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Abstract
Hyperparameter optimization (HPO) is a vital step
in improving performance in deep learning (DL).
Practitioners are often faced with the trade-off be-
tween multiple criteria, such as accuracy and la-
tency. Given the high computational needs of DL
and the growing demand for efficient HPO, the
acceleration of multi-objective (MO) optimization
becomes ever more important. Despite the signifi-
cant body of work on meta-learning for HPO, exist-
ing methods are inapplicable to MO tree-structured
Parzen estimator (MO-TPE), a simple yet power-
ful MO-HPO algorithm. In this paper, we extend
TPE’s acquisition function to the meta-learning set-
ting using a task similarity defined by the overlap of
top domains between tasks. We also theoretically
analyze and address the limitations of our task sim-
ilarity. In the experiments, we demonstrate that our
method speeds up MO-TPE on tabular HPO bench-
marks and attains state-of-the-art performance. Our
method was also validated externally by winning
the AutoML 2022 competition on “Multiobjective
Hyperparameter Optimization for Transformers”.
See https://arxiv.org/abs/2212.06751 for the latest
version with Appendix.

1 Introduction
Hyperparameter optimization (HPO) is a critical step in
achieving strong performance in deep learning [Chen et
al., 2018; Henderson et al., 2018]. Additionally, practi-
tioners are often faced with the trade-off between impor-
tant metrics, such as accuracy, latency of inference, mem-
ory usage, and algorithmic fairness [Schmucker et al., 2020;
Candelieri et al., 2022]. However, exploring the Pareto front
of multiple objectives is more complex than single-objective
optimization, making it particularly important to accelerate
multi-objective (MO) optimization.

To accelerate HPO, a large body of work on meta-learning
has been actively conducted, as surveyed, e.g., by Van-
schoren [2019]. In the context of HPO, meta-learning
mainly focuses on the knowledge transfer of metadata in

∗The work was partially done in AIST.
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Figure 1: The conceptual visualization of γ-set similarity measure.
Top row: the γ-sets of each task. The dots show the top-γ-quantile
observations in both tasks. Bottom row: the γ-set similarity is
measured via intersection over union of the top-γ-quantile domain,
which we define γ-set; see Definition 2 in Appendix B.2.

Bayesian optimization (BO) [Swersky et al., 2013; Wis-
tuba et al., 2016; Feurer et al., 2018; Perrone et al., 2018;
Salinas et al., 2020; Volpp et al., 2020]. These methods
use meta information in Gaussian process (GP) regression to
yield more informed surrogates or an improved acquisition
function (AF) for the target dataset, making them applica-
ble to existing MO-BO methods, such as ParEGO [Knowles,
2006] and SMS-EGO [Ponweiser et al., 2008]. However,
recent works reported that a variant of BO called MO tree-
structured Parzen estimator (MO-TPE) [Ozaki et al., 2020;
Ozaki et al., 2022] is more effective than the aforementioned
GP-based methods in expensive MO settings. Since MO-TPE
uses kernel density estimators (KDEs) instead of GPs, exist-
ing meta-learning methods are not directly applicable, and a
meta-learning procedure for TPE is yet to be explored.

To address this issue, we propose a meta-learning method
for TPE on non-hierarchical spaces, i.e. search space does
not include any conditional parameters, using a new task ker-
nel. Our method models the joint probability density function
(PDF) of an HP configuration x and a task t using a new task
kernel kt(ti, tj). We calculate the task kernel by using the
intersection-over-union-based new similarity measure, which
we call γ-set similarity, as visualized in Figure 1. Note that
we describe the theoretical details in Appendix A. Although
this task kernel successfully works well in many cases, its
performance is degraded under some circumstances, such as
for high-dimensional spaces or when transferring knowledge
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from slightly dissimilar tasks. To alleviate this performance
degradation, we analytically discuss and address the issues
in this task kernel by (1) dimension reduction based on HP
importance (HPI) and (2) an ε-greedy algorithm to determine
the next HP configuration.

In our experiments, we demonstrate that our method suc-
cessfully speeds up MO-TPE (or at least recovers the perfor-
mance of MO-TPE when meta-tasks are not similar). The
effectiveness of our method was also validated externally by
winning the AutoML 2022 competition on “Multiobjective
Hyperparameter Optimization for Transformers”. Note that
this paper serves as the public announcement of the winner
solution as well.

In summary, the main contributions of this paper are to:

1. extend TPE acquisition function (AF) to the meta-
learning setting using a new task kernel,

2. discuss the drawbacks of the task kernel and provide the
solutions to them, and

3. validate the performance of our method on real-world
tabular benchmarks next to the external competition.

To facilitate reproducibility, our source code is available at
https://github.com/nabenabe0928/meta-learn-tpe.

2 Related Work
In the context of BO, MO optimization is handled either by
reducing MO to a single-objective problem (scalarization) or
employing an AF that measures utility of a new configura-
tion in the objective space. ParEGO [Knowles, 2006] is an
example of scalarization that enjoys a convergence guarantee
to the Pareto front. SMS-EGO [Ponweiser et al., 2008] uses
a lower-confidence bound of each objective to calculate hy-
pervolume (HV) improvement, and EHVI [Emmerich et al.,
2011] uses expected HV improvement. PESMO [Hernández-
Lobato et al., 2016] and MESMO [Wang and Jegelka, 2017]
are the extensions for MO settings of predictive entropy
search and max-value entropy search. While those methods
rely on GP, MO-TPE uses KDE and was shown to outper-
form the aforementioned methods in expensive MO-HPO set-
tings [Ozaki et al., 2020; Ozaki et al., 2022].

The evolutionary algorithm (EA) community also stud-
ies MO actively. MOEAs use either surrogate-assisted EAs
(SAEA) [Chugh et al., 2016; Guo et al., 2018; Pan et al.,
2018] or non-SAEA methods. Non-SAEA methods, such
as NSGA-II [Deb et al., 2002] and MOEA/D [Zhang and
Li, 2007], typically require thousands of evaluations to con-
verge [Ozaki et al., 2020], and thus SAEAs are currently
more dominant in the EA domain. Since SAEAs combine an
EA with a cheap-to-evaluate surrogate, SAEAs are essentially
similar to BO, as they can be seen as using EAs to optimize a
particular AF in BO.

Meta-learning [Vanschoren, 2019] is a popular method to
accelerate optimization and most of them can be classified
into either of the following five types in the context of HPO:

1. initialization (or warm-starting) using promising config-
urations in meta-tasks [Feurer et al., 2015; Nomura et
al., 2021],

2. search space reduction [Wistuba et al., 2015; Perrone et
al., 2019],

3. learning an AF [Volpp et al., 2020],
4. linear combination of models trained on each task [Wis-

tuba et al., 2016; Feurer et al., 2018], and
5. training of a model jointly with meta-tasks [Swersky et

al., 2013; Springenberg et al., 2016; Perrone et al., 2018;
Salinas et al., 2020].

Warm-starting helps especially at the early stage of optimiza-
tions but does not use knowledge from the metadata after-
ward. Search space reduction could be applied to any method,
but cannot identify the best configurations if the target task’s
optimum is outside of the optima for the meta-train tasks. The
learning of AFs applies an expensive reinforcement learn-
ing step and is specific to GP-based methods. The linear
combination is empirically demonstrated to outperform most
meta-learning BO methods [Feurer et al., 2018] including the
search space reduction. The joint model trains a model on
both observations and metadata. Although the linear combi-
nation of models (Type 4) is simple yet empirically strong, no
meta-learning scheme for TPE has been developed so far. For
this reason, we introduce a meta-learning method via a joint
model (Type 5) inspired by Type 4.

3 Background
3.1 Bayesian Optimization (BO)
Suppose we would like to minimize a loss metric f(x), then
HPO can be formalized as follows:

xopt ∈ argmin
x∈X

f(x) (1)

where X := X1× . . .XD ⊆ RD is the search space and Xd ⊆
R (d = 1, . . . , D) is the domain of the d-th HP. In Bayesian
optimization (BO) [Brochu et al., 2010; Shahriari et al., 2016;
Garnett, 2022], we assume that f(x) is expensive, and we
consider the optimization in a surrogate space given observa-
tions D. First, we build a predictive model p(f |x,D). Then,
the optimization in each iteration is replaced with the opti-
mization of the so-called AF. A common choice for the AF is
the following expected improvement [Jones et al., 1998]:

EIf? [x|D] =

∫ f?

−∞
(f? − f)p(f |x,D)df. (2)

Another common choice is the following probability of im-
provement (PI) [Kushner, 1964]:

P[f ≤ f?|x,D] =

∫ f?

−∞
p(f |x,D)df. (3)

3.2 Tree-Structured Parzen Estimator (TPE)
TPE [Bergstra et al., 2011; Bergstra et al., 2013] is a variant
of BO methods and it uses the expected improvement. See
Watanabe [2023b] to better understand the algorithm compo-
nents. To transform Eq. (2), we define the following:

p(x|f,D) :=

{
p(x|D(l)) (f ≤ fγ)
p(x|D(g)) (f > fγ)

(4)

where D(l),D(g) are the observations with f(xn) ≤ fγ

and f(xn) > fγ , respectively. fγ is determined such
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that fγ is the dγ|D|e-th best observation in D. Note
that p(x|D(l)), p(x|D(g)) are built by KDE. Combining
Eqs. (2), (4) and Bayes’ theorem, the AF of TPE is computed
as [Bergstra et al., 2011]:

EIfγ [x|D]
rank' p(x|D(l))

p(x|D(g))
. (5)

Note that φ(x)
rank' ψ(x) implies the order isomorphic and

∀x,x′ ∈ X , φ(x) ≤ φ(x′) ⇔ ψ(x) ≤ ψ(x′) holds. In
each iteration, TPE samples configurations from p(x|D(l))
and takes the configuration that satisfies the maximum den-
sity ratio among the samples. Note that although our task
kernel cannot be computed for tree-structured search space,
a.k.a. non-hierarchical search space, we use the name tree-
structured Parzen estimator because this name is already rec-
ognized as a BO method using the density ratio of KDEs.

3.3 Multi-Objective TPE (MO-TPE)
MO-TPE [Ozaki et al., 2020; Ozaki et al., 2022] is a gen-
eralization of TPE with MO settings which falls back to the
original TPE in case of single-objective settings. MO-TPE
also uses the density ratio p(x|D(l))/p(x|D(g)) and picks the
configuration with the best AF value at each iteration. The
only difference from the original TPE is the split algorithm
of D into D(l) and D(g). MO-TPE uses the HV subset se-
lection problem (HSSP) [Bader and Zitzler, 2011] to obtain
D(l). HSSP tie-breaks configurations with the same non-
domination rank based on the HV contribution. MO-TPE is
reduced to the original TPE when we apply it to a single ob-
jective problem. In this paper, we replace HSSP with a simple
tie-breaking method based on the crowding distance [Deb et
al., 2002] as this method does not require HV calculation,
which can be highly expensive.

4 Meta-Learning for TPE
In this section, we briefly explain the TPE formulation and
then describe the formulation of the AF for the meta-learning
setting. Note that our method can be easily extended to MO
settings using a rank metric R : Rm → R of an objective
vector f ∈ Rm, and thus we discuss our formulation for the
single-objective setting for simplicity; see Appendix B.3 for
the theoretical discussion of the extension to MO settings.

Throughout this paper, we denote metadata as D :=
{Dm}Tm=1, where T ∈ N is the number of tasks and Dm
is the set of observations on the m-th task with size Nm :=
|Dm|. We use the notion of the γ-set, which is, roughly speak-
ing, a set of top-γ quantile configurations as visualized in
Figure 1; for more theoretical details, see Appendix B.2. Fur-
thermore, we define X γm as the γ-set of the m-th task. For
example, the red regions and the blue regions in Figure 1 cor-
respond to X γ1 and X γ2 .

4.1 Task-Conditioned Acquisition Function
TPE [Bergstra et al., 2011] first splits a set of observations
D = {(xn, f(xn))}Nn=1 intoD(l) andD(g) at the top-γ quan-
tile. Then we build KDEs p(x|D(l)) and p(x|D(g)), and com-
pute the AF via p(x|D(l))/p(x|D(g)). The following propo-
sition provides the multi-task version of the AF:

Proposition 1 Under the assumption of the conditional shift,
the task-conditioned AF is computed as:

EIfγ [x|t,D]
rank' p(x, t|D(l))

p(x, t|D(g))
. (6)

The conditional shift means that p(x|y, ti) = p(x|y, tj) holds
for different tasks, i.e. ti 6= tj and it holds in our formulation
due to the classification nature of the TPE model. We discuss
more details in Appendix A.1. This formulation transfers the
knowledge of top domains and weights the knowledge from
similar tasks more. To compute the AF, we need to model the
joint PDFs p(x, t|D(l)), p(x, t|D(g)), which we thus discuss
in the next section.

4.2 Task Kernel
To compute the task kernel kt(ti, tj), the γ-set similarity vi-
sualized in Figure 1 (see Appendix B.2 for the formal defini-
tion) is employed. From Theorem 2 in Appendix A.2,

ŝ(D(l)
i ,D(l)

j ) :=
1− dtv(pi, pj)

1 + dtv(pi, pj)
(7)

almost surely converges to the γ-set similarity s(X γi ,X
γ
j ) if

we can guarantee the strong consistency of p(x|D(l)
m ) for all

m = 1, . . . , T where we define pm := p(x|D(l)
m ), tm as a

meta-task for m = 2, . . . , T and t1 as the target task,

dtv(pi, pj) :=
1

2

∫
x∈X
|p(x|D(l)

i )− p(x|D(l)
j )|dx (8)

is the total variation distance, and p(x|D(l)
i ) is estimated

by KDE. Note that dtv(pi, pj) is approximated simply via
Monte-Carlo sampling. In short, we need to compute:

1. KDEs of the top-γ-quantile observations in Dm, and
2. dtv between the target task and each meta-task.

Then we define the task kernel as follows:

kt(ti, tj) =

{
1
T ŝ(D

(l)
i ,D(l)

j ) (i 6= j)

1− 1
T

∑
k 6=i ŝ(D

(l)
i ,D(l)

k ) (i = j)
. (9)

Note that our task kernel is not strictly a kernel function as our
task kernel does not satisfy semi-positive definite although it
is still symmetric. The kernel is defined so that the summation
over all tasks is 1, and then KDEs are built as follows:

p(x, t|D′) =
1

N ′all

T∑
m=1

kt(t, tm)

N ′m∑
n=1

kx(x,xm,n)

=
1

N ′all

T∑
m=1

N ′mkt(t, tm)p(x|D′m),

(10)

where D′ := {D′m}Tm=1 is a set of subsets of the observations
on the m-th task D′m = {(xm,n, fm(xm,n))}i+N

′
m−1

n=i , and
N ′all =

∑T
m=1N

′
m. In principle, D′m could be either D(l)

m

or D(g)
m . The advantages of this formulation are to (1) not

be affected by the information from another task tm if the
task is dissimilar from the target task t1, i.e. ŝ(t1, tm) = 0,
and (2) asymptotically converge to the original formulation as
the sample size goes to infinity, i.e. limN ′1→∞ p(x, t|D′) =
p(x|D′1).
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Algorithm 1 Task kernel (after the modifications)

η (controls the dimension reduction amount), S (Sample
size of Monte-Carlo sampling)
lm(x) := p(x|D(l)

m ) for m = 1, . . . , T
1: for d = 1, . . . , D do . Dimension reduction
2: Calculate the average HPI V̄d based on Eq. (11)
3: . Pick dimensions from higher V̄d
4: Build S with the top-blogη |D

(l)
1 |c dimensions

5: Re-build pDR
m (x|D(l)

m ) based on Eq. (13)
6: for m = 2, . . . , T do
7: . Use S samples for Monte-Carlo sampling
8: Calculate dtv in Eq. (8) with lDR

1 , lDR
m

9: Calculate kt(t1, tm) based on Eq. (9)
10: return kt

4.3 When Does Our Meta-Learning Fail?
In this section, we discuss the drawbacks of our meta-learning
method and provide solutions for them.

Case I: γ-Set for Target Task D(l)
1 Does Not Approach X γ

From the assumption of Theorem 2, D(l)
1 must approach X γ

to approximate the γ-set similarity precisely; however, since
TPE is not a uniform sampler and it is a local search method
due to the fact that the AF of TPE is PI [Watanabe and Hut-
ter, 2022; Watanabe and Hutter, 2023; Song et al., 2022], it
does not guarantee that D(l)

1 goes to X γ and it may even be
guided towards non-γ-set domains. In this case, our task sim-
ilarity measure not only obtains a wrong approximation, but
also causes poor solutions. To avoid this problem, we in-
troduce the ε-greedy algorithm to pick the next configuration
instead of the greedy algorithm. By introducing the ε-greedy
algorithm, we obtain the following theorem, and thus we can
guarantee more correct or tighter similarity approximation:

Theorem 1 If we use the ε-greedy policy (ε ∈ (0, 1)) for
TPE to choose the next candidate x for a noise-free objec-
tive function f(x) defined on search space X with at most
a countable number of configurations, and we use a KDE
whose distribution converges to the empirical distribution as
the number of samples goes to infinity, then a set of the top-
γ-quantile observations D(l)

1 is almost surely a subset of X γ .

The proof is provided in Appendix B.5. Intuitively speaking,
this theorem states that when we use the ε-greedy algorithm,
D(l)

1 will not include any configurations worse than the top-γ
quantile if we have a sufficiently large number of observa-
tions. Therefore, the task similarity is correctly or pessimisti-
cally estimated. Notice that we use the bandwidth selection
used by Falkner et al. [2018], which satisfies the assumption
about the KDE in Theorem 1.

Case II: Search Space Dimension D Is High
When the dimensionality D is high, the approximation of
the γ-set similarity is easily biased. In Figure 3, we
provide a concrete example, where we consider f(x) =
‖Rx‖1. Note that x ∈ [−1/2, 1/2]D and R ∈

Algorithm 2 Meta-learning TPE

1: Ninit (the number of initial samples), Ns (the number of
candidates for each iteration), γ (the quantile to splitD·),
ε (the ratio of random sampling), Dm (metadata)

2: D1 ← ∅,Dinit ← ∅
3: for m = 2, . . . , T do . Create a warm-start set
4: Add the top dNinit/(T − 1)e in Dm to Dinit

5: . Build KDEs for meta-tasks
6: Sort Dm and build KDEs p(x|D(l)

m ), p(x|D(g)
m )

7: for n = 1, . . . , Ninit do . Initialization by warm-start
8: Randomly pick x from Dinit

9: Pop x from Dinit

10: D1 ← D1 ∪ {(x, f1(x))}
11: while Budget is left do
12: S = ∅
13: Sort D1 and build KDEs p(x|D(l)

1 ), p(x|D(g)
1 )

14: for m = 1, . . . , T do
15: {xj}Nsj=1 ∼ p(x|D

(l)
m ),S ← S ∪ {xj}Nsj=1

16: Calculate the task kernel kt by Algorithm 1
17: if r ≤ ε then . r ∼ U(0, 1), ε-greedy algorithm
18: Randomly sample x and set xopt ← x
19: else
20: Pick xopt ∈ argmaxx∈S EIfγ [x|t1,D] . Eq. (6)
21: D1 ← D1 ∪ {(xopt, f1(xopt))}

RD×D is the rotation matrix in this example. The γ-
set of this example is X γ = [−γ1/D/2, γ1/D/2]. As
limD→∞ γ1/D = 1, which can be seen from the fact that
the red lines become longer in 2D case, the marginal γ-set
PDF pd(xd|D(l)) :=

∫
x−d∈X−d p(x|D

(l))dx−d for each di-
mension (roughly speaking, the red lines for each dimension
in Figure 3 show the region where the marginal γ-set PDF
exhibits high density) approaches the uniform PDF in this ex-
ample. However, the marginal γ-set PDF for each dimension
will not converge to the uniform PDF when we have only a
few observations. In fact, it is empirically known that the ef-
fective dimension De in HPO is typically much lower than
D [Bergstra and Bengio, 2012]. This could imply that the
marginal γ-set PDF for most dimensions go to the uniform
PDF and only a fraction of dimensions have non-uniform
PDF. In such cases, the following holds:

Proposition 2 If some dimensions are trivial on two tasks,
the γ-set similarity between those tasks is identical irrespec-
tive of with or without those dimensions.

Roughly speaking, a trivial dimension is a dimension that
does not contribute to f(x) at all. The formal definition
of the trivial dimensions and the proof are provided in Ap-
pendix B.6. As HP selection does not change the γ-set sim-
ilarity under such circumstances, we would like to employ a
dimension reduction method and we choose an HPI-based di-
mension reduction. The reason behind this choice is that HPO
often has categorical parameters and other methods, such as
principle component analysis and singular value decomposi-
tion, mix up categorical and numerical parameters. In this
paper, we use PED-ANOVA [Watanabe et al., 2023], which
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Figure 2: The comparison of the convergence of TPE and meta-learning TPE based on the task similarity. c? = 0 is identical to the target
task and tasks become dissimilar as c? becomes larger. Top: each line except the black line is the performance curves of meta-learning TPE
on differently similar tasks (orange is similar and purple is dissimilar). Dotted lines with ? markers are for meta-learning TPE and solid
lines with � markers are for naı̈ve meta-learning TPE. Weak-color bands show the standard error of the objective function value over 50
independent runs. Bottom: the medians of the task weight on the meta-task (higher is similar).

Figure 3: The conceptual visualization where the top-10% domain
for each dimension becomes larger when the importance of each
dimension is same and there is no interaction between dimensions.
The thick black lines are the edges of each domain and the red lines
are the important domains for each dimension. The red lines become
longer as the dimensionality becomes higher and it implies that the
marginal γ-set PDF approaches the uniform PDF as D goes to ∞.

computes HPI for each dimension via Pearson divergence be-
tween the marginal γ-set PDF and the uniform PDF.

Algorithm 1 includes the pseudocode of the dimension re-
duction. We first compute HPIs in Eq. (16) by Watanabe et
al. [2023] for each dimension and take the average of HPI:

Vd,m := γ2Exd∼Xd
[(

pd(xd|D(l)
m )

u(Xd)
− 1

)2]
,

V̄d :=
1

T

T∑
m=1

Vd,m

(11)

where u(Xd) is the uniform PDF defined on Xd. Then we
pick the top-blogη |D

(l)
1 |c dimensions with respect to V̄d and

define the set of dimensions I ∈ 2{1,...,D}. While we com-
pute the original KDE via:

p(x|D′) =
1

N

N∑
n=1

D∏
d=1

kd(xd, xd,n) (12)

where D′ := {(x1,n, x2,n, . . . , xD,n, f(xn))}Nn=1 and kd is
the kernel function for the d-th dimension, we compute the
reduced PDF via:

pDR(x|D′) =
1

N

N∑
n=1

∏
d∈I

kd(xd, xd,n). (13)

4.4 Algorithm Description
Algorithm 2 presents the whole pseudocode of our meta-
learning TPE and the color-coding shows our propositions.
To stabilize the approximation of the task kernel, we employ
the dimension reduction shown in Algorithm 1 and the ε-
greedy algorithm at the optimization of the AF in Line 17
of Algorithm 2 as discussed in Section 4.3. Furthermore,
we use the warm-start initialization as seen in Lines 3 – 10
of Algorithm 2. The warm-start further speeds up optimiza-
tions. Note that we apply the same warm-start initialization
to all meta-learning methods for fair comparisons in the ex-
periments. To extend our method to MO settings, all we need
is to employ a rank metric R : Rm → R for an objective
vector f as mentioned in Appendix B.3. In this paper, we
consistently use the non-domination rank and the crowding
distance for all methods to realize fair comparisons.
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Figure 4: The normalized HV over time on four joint neural architecture search and hyperparameter optimization benchmarks (HPOlib) from
HPOBench. Each method was run with 20 different random seeds and the weak-color bands present standard error. The small inset figures
in each figure are the magnified gray areas. See Appendix D for the Pareto fronts achieved by 50% [Watanabe, 2023a] of the runs.

4.5 Validation of Modifications

To see the effect of the task kernel, we conduct an experiment
using the ellipsoid function f(x|c) := f(x1, . . . , x4|c) =∑4
d=1 5d−1(xd − c)2 defined on [−5, 5]4. Along with the

original TPE, we optimized f(x|c = 0) by meta-learning
TPE using the randomly sampled 100 observations from
f(x|c?) where c? ∈ [0, 1, . . . , 4] (each run uses only one
of [0, 1, . . . , 4]) as metadata. Furthermore, we also evaluated
naı̈ve meta-learning TPE that considers kt(ti, tj) = 1/T for
all pairs of tasks. All control parameter settings followed Sec-
tion 5 except we evaluated 200 configurations.

In Figure 2, we present the result. The top figure shows the
performance curve and the bottom figure shows the weight
(kt(t1, t2) ∈ [0, 1]) on the meta-task. As seen in the fig-
ure, the performance rank is proportional to the task simi-
larity in the early stage of the optimizations, and thus meta-
learning TPE on the dissimilar tasks performed poorly in the
beginning. However, as the number of evaluations increases,
the performance curves of dissimilar meta-tasks quickly ap-
proach that of TPE after 30 evaluations where blogη |D

(l)
1 |c

first becomes non-zero for η = 2.5. We can also see the task
weight is also ordered by the similarity between the target
task and the meta-task. Thanks to this effect, on the dissimilar
tasks (purple, blue lines), our method starts to recover the per-
formance of TPE from that point (see the first inset figure) and
our method showed closer performance to the original TPE

compared to the naı̈ve meta-learning TPE (see the second in-
set figure). This result demonstrates the robustness of our
method to the knowledge transfer from dissimilar meta-tasks.
For similar tasks (light green, orange lines), our method ac-
celerates at the early stage and slowly converges to the per-
formance of TPE. Notice that since we use random search for
the metadata and the observations are from the meta-learning
TPE sampler, which is obviously a non-i.i.d sampler due to
the iterative update nature, the top-γ-quantile in observations
obtained from our method is concentrated in a subset of the
true top-γ-quantile as stated in Theorem 1. It implies that the
weight for meta-task is expected to decrease over time even
if the target task is identical to meta-tasks.

5 Experiments
5.1 Setup
In the experiments, we optimize two metrics (a validation
loss or accuracy metric, and runtime) on four joint NAS
& HPO benchmarks (HPOlib) [Klein and Hutter, 2019] in
HPOBench [Eggensperger et al., 2021], as well as NMT-
Bench [Zhang and Duh, 2020]. The baselines are as follows:

1. RGPE either with EHVI or ParEGO,
2. TST-R either with EHVI or ParEGO,
3. Random search,
4. Only warm-start (top-10% configurations in metadata),
5. MO-TPE [Ozaki et al., 2020; Ozaki et al., 2022].
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Figure 5: The normalized HV over time on NMT-Bench. Each method was run with 20 different random seeds and the weak-color bands
present standard error. See Appendix D for the Pareto fronts achieved by 50% [Watanabe, 2023a] of the runs.

RGPE [Feurer et al., 2018] and TST-R [Wistuba et al., 2016]
were reported to show the best average performance in a di-
verse set of meta-learning BO methods [Feurer et al., 2018].
Note that since RGPE and TST-R require a rank metric to
compute the ranking loss, we used non-domination rank and
crowding distance, which we use for meta-learning TPE as
well. Each meta-learning method uses 100 random configu-
rations from the other datasets in each tabular benchmark and
uses the warm-start initialization (Ninit = 5) in Algorithm 2.
Only warm-start serves as an indicator of how good the
initialization could be and we can judge whether warm-start
helps or the meta-learning methods help. In this setup, Algo-
rithm 1 takes 1.0 × 10−4 seconds for a 10D space with 200
observations for 5 meta-tasks. In Appendix C, we describe
more details about control parameters of each method and
tabular benchmarks and discuss the effect of the control pa-
rameter η and the number of meta-tasks on the performance.

The performance of each experiment was measured via the
normalized HV. When we define the worst (maximum) and
the best (minimum) values of each objective as fmax

i , fmin
i

for i ∈ {1, . . . ,M}, the normalized HV is computed as:

M∏
i=1

fmax
i − fi

fmax
i − fmin

i

. (14)

In principle, the normalized HV is better when it is higher and
the possible best value is 1, which is shown as True Pareto
front. Although the normalized HV curve tells us how much
each method could improve solution sets, it does not visualize
how solutions distribute in the objective space (on average).
Therefore, we also provide the 50% empirical attainment sur-
faces [Fonseca and Fleming, 1996] in Appendix D.

5.2 Results on Real-World Tabular Benchmarks
Figure 4 shows the results on HPOlib. For all datasets, Only
warm-start quickly yields results slightly worse than Ran-
dom search with as many as 100 function evaluations. This
implies that the knowledge transfer surely helps at the early
stage of each optimization, but each method still needs to ex-
plore better configurations. Our meta-learning TPE method
shows the best performance curves except for Protein

Structure; however, our method did not exhibit the best
performance on Protein Structure, where its perfor-
mance is still competitive. Furthermore, while we found out
that Protein Structure is relatively dissimilar from the
other benchmarks (as discussed in Appendix D), our method
could still outperform the non-transfer MO-TPE.

Figure 5 shows the results on NMT-Bench. As in HPOlib,
Only warm-start quickly yields results slightly worse
than Random search with as many as 100 function evalua-
tions for all datasets in NMT-Bench as well. On the other
hand, while RGPE and TST-R exhibit performance indis-
tinguishable from Only warm-start in most cases, our
method still improved until the end. This implies that Only
warm-start is not sufficient in this task and our method
could make use of the knowledge from metadata. How-
ever, our meta-learning TPE method struggled in Somali
to English, which was dissimilar to the other datasets as
discussed in Appendix D. Although our method did not ex-
hibit the best performance in this case, it still recovered well
with enough observations and got the best performance in the
end.

6 Conclusion
In this paper, we introduced a multi-task training method for
TPE and demonstrated the performance of our method. Our
method measures the similarity between tasks using the inter-
section over union and computes the task kernel based on the
similarity. As the vanilla version of this simple meta-learning
method has some drawbacks, we employed the ε-greedy al-
gorithm and the dimension reduction method to stabilize our
task kernel. In the experiment using a synthetic function, we
confirmed that our task kernel correctly ranks the task simi-
larity and our method could demonstrate robust performance
over various task similarities. In the real-world experiments,
we used two tabular benchmarks of expensive HPO problems.
Our method could outperform other methods in most settings
and still exhibit competitive performance in the worst case
of dissimilar tasks. Our method’s strong performance is also
backed by winning the AutoML 2022 competition on “Multi-
objective Hyperparameter Optimization for Transformers”.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4386



Acknowledgments
The authors appreciate the valuable contributions of the
anonymous reviewers and helpful feedback from Ryu
Minegishi. Robert Bosch GmbH is acknowledged for finan-
cial support. The authors also acknowledge funding by Eu-
ropean Research Council (ERC) Consolidator Grant “Deep
Learning 2.0” (grant no. 101045765). Views and opinions
expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the ERC.
Neither the European Union nor the ERC can be held respon-
sible for them.

References
[Bader and Zitzler, 2011] J. Bader and E. Zitzler. HypE: An

algorithm for fast hypervolume-based many-objective op-
timization. Evolutionary Computation, 19, 2011.

[Bergstra and Bengio, 2012] J. Bergstra and Y. Bengio. Ran-
dom search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(2), 2012.

[Bergstra et al., 2011] J. Bergstra, R. Bardenet, Y. Bengio,
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