, 2012], or differential evolu-
tion [Montes et al., 2006]. Although CMA-ES has demon-
strated the best performance among more than 100 methods
for various black-box optimization problems [Loshchilov et
al., 2013], it does not support categorical parameters, so we
did not include it in our experiments. Furthermore, since EAs
have many control parameters, such as mutation rate and pop-
ulation size, meta-tuning may be necessary. Another down-
side of EAs is that it is hard to integrate partial observations
because EAs require all the metrics to rank each configuration

at each iteration. In general, BO overcomes these difficulties
as discussed in Appendix C.

6 Conclusion
In this paper, we introduced c-TPE, a new constrained BO
method. Although the AF of constrained BO and TPE could
naturally come together using Corollary 1, such a naı̈ve ex-
tension fails in some circumstances as discussed in Section 3.
Based on the discussion, we modified c-TPE so that the
formulation strictly generalizes TPE and falls back to it in
settings of loose constraints. Furthermore, we empirically
demonstrated that our modifications help to guide c-TPE to
overlaps in the top and feasible domains. In our series of
experiments on 9 tabular benchmarks and with 27 constraint
settings, we first showed that the performance of c-TPE is
not degraded over various constraint levels while the other
BO methods we evaluated (HM2 and NEI) degraded as con-
straints became looser. Furthermore, the proposed method
outperformed the other methods with statistical significance;
however, since we focus only on the tabular benchmarks to
enable the stability analysis of the performance variations de-
pending on constraint levels, we discuss other possible situ-
ations where c-TPE might not perform well in Appendix E.
Since TPE is very versatile and prominently used in several
active OSS tools, such as Optuna and Ray, c-TPE will yield
direct positive impact to practitioners in the future.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4377

Acknowledgments
The authors appreciate the valuable contributions of the
anonymous reviewers and helpful feedback from Edward
Bergman and Noor Awad. Robert Bosch GmbH is acknowl-
edged for financial support. The authors also acknowledge
funding by European Research Council (ERC) Consolidator
Grant “Deep Learning 2.0” (grant no. 101045765). Views
and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union
or the ERC. Neither the European Union nor the ERC can be
held responsible for them.

References
[Addison et al., 2022] H. Addison, KS. inversion, H. Ryan,

and C. Ted. Happywhale - whale and dolphin identifica-
tion. Kaggle, 2022.

[Akiba et al., 2019] T. Akiba, S. Sano, T. Yanase, T. Ohta,
and M. Koyama. Optuna: A next-generation hyperparam-
eter optimization framework. In International Conference
on Knowledge Discovery & Data Mining, 2019.

[Alina et al., 2019] JE. Alina, C. Phil, B. Rodrigo, and
G. Victor. Open images 2019 - object detection. Kaggle,
2019.

[Arnold and Hansen, 2012] D. Arnold and N. Hansen. A
(1+1)-CMA-ES for constrained optimisation. In Genetic
and Evolutionary Computation Conference, 2012.

[Awad et al., 2021] N. Awad, N. Mallik, and F. Hutter.
DEHB: Evolutionary hyberband for scalable, robust and
efficient hyperparameter optimization. arXiv:2105.09821,
2021.

[Bergstra and Bengio, 2012] J. Bergstra and Y. Bengio. Ran-
dom search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(2), 2012.

[Bergstra et al., 2011] J. Bergstra, R. Bardenet, Y. Bengio,
and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Sys-
tems, 2011.

[Bergstra et al., 2013] J. Bergstra, D. Yamins, and D. Cox.
Making a science of model search: Hyperparameter op-
timization in hundreds of dimensions for vision architec-
tures. In International Conference on Machine Learning,
2013.

[Brochu et al., 2010] E. Brochu, V. Cora, and N. de Fre-
itas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hi-
erarchical reinforcement learning. arXiv:1012.2599, 2010.

[Chen et al., 2018] Y. Chen, A. Huang, Z. Wang,
I. Antonoglou, J. Schrittwieser, D. Silver, and N. de Fre-
itas. Bayesian optimization in alphago. arXiv:1812.06855,
2018.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Me-
yarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computa-
tion, 6(2):182–197, 2002.

[Dong and Yang, 2020] X. Dong and Y. Yang. NAS-Bench-
201: Extending the scope of reproducible neural architec-
ture search. arXiv:2001.00326, 2020.

[Eriksson and Poloczek, 2021] D. Eriksson and
M. Poloczek. Scalable constrained Bayesian opti-
mization. In International Conference on Artificial
Intelligence and Statistics, 2021.

[Falkner et al., 2018] S. Falkner, A. Klein, and F. Hutter.
BOHB: Robust and efficient hyperparameter optimization
at scale. In International Conference on Machine Learn-
ing, 2018.

[Gardner et al., 2014] J. Gardner, M. Kusner, ZE. Xu,
K. Weinberger, and J. Cunningham. Bayesian optimiza-
tion with inequality constraints. In International Confer-
ence on Machine Learning, 2014.

[Garnett, 2022] R. Garnett. Bayesian Optimization. Cam-
bridge University Press, 2022.

[Garrido-Merchán et al., 2023] EC. Garrido-Merchán,
D. Fernández-Sánchez, and D. Hernández-Lobato.
Parallel predictive entropy search for multi-objective
Bayesian optimization with constraints applied to the
tuning of machine learning algorithms. Expert Systems
with Applications, 215, 2023.

[Gelbart et al., 2014] M. Gelbart, J. Snoek, and R. Adams.
Bayesian optimization with unknown constraints.
arXiv:1403.5607, 2014.

[Jones et al., 1998] D. Jones, M. Schonlau, and W. Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global Optimization, 13(4):455–492,
1998.

[Klein and Hutter, 2019] A. Klein and F. Hutter. Tabular
benchmarks for joint architecture and hyperparameter op-
timization. arXiv:1905.04970, 2019.

[Kushner, 1964] HJ. Kushner. A new method of locating
the maximum point of an arbitrary multipeak curve in the
presence of noise. Joint Automatic Control Conference,
1964.

[Letham et al., 2019] B. Letham, B. Karrer, G. Ottoni, and
E. Bakshy. Constrained Bayesian optimization with noisy
experiments. Bayesian Analysis, 14(2):495–519, 2019.

[Liaw et al., 2018] R. Liaw, E. Liang, R. Nishihara,
P. Moritz, J. Gonzalez, and I. Stoica. Tune: A re-
search platform for distributed model selection and train-
ing. arXiv:1807.05118, 2018.

[Lobato et al., 2015] JH. Lobato, M. Gelbart, M. Hoffman,
R. Adams, and Z. Ghahramani. Predictive entropy search
for bayesian optimization with unknown constraints. In
International Conference on Machine Learning, 2015.

[Loshchilov and Hutter, 2016] I. Loshchilov and F. Hutter.
CMA-ES for hyperparameter optimization of deep neural
networks. arXiv:1604.07269, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4378

[Loshchilov et al., 2013] I. Loshchilov, M. Schoenauer, and
M. Sebag. Bi-population CMA-ES agorithms with surro-
gate models and line searches. In Genetic and Evolution-
ary Computation Conference, 2013.

[Melis et al., 2018] G. Melis, C. Dyer, and P. Blunsom. On
the state of the art of evaluation in neural language models.
In International Conference on Learning Representations,
2018.

[Montes et al., 2006] EM. Montes, J. Velázquez-Reyes, and
CA. Coello. Modified differential evolution for con-
strained optimization. In International Conference on Evo-
lutionary Computation, 2006.

[Nardi et al., 2019] L. Nardi, D. Koeplinger, and K. Oluko-
tun. Practical design space exploration. In Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 347–
358. IEEE, 2019.

[Perrone et al., 2019] V. Perrone, I. Shcherbatyi, R. Jenat-
ton, C. Archambeau, and M. Seeger. Constrained
Bayesian optimization with max-value entropy search.
arXiv:1910.07003, 2019.

[Shahriari et al., 2016] B. Shahriari, K. Swersky, Z. Wang,
R. Adams, and N. de Freitas. Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, 2016.

[Watanabe, 2023] S. Watanabe. Tree-structured Parzen esti-
mator: Understanding its algorithm components and their
roles for better empirical performance. arXiv:2304.11127,
2023.

[Ying et al., 2019] C. Ying, A. Klein, E. Christiansen,
E. Real, K. Murphy, and F. Hutter. NAS-Bench-101: To-
wards reproducible neural architecture search. In Interna-
tional Conference on Machine Learning, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4379

	Introduction
	Background
	Bayesian Optimization (BO)
	Tree-Structured Parzen Estimator (TPE)
	Bayesian Optimization with Unknown Constraints

	Constrained TPE (c-TPE)
	Naïve Acquisition Function
	Two Pitfalls in Naïve Extension
	Naïve Extension and Modifications
	Issue I: Vanished Constraints
	Issue II: Small Overlaps in Top and Feasible Domains

	Experiments
	Setup
	Robustness to Feasible Domain Size
	Average Rank over Number of Evaluations

	Related Work & Discussion
	Conclusion

