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Abstract
Recent graph-based methods achieve significant
success in multivariate time series modeling and
forecasting due to their ability to handle relation-
ships among time series variables. However, only
pairwise relationships are considered in most ex-
isting works. They ignore beyond-pairwise rela-
tionships and their potential categories in practical
scenarios, which leads to incomprehensive relation-
ship learning for multivariate time series forecast-
ing. In this paper, we present ReMo, a Relational
Modeling-based method, to promote fine-grained
relational learning among multivariate time series
data. Firstly, by treating time series variables and
complex relationships as nodes and hyperedges, we
extract multi-view hypergraphs from data to cap-
ture beyond-pairwise relationships. Secondly, a
novel hypergraph message passing strategy is de-
signed to characterize both nodes and hyperedges
by inferring the potential categories of relationships
and further distinguishing their impacts on time se-
ries variables. By integrating these two modules
into the time series forecasting framework, ReMo
effectively improves the performance of multivari-
ate time series forecasting. The experimental re-
sults on seven commonly used datasets from dif-
ferent domains demonstrate the superiority of our
model.

1 Introduction
Multivariate time series (MTS) data collected from widely-
deployed sensors are ubiquitous in modern systems. Fore-
casting over MTS data has been widely studied and applied in
various fields like traffic [Li et al., 2018], climate [Mudelsee,
2019], finance [Binkowski et al., 2018], and healthcare [Jin
et al., 2018], as it empowers behavior-understanding of com-
plex systems and decision-making on tremendous data.

A basic assumption about MTS data is that there are
many relationships among time series variables in most cases,
which means each variable’s behavior is not only determined
by itself but also influenced by other variables. Therefore,
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Figure 1: The illustration of complex relationships. As shown in (c),
sensors on the same road tend to form a group and share common
relationships and show similar characteristics. There may be various
relationships connect with different numbers of sensors from multi-
ple views. And one sensor may be influenced by many relationships.
We demonstrate the complexity of relationships in (b).

modeling the relationships among variables properly is cru-
cial for making precise predictions. Early traditional statisti-
cal methods, such as autoregressive integrated moving aver-
age (ARIMA) and Gaussian process model (GP), assume lin-
ear relationships among variables, which are not capable of
handling many real-world data with complex relationships.
These years have witnessed that many deep learning-based
methods have been proposed to solve this problem. LST-
Net [Lai et al., 2018] and TPA-LSTM [Shih et al., 2019]
combine convolution neural networks (CNNs) and recurrent
neural networks (RNNs) to extract local temporal patterns
and long-term dependencies from MTS data, but they do
not explicitly model the relationships. Recently, the suc-
cess of graph neural networks (GNNs) in relational repre-
senting brings an innovative and promising way to MTS data
modeling and leads to the birth of many graph-based meth-
ods. These methods treat MTS data as graph signals, whose
nodes and edges represent time series variables and their rela-
tionships, respectively. Among them, some spatial-temporal
graph neural networks (STGNNs) methods [Li et al., 2018;
Yu et al., 2018] utilize pre-defined graph structures based
on the distance between sensors on the road. STGNNs
first apply graph convolution to solve traffic prediction prob-
lems. However, the graph structures are not available in all
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scenarios. Therefore, many data-driven strategies are pro-
posed to learn graph structures from time series data and
reduce the dependence on prior knowledge. MTGNN [Wu
et al., 2020] first introduces the adaptive graph structure
learning method and extracts uni-directional relationships be-
tween each pair of variables. ESG [Ye et al., 2022] puts
effort into constructing evolutionary graphs to describe the
dynamics of data. There are also some researchers work-
ing on improving the message passing mechanisms on graphs
to further exploit these relationships [Zheng et al., 2020;
Cao et al., 2020].

Although these methods benefit from learning relation-
ships and achieve impressive success, we observe that they
still lack comprehensive consideration in relational capturing
and modeling. More specifically, there are two limitations to
be addressed: 1) The existing methods treat MTS data as sim-
ple graphs and only capture pairwise relationships. However,
the relationships may be more complex in practical scenar-
ios. As shown in Figure 1, we visualize some time series data
collected by sensors as well as the road map of PEMS-BAY
dataset. The sensors on the same road attempt to show simi-
lar characteristics and form a group, thus sharing a common
relationship. Considering that such sensor groups may have
different numbers of sensors, we can discover complex rela-
tionships from multiple views. Different relationships may
affect sensor groups of various sizes. It is difficult to compre-
hensively describe these complex relationships using only a
simple graph. Accordingly, we demonstrate the potential hy-
pergraph structure, whose edges connect with more than one
node and are capable of modeling beyond-pairwise relation-
ships. 2) The existing methods only focus on the existence of
relationships, but not on other properties, like the categories.
However, we notice that a time series variable may be influ-
enced by many relationships and different relationships may
have various impacts on time series variables. For instance,
the rise and fall of the time series may be caused by influ-
ences from different relationships. It is helpful to promote
precise behavior-modeling of time series variables if we can
distinguish the potential impacts from different kinds of rela-
tionships.

Therefore, in this paper, we seek to learn complex rela-
tionships among time series variables from a more compre-
hensive perspective. By utilizing the methods in relational
reasoning [Kipf et al., 2018; Xu et al., 2022] and hyper-
graph neural networks [Feng et al., 2019], we introduce the
following approaches to tackle the aforementioned limita-
tions. To capture multi-view complex relationships, we pro-
pose the time-specific Relational HyperGraph Constructor to
adaptively infer a set of hypergraphs from MTS data. The
time feature of data is considered to distinguish the relation-
ships from different time periods. To exploit more properties
of relationships, we introduce the Relational Modeling Mod-
ule to learn the representations of relationships, which allows
us to infer potential categories of relationships and thus dis-
tinguish their impacts. By integrating these components with
the advanced temporal convolution module [Wu et al., 2020],
we propose the MTS forecasting framework, namely ReMo,
to comprehensively model the relationships and effectively
improve the forecasting. Our contributions can be summa-

rized as follows:

• We encourage considering the relationships among MTS
data from multiple views and taking advantage of hyper-
graph in complex relationships representing, thus over-
coming the limitation of existing graph-based methods
in relational capturing.

• Unlike existing works that only focus on time series
variables, we put efforts into fine-grained characteriz-
ing relationships. To this end, we propose to model the
category-specific relationship explicitly through a novel
hypergraph message passing strategy.

• Experimental results on real-world datasets show the ef-
fectiveness of our model as well as how the key compo-
nents work to promote comprehensive relational model-
ing and improve the performance of forecasting.

2 Preliminaries
Definition 1 (Multivariate Time Series Forecasting). Multi-
variate Time Series with N variables can be denoted as X ∈
RT×N×C , where T is the number of timestamps, and C is
the feature dimension which may vary in different scenarios.
Xt ∈ RN×C indicates the values of all variables at times-
tamp t. MTS forecasting aims to exploit historical observed
values with length P to predict future values with length F
for all variables. It can be further divided into single-step
forecasting and multi-step forecasting according to the de-
sired prediction length. Given historical data with P times-
tamps Xt−P+1:t ∈ RP×N×C , single-step forecasting pro-
poses to obtain future values Yt+F ∈ RN×C at fixed times-
tamp, while a sequence of future data Yt+1:t+F ∈ RF×N×C

is needed for multi-step forecasting. To summarize, we aim
to fit the mapping function F(·) from historical data to future
data:

Fsingle(X
t−P+1:t) = Yt+F

Fmulti(X
t−P+1:t) = Yt+1:t+F

(1)

Definition 2 (Hypergraph). Different from edges in the sim-
ple graph, a hyperedge connects with two or more nodes
and thus can indicate beyond-pairwise relationship. A hy-
pergraph consisting of several nodes and hyperedges can be
defined as G = (V , E), including a node set V and a hyper-
edge set E . The hypergraph G is usually denoted by a matrix
H ∈ R|V|×|E|, whose elements are defined as:

h(v, e) =

{
1, if v ∈ e
0, if v /∈ e

(2)

where v ∈ V , e ∈ E and v ∈ e if the hyperedge e connect
with node v.

3 Methodology
This section describes our proposed ReMo in details.

3.1 Overview
Here we introduce the overall architecture of the proposed
model. As shown in Figure 2, ReMo consists of an input pro-
cessor, a Relational HyperGraph Constructor (RHGC), some
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Figure 2: The architecture of ReMo. ReMo consists of three key components, namely Relational HyperGraph Constructor (RHGC), Temporal
Convolution Module (TC Module), and Relational Modeling Module (RM Module). TC Module extracts multi-range temporal patterns
from input through multi-size convolution filters. RHGC takes the spatial and temporal features of MTS data as input and learns a set of
hypergraphs to capture multi-view relationships. Hypergraphs are constructed from two views in this figure. RM Module applies message
passing on inferred hypergraphs and iteratively updates the embedding of nodes and edges through node-to-edge and edge-to-node stages.

stacked Residual Blocks, and an output processor. To distin-
guish the complex relationships among time series variables
in different time periods, the Relational HyperGraph Con-
structor infers a set of hypergraphs to represent multi-view
relationships. Based on the hypergraphs, Residual Blocks
comprehensively extract temporal features from time series
variables and model the relationships among them with two
modules, namely Temporal Convolution Module (TC Mod-
ule) and Relational Modeling Module (RM Module). Specif-
ically, the TC Module extracts temporal patterns with differ-
ent ranges through two dilated inception layers. RM Module
further infers the potential categories of relationships and per-
forms hypergraph message passing to obtain nodes and hy-
peredges representations. By adding residual connections and
skip connections, we stack the Residual Blocks and generate
the final output. The input processor and the output processor
are responsible for handling input data and output data from
skip connections, respectively. For more details, these com-
ponents will be stated elaborately in the rest of this section.

3.2 Relational Hypergraph Constructor
Due to the pairwise connectivity of its edges, a simple graph
is often difficult to reflect complete relationships among time
series variables in practical scenarios. Therefore, we seek
a more flexible way, hypergraph, to capture complex re-
lationships. Specifically, we treat time series variables as
nodes and use a set of hypergraphs whose edges contain
different numbers of nodes to represent multi-view relation-
ships. Besides, we find that relationships may evolve over
time, which inspires us to take the temporal features of data

into account. Considering these two aspects, this module
aims to infer multi-view hypergraphs from MTS data adap-
tively. Formally, given the set of N time series variables
V = {V1,V2, ...,VN}, we aim to infer a set of hypergraphs
G = {Gp1 ,Gp2 , ...,Gpn} to describe relationships from mul-
tiple views. For each view pi, let Gpi = (V, Epi) or the cor-
responding adjacency matrix Hpi denote the hypergraph and
Epi = {epi

1 , epi

2 , ..., epi

M} be the set of hyperedges, where M
is the number of hyperedges. Each hyperedge contains pi
nodes.

To construct multi-view hypergraphs, we adopt a node-
wise similarity-based approach to adaptively learn G from
data. Firstly, we initialize the node embeddings as Es ∈
RN×D1 . To fully exploit the temporal information, we then
encode the time-in-day feature of nodes as Et ∈ RN×D2 . For
any view pi, we extract corresponding Hpi by:

E1 = f1(Es||Et)

E2 = f2(Es||Et)

Hpi = ReLU(tanh(E1E
T
2 ))

Idx = topkpi
(Hpi)dim=1

Hpi [Idx] = 1, Hpi [∼ Idx] = 0

(3)

where both f1(·) and f2(·) are implemented by MLPs, and
Hpi ∈ RM×N indicates the hypergraph for view pi and will
be optimized during training stage. All obtained hypergraphs
are fed into RM Module for further relational modeling.
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3.3 Relational Modeling Module
Given the graph structures, most existing works treat edges
only as bridges for aggregating the features of nodes, thus ig-
noring the other characteristics of the edges apart from their
existence. However, relationships among time series vari-
ables may act in very different ways, which leads to various
impacts on time series variables and cause complex behav-
iors. Therefore, fine-grained relationships modeling will al-
low us to exploit more valuable information and model the
behavior of time series variables more precisely.

In this module, we take a step forward and ask: what types
of relationships may exist among MTS data and how do they
affect relevant variables? To answer this, we improve a hy-
pergraph message passing strategy to learn the representa-
tions of both nodes and hyperedges from a more comprehen-
sive perspective. Specifically, we execute message passing
through two stages, namely node-to-edge stage and edge-to-
node stage, to characterize relationships and extract valuable
information, see Figure 2. In node-to-edge stage, we obtain
the features of each hyperedge by aggregating the features
of nodes it connects with. Then we infer the potential cat-
egories of hyperedges and define category-specific MLPs to
further encode the features of hyperedges. In edge-to-node
stage, nodes embeddings are updated by aggregating the fea-
tures of relevant hyperedges to fuse the impacts of various
relationships.
Node-to-edge. Given adjacency matrix H and nodes em-
beddings E(0)

n , node-to-edge stage aims to obtain hyperedges
embeddings E(1)

e . Firstly, we apply convolution operation on
hypergraph to aggregate the features of nodes and generate
initial hyperedges embeddings E(0)

e :

E(0)
e = HE(0)

n Θn (4)

where the learnable parameter Θn is applied over nodes
embeddings to extract important features and indicates the
contribution of the nodes to the hyperedges. Secondly, we
infer the potential categories from hyperedges embeddings
through Gumbel Softmax following [Maddison et al., 2017;
Jang et al., 2017]:

C = softmax((fc(E
(0)
e ) + g)/τ) (5)

where C ∈ RM×K is the concrete distribution used as a
continuous approximation of the discrete categorical distri-
bution, and

∑
k cm,k = 1. g is a vector whose elements are

i.i.d. samples drawn from a Gumble(0, 1) distribution and
τ is a temperature parameter that controls the smoothness of
the samples. fc(·) is also implemented by MLPs. Then we
encode the categorical features of hyperedges and obtain the
final embeddings of hyperedges:

E(1)
e =

K−1∑
k=0

C:,k ⊙ f (k)
e (E(0)

e ) (6)

where f
(k)
e (·) is the category-specific mapping function im-

plemented by MLPs. We define different fe(·) to encode hy-
peredges with different categories and distinguish various im-
pacts of relationships.

Edge-to-node. The behavior of nodes is usually influenced
by multiple relationships. In the edge-to-node stage, we find
all relevant relationships for each time series variable and fuse
the complex impacts. Formally, given learned hyperedges
embeddings, node embeddings are updated by executing the
hypergraph convolution again:

E(1)
n = HTE(1)

e Θe (7)

where Θe is the parameter applied over edges to filter the
information during feature aggregation. Thus far, we obtain
the final representation of the nodes by comprehensively rela-
tional modeling. It is worth mentioning that the node-to-edge
and edge-to-node stages can be executed for multiple itera-
tions if necessary. RM Module updates the node features of
multiple hypergraphs in parallel, and finally fuses informa-
tion from multiple views through a convolution layer with a
kernel of size 1× nview and a dilation factor of dfuse, where
nview and dfuse indicate the number of views and the dimen-
sion of node embeddings, respectively.

3.4 Temporal Convolution Module
Capturing intra-variable long-term dependency and discover-
ing valuable temporal patterns are also crucial for understand-
ing the behavior of time series and making better predictions.
However, it is challenging to both discover temporal patterns
with different ranges and handle long sequences. Here we in-
troduce the Dilated Inception Layer (DIL) proposed by [Wu
et al., 2020] to address these problems.

DIL applies dilated convolution to get wider receptive
fields with less computation cost. It makes the receptive field
expand exponentially with the increase of the layers by using
the dilation factor. Given input sequence z ∈ RT and 1D
convolution filter kernel f1×k ∈ Rk with size k, the dilated
convolution is defined as:

z ⋆ f1×k(t) =

k−1∑
s=0

f1×k(s)z(t− d× s) (8)

where d is the dilation factor. To discover patterns with var-
ious ranges, DIL utilizes multi-size filters and performs mul-
tiple convolutions in parallel on the input sequence. Finally,
we concatenate the outputs of DIL to comprehensively ex-
ploit the features of different patterns:

o′ = concat(z ⋆ f1×s1 , z ⋆ f1×s2 , ..., z ⋆ f1×sn) (9)

The temporal convolution module consists of two DILs,
which are followed by a tangent hyperbolic activation func-
tion and a sigmoid activation function, respectively. These
activation functions work as a gate to control the amount of
information that should pass to the next module:

o = sigmoid(o′
1)⊙ tanh(o′

2) (10)

3.5 Input & Output Processor
Input processor implemented by a standard convolution layer
with 1 × 1 filter takes raw data as inputs and expands the
channel dimension. Output processor consists of three stan-
dard convolution layers with 1 × 1 filters and projects the
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Model NYC-Bike PEMS-BAY PEMSD8
MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓

DCRNN 1.90 3.23 - 1.75 4.07 4.21% 16.82 26.36 10.92%
STGCN 2.21 3.78 - 2.50 4.93 4.02% 17.50 27.09 11.29%

Graph WaveNet 2.45 4.37 60.93% 2.17 4.61 5.31% 22.19 33.15 15.01%
MTGNN 1.82 3.30 58.44% 1.72 3.71 3.94% 17.01 26.50 11.18%
AGCRN 1.92 3.60 60.58% 1.81 4.11 4.15% 16.71 26.50 10.64%

ESG 1.77 3.17 59.40% 1.89 4.07 4.66% 18.17 27.40 17.90%
Ours 1.66 2.86 57.74% 1.66 3.65 3.81% 16.36 25.54 10.85%

Table 1: Results of multi-step forecasting. The best and suboptimal results are highlighted in bold font and underline, respectively.

Dataset Nodes Samples Interval Task

Solar-Energy 137 52560 10 min Single-step
Electricity 321 26304 1 hour Single-step
Wind 28 10957 1 day Single-step
Exchange-Rate 8 7588 1 day Single-step

NYC-Bike 250 4368 30 min Multi-step
PEMS-BAY 325 52116 5 min Multi-step
PEMSD8 170 17833 5 min Multi-step

Table 2: Summary statistics of datasets

hidden features to a fixed dimension according to the predic-
tion length and target number of channels. Specifically, it first
takes the output sequence from skip connections as inputs and
transforms the length dimension into target prediction length,
then projects the hidden features to fixed channel dimension
according to the demands of different tasks.

4 Experiments
In this section, we extensively evaluate the proposed ReMo
on seven commonly used MTS datasets. Then we further
demonstrate how the modules of ReMo contribute to the per-
formance.

4.1 Experimental Setup
Datasets. Four MTS benchmark datasets and three real-
world traffic datasets are selected for different tasks, respec-
tively. We summarize the statistical information of these
datasets in Table 2.

Baselines. Six popular baselines are selected for single-step
forecasting containing Auto-Regressive(AR), GP [Roberts et
al., 2013], LSTNet [Lai et al., 2018], TPA-LSTM [Shih
et al., 2019], MTGNN [Wu et al., 2020], ESG [Ye et al.,
2022]. For multi-step forecasting, we also select six advanced
graph-based baselines, including DCRNN [Li et al., 2018],
STGCN [Yu et al., 2018], Graph WaveNet [Wu et al., 2019],
MTGNN [Wu et al., 2020], AGCRN [Bai et al., 2020], and
ESG [Ye et al., 2022].

Evaluation Metrics. For single-step forecasting, we adopt
Root Relative Squared Error (RSE) and Empirical Corre-
lation Coefficient (CORR) to evaluate the performances of
all baselines. Three commonly used metrics are selected
for multi-step forecasting, including Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and Mean Ab-
solute Percentage Error (MAPE).
Implementation Details. The proposed model is imple-
mented with Pytorch 1.12.1 on an NVIDIA GeForce RTX
3090 GPU and trained by the Adam optimizer with gradi-
ent clip 5. We set the length of historical data P to 168 and
prediction length F to 1 for single-step forecasting. In the
multi-step case, we have P = F = 12.

4.2 Main Results
Table 1 and Table 3 summarize the overall experimental re-
sults on multi-step and single-step forecasting.
Multi-step forecasting. For the multi-step forecasting task,
we validate the performance of our ReMo and other graph-
based methods by comparing the average values of MAE,
RMSE, MAPE metrics on all 12 horizons. The complex
spatial-temporal characteristics of traffic data make it diffi-
cult to comprehensively capture and model the relationships.
Therefore, methods focused on different aspects of relational
modeling may achieve different results. In general, ReMo
achieves state-of-the-art results on all datasets. It lowers
MAE by 6.21% and RMSE by 8.83% on NYC-Bike and also
makes slight improvements on other datasets. To illustrate
the results, we make the following analysis: 1) DCRNN and
STGCN are limited due to heavy dependence on pre-defined
graph structures and the neglect of the feature in the raw data.
2) The adaptive methods, like MTGNN, Graph WaveNet, and
AGCRN, extract the relationships from time series data and
slightly improve the performance. 3) ESG further simulates
the evolution of relationships and is more suitable for systems
with complex dynamics. However, ReMo captures relation-
ships from multiple views and distinguishes the impacts of
different relationships by inferring their potential categories,
which allows it to model the behavior of variables more com-
prehensively.
Single-step forecasting. For the single-step task, we com-
pare ReMo with other classical MTS forecasting methods.
Specifically, the performance of models on horizon 3, 6, 12,
and 24 of all datasets are compared. Table 3 shows the de-
tailed results. In general, ReMo shows strong competitive-
ness. It outperforms baselines on four horizons on Exchange-
Rate dataset and on horizon 12 and 24 on Solar-Energy
dataset. However, the performance has not been improved on
the other two datasets. This is possibly because of the char-
acteristics of the datasets. Electricity collects the electricity
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Model Dataset Solar-Energy Electricity Exchange-Rate Wind
Horizon 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE↓ 0.2345 0.3790 0.5911 0.8699 0.0995 0.1035 0.1050 0.1054 0.0228 0.0279 0.0353 0.0445 0.7161 0.7572 0.8076 0.9371
CORR↑ 0.9710 0.9263 0.8107 0.5314 0.8845 0.8632 0.8591 0.8595 0.9734 0.9656 0.9526 0.9357 0.6459 0.6046 0.5560 0.4633

GP RSE↓ 0.2259 0.3286 0.5200 0.7973 0.1500 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.0580 0.6689 0.6761 0.6772 0.6819
CORR↑ 0.9751 0.9448 0.8518 0.5971 0.8670 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278 0.6964 0.6877 0.6846 0.6781

LSTNet RSE↓ 0.1843 0.2559 0.3254 0.4643 0.0864 0.0931 0.1007 0.1007 0.0226 0.0280 0.0356 0.0449 0.6079 0.6262 0.6279 0.6257
CORR↑ 0.9843 0.9690 0.9467 0.8870 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354 0.7436 0.7275 0.7249 0.7284

TPA-LSTM RSE↓ 0.1803 0.2347 0.3234 0.4389 0.0823 0.0916 0.0964 0.1006 0.0174 0.0241 0.0341 0.0444 0.6093 0.6292 0.6290 0.6335
CORR↑ 0.9850 0.9742 0.9487 0.9081 0.9439 0.9337 0.9250 0.9133 0.9790 0.9709 0.9564 0.9381 0.7433 0.7240 0.7235 0.7202

MTGNN RSE↓ 0.1815 0.2381 0.3139 0.4287 0.0751 0.0839 0.0913 0.0965 0.0252 0.0298 0.0367 0.0462 0.6204 0.6346 0.6363 0.6426
CORR↑ 0.9846 0.9723 0.9500 0.9007 0.9463 0.9348 0.9257 0.9209 0.9737 0.9663 0.9529 0.9331 0.7337 0.7209 0.7164 0.7134

ESG RSE↓ 0.1814 0.2370 0.3118 0.4287 0.0754 0.0854 0.0914 0.1000 0.0238 0.0297 0.0368 0.0497 0.6146 0.6247 0.6230 0.6349
CORR↑ 0.9845 0.9721 0.9494 0.9019 0.9423 0.9312 0.9265 0.9194 0.9771 0.9686 0.9564 0.9361 0.7374 0.7297 0.7281 0.7194

Ours RSE↓ 0.1877 0.2419 0.3112 0.4244 0.0779 0.0879 0.0949 0.1011 0.0173 0.0240 0.0340 0.0443 0.6191 0.6311 0.6310 0.6391
CORR↑ 0.9834 0.9713 0.9507 0.9027 0.9381 0.9227 0.9167 0.9058 0.9753 0.9680 0.9565 0.9373 0.7330 0.7211 0.7214 0.7177

Table 3: Results of single-step forecasting. The best and suboptimal results are highlighted in bold font and underline, respectively.
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Figure 3: Ablation Studies on PEMSD8 dataset (up) and Exchange-
Rate dataset (down).

consumption of different households. Wind dataset demon-
strates the power of different windmills in the same area. The
common characteristic of these two datasets is that time se-
ries variables demonstrate greater independence, which may
lead to weak relationships among them and overly detailed
relational modeling is too much in these cases.

4.3 Ablation Study
To better understand how the key components contribute
to ReMo, We conduct ablation studies on PEMSD8 and
Exchange-Rate. By disabling different components, we can
obtain some variants of ReMo. For clarity, we name these
variants as follows:

• w/o TempGraph: Ignoring the time-in-day features
when constructing multiple hypergraphs. The multi-
view hypergraphs construction is based on the spatial
features only.

• w/o MultiView: Capturing and modeling relationships
from one specific view. Specifically, the views are set
differently according to the number of time series vari-

ables on different datasets. For PEMSD8, a view is a
natural number in the range of 170. For Exchange-Rate,
the range is 8.

• w/o EdgeType: Skipping the potential categories in-
ference of hyperedges during node-to-edge stage. In
this case, hyperedges embedding obtained by hyper-
graph convolution operation are fed into the edge-to-
node stage directly.

• Original: Standing for proposed ReMo with all key
components enabled.

Applying the original ReMo and its variants, we repeat
each experiment 10 times and report the average values of
metrics for all horizons in Figure 3. In particular, for captur-
ing single-view relationships, we obtain the value of the view
by randomly sampling from its range of potential values. As
can be seen from Figure 3, the experimental results validate
the effectiveness of these components to a certain extent.

The original ReMo outperforms other variants by a large
margin on PEMSD8 dataset. It lowers MAE by 3.78%,
RMSE by 2.79%, and MAPE by 10.09% on average and
brings smaller standard deviations to the results. Construct-
ing hypergraphs without considering the temporal features
still reaches competitive results, which means adaptive graph
structure learning methods work for MTS forecasting. While
only capturing single-view relationships and removing the
potential categories inference when characterizing relation-
ships reach worse results, which indicates incomprehensive
relationships modeling cannot fully exploit valuable informa-
tion. However, the improvement on Exchange-Rate Dataset
is relatively small. It slightly improves the RSE and has few
contributions to raising the CORR. The results are consistent
with our intuition. This is because Exchange-Rate dataset has
a smaller size and the exchange rate usually changes with ir-
regular rules in the real-world. Therefore, less information
can be exploited to both capture and model relationships,
which may lead to over-modeling for our model. Overall,
considering the multiple views and temporal features of re-
lationships brings more comprehensive capturing and model-
ing of relationships. The effort on inferring the potential cat-
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egories of relationships allows us to distinguish the impacts
they have on various variables. The key components of ReMo
work together and promote more precise behavior-modeling
of time series variables.

4.4 Visualization of Complex Relationships

View0

View1

MTGNN ReMo

Figure 4: Visualization of relationships among sensors of PEMS-
BAY. MTGNN finds 20 most related neighbors for 233th sensor
(left). ReMo captures the relationships from two views (right).

To further demonstrate the complexity of relationships, we
visualize the relationships that MTGNN and our ReMo cap-
ture in Figure 4. Specifically, we show the correlation be-
tween 233th sensor and other sensors on PEMS-BAY dataset
in the form of heatmaps. It is worth mentioning that the goal
of relationship capturing is to find valuable information from
other sensors to promote precise prediction for the specific
sensor, but not to construct the ground truth graph structure.
In this case, MTGNN finds 20 related sensors although their
distances to 233th sensor are very far. However, consider-
ing relationships from one specific view may lead to missing
information. Therefore we encourage capturing the relation-
ships from multiple views. As shown in Figure 4, we demon-
strate the relationships from two views ReMo captures. In
view0, ReMo focuses on the nearby sensors more. The re-
mote sensors are taken into account in view1. For traffic pre-
diction problems, sensors are more directly affected by their
immediate neighbors and may have delayed effects from re-
mote sensors. Capturing different relationships from multiple
views is helpful to capture comprehensive impacts from rela-
tionships and promote fine-grained modeling of the behaviors
of time series variables.

5 Related Work
Time series forecasting. Time series forecasting has been
extensively studied for a long time [Lim and Zohren, 2021].
Here we mainly focus on the advanced deep learning meth-
ods for MTS forecasting. LSTNet [Lai et al., 2018] and
TPA-LSTM [Shih et al., 2019] are the earliest deep learn-
ing methods applied to MTS forecasting. They both com-
bine convolution neural networks (CNNs) and recurrent neu-
ral networks (RNNs) to capture temporal patterns and intra-
variable dependencies, respectively. However, CNNs are
not capable of modeling fine-grained dependencies between
time series variables due to the aggregation operation. Re-
cently, some graph-based methods achieve significant suc-
cess in MTS forecasting. Spatial-temporal graph neural net-

works (STGNNs) are proposed to solve traffic prediction
problems [Li et al., 2018; Yu et al., 2018]. This kind of
method utilizes pre-defined graph structures (e.g. road sen-
sor location map) to describe the relationships between time
series and leverage graph convolution to capture the impacts
of relationships. Although they have significantly improved
the forecasting performance, they still lack generality due to
excessive dependence on the external graph structure, which
is usually unknown in many scenarios. To solve this prob-
lem, Graph WaveNet [Wu et al., 2019] and MTGNN [Wu et
al., 2020] propose data-driven methods to adaptively extract
graph structure from MTS data without any prior knowledge.
ESG [Ye et al., 2022] further extend them to model the evo-
lution of relationships and further simulates the dynamics of
MTS data. Z-GCNETs [Chen et al., 2021] and RGSL [Yu
et al., 2022] utilize both explicit and implicit relationships
to improve the graph structures. However, they only model
pairwise relationships.

Hypergraph Neural Networks. Hypergraph learning is
first introduced in [Zhou et al., 2006] for modeling complex
relationships among objects and has been extensively stud-
ied for the past few years. HGNN [Feng et al., 2019] de-
signs a node-hyperedge-node message propagation strategy
to learn data representation on hypergraphs. HyperGCN [Ya-
dati et al., 2019] proposed a new method of training a GCN
on hypergraphs based on spectral theory. A hyperedge-node
attention learning module is introduced to identify different
importance of nodes in the same hyperedge, thus generating
more discriminative node embeddings [Bai et al., 2021].

Relational reasoning. Some previous works attempt to
model the relationships between objects in complex systems.
NRI [Kipf et al., 2018] infers an explicit static relational
graph and learns the dynamics of latent variables via GNNs.
IMMA [Sun et al., 2022] uses multiple latent graphs and
attention to describe different types and strengths of rela-
tionships. A multi-scale approach is proposed to compre-
hensively model the group interaction relationships in multi-
agent systems and improve the accuracy of trajectory predic-
tions [Xu et al., 2022].

6 Conclusion

We find that when modeling multivariate time series, in addi-
tion to pairwise relationships, capturing beyond-pairwise re-
lationships from multiple views and distinguishing their po-
tential categories are also crucial for improving forecasting
performance. Therefore, we introduce a novel approach to
promote fine-grained relational modeling. Extensive experi-
ments demonstrate the effectiveness of our model. In partic-
ular, we achieve this by learning the multi-view hypergraphs
to capture complex relationships more comprehensively and
further inferring the potential categories of these relationships
to distinguish their impacts on time series variables, thus pro-
moting precise behavior-modeling of time series variables. It
is an interesting attempt and provides a valuable perspective
to demystify the relationships among multivariate time series
data, which may lead to a breakthrough in interpretability.
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