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Abstract
Transformers achieve excellent performance in a
variety of domains since they can capture long-
distance dependencies through the self-attention
mechanism. However, self-attention is computa-
tionally costly due to its quadratic complexity and
high memory consumption. In this paper, we pro-
pose a novel Transformer variant (Singularformer)
that uses neural networks to learn the singular value
decomposition process of the attention matrix to
design a linear-complexity and memory-efficient
global self-attention mechanism. Specifically, we
decompose the attention matrix into the product of
three matrix factors based on singular value decom-
position and design neural networks to learn these
matrix factors, then the associative law of matrix
multiplication is used to linearize the calculation
of self-attention. The above procedure allows us
to compute self-attention as two-dimensional re-
duction processes in the first and second token di-
mensional spaces, followed by a multi-head self-
attention computational process on the first dimen-
sional reduced token features. Experimental results
on 8 real-world datasets demonstrate that Singular-
former performs favorably against the other Trans-
former variants with lower time and space com-
plexity. Our source code is publicly available at
https://github.com/CSUBioGroup/Singularformer.

1 Introduction
Transformers [Vaswani et al., 2017] are a class of power-
ful and efficient deep learning models that achieved excellent
performance in many fields, including natural language pro-
cessing [Kenton and Toutanova, 2019; Liu et al., 2019], com-
puter vision [Dosovitskiy et al., 2020; Liu et al., 2021], bioin-
formatics [Jumper et al., 2021; Zhang et al., 2021]. Com-
pared to CNN/RNN, Transformers have superior feature cap-
ture capabilities, particularly for long-distance dependencies.
However, to capture the features of the long-distance depen-
dencies, Transformers need to learn an n × n (n is equal
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to the input length) attention matrix A to characterize the
relationship between any two tokens in the input sequence.
However, the attention matrix A leads to a quadratic time
and space complexity in computing. The quadratic complex-
ity limits the computational efficiency and the performance
of Transformers. To train or fine-tune a Transformer-based
model, researchers have to limit the length of the input se-
quence, use a large number of TPUs or GPUs, and spend lots
of time. For example, pre-training the BERTLARGE model
on 16 cloud TPUs (64 TPU chips total) takes 4 days while the
sequence length is restricted to 512 [Kenton and Toutanova,
2019]. Therefore, it is crucial to optimize the computational
efficiency and reduce the complexity of Transformers.

At present, the core idea of speeding up Transformers
is to reduce redundant information in the n × n attention
matrix A. Actually, we seldom require such a precise or
complete attention A which represents the relationship be-
tween tokens. It is sufficient to describe the relationship be-
tween tokens and extract the semantic information for down-
stream tasks using a moderately precise or complete atten-
tion matrix. Recent works focus on computing the atten-
tion matrix A approximately [Katharopoulos et al., 2020;
Choromanski et al., 2020; Shen et al., 2021; Xiong et al.,
2021; Wang et al., 2020] or introducing sparsity into the at-
tention matrix A [Child et al., 2019; Beltagy et al., 2020;
Zaheer et al., 2020; Kitaev et al., 2020]. However, these
methods still have some limitations. First, they usually sacri-
fice some precision or stability in exchange for reducing com-
plexity. Krzysztof et al. pointed out Reformer and Linformer
significantly reduce the classification accuracy on the protein
dataset [Choromanski et al., 2020]. Additionally, the squared
ReLU [So et al., 2021] used in FLASH [Hua et al., 2022]
leads to unstable model training [Ma et al., 2022]. Second,
the reduction of space and time complexity is only marginally
efficient while solving some short sequences. BigBird [Za-
heer et al., 2020] only shows the advantages of memory con-
sumption while processing sequences with length over 700.
Third, some methods need highly sophisticated implementa-
tions that introduce additional hyper-parameters that need to
be tuned. For example, Transformer-LS [Zhu et al., 2021]
introduces the local window segment size and the rank of dy-
namic projection to adjust the attention intensity. Last, most
of them are intuitive and lack solid theoretical foundation.

In this paper, we propose a linear Transformer vari-
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Figure 1: Basic idea: learn to decompose the attention matrix A to
accelerate self-attention by using neural networks.

ant called Singularformer that addresses the above limita-
tions by being performance-stable, linear-complexity, easy-
to-implement, and theory-supported. Specifically, our theo-
retical analysis shows that the n × n attention matrix A is
singular and can be decomposed into linear combinations of
the cross products of the singular vectors weighted by its sin-
gular values. The singularity of A indicates that many sin-
gular vectors are weighted by zero singular values and can
be filtered out. As a result, we decompose A into the prod-
uct of three matrix factors αU ,A

′,αT
V without loss of accu-

racy using the singular value decomposition (SVD) theorem.
Considering that direct decomposition A requires a lot of
computation [Xiong et al., 2021], we therefore leverage neu-
ral networks (fU (X), fQ(X), fK(X), fV (X)) to learn this
process1, as shown in Figure 1.

In addition, we record the accuracy versus inference speed
and GPU memory consumption versus sequence lengths
(with automatic mixed precision [Micikevicius et al., 2018],
batch size of 64, hidden size of 384, 6 layers, 6 heads) for
different Transformer variants on the MIMIC-III 50 dataset,
as shown in Figure 2. From Figure 2(left), we can see that
Singularformer has the highest inference speed while main-
taining the best accuracy. From Figure 2(right), we can see
that Singularformer has lower memory consumption than the
other methods as the sequence length increases. In the case
of sequence length reaching 1024, the memory consump-
tion of Singularformer is 26.9%, 40.7%, 56.4% lower than
FLASH, Linformer, BigBird, respectively. Additionally, on
a single NVIDIA TESLA V100 32GB card, Singularformer
can train 64 sequences with the length of 4096 in parallel.
These results show that Singularformer significantly outper-
forms other Transformers in both inference speed and mem-
ory consumption while maintaining high performance.

The main contributions of this work are summarized as fol-
lows:

• We propose a novel Transformer model called Singular-

1This is different from Nystromformer because it is based on
CUR decomposition and implemented by non-learnable iterative
methods.

Figure 2: Comparison of Singularformer with other methods on
MIMIC-III 50 dataset: (left) accuracy (vertical axis), inference
speed (horizontal axis), and memory consumption (size of the cir-
cles) of different methods. (right) memory consumption versus se-
quence lengths of different methods.

former based on the SVD theorem. Singularformer does
not introduce additional tunable hyper-parameters and
achieves lower space-time complexity and faster infer-
ence speed compared to other linear Transformers.

• Singularformer is built on a rigorous theoretical analy-
sis, with detailed theoretical derivation and space-time
complexity analysis proving its advantages. Both the
theoretical analysis and experimental results show that
Singularformer almost has no accuracy loss when com-
pared with the standard Transformer.

• Extensive experiments on 8 real-world datasets show
that Singularformer not only achieves comparable per-
formance, but also has extremely low space and time
consumption. Compared to the standard Transformer
and 5 Transformer variants, Singularformer achieves
favorable performances in terms of accuracy, memory
consumption and inference speed.

2 Backgrounds and Related Work
2.1 Transformer
Since 2017, Transformers [Vaswani et al., 2017] have been
applied in an increasing number of tasks with amazing re-
sults. These achievements are inseparable from the self-
attention layer and the feed-forward network layer. The self-
attention layer provides a message passing mechanism be-
tween different parts of the input, while the feed-forward net-
work layer offers a powerful feature learning capability. In
short, the self-attention layer is based on Formulas 1 to 3:

Ai = softmax(
QiTKi√

d
m

) (1)

Hi = AiV i (2)

Z = concat(H1,H2, ...,Hm)WZ + bZ (3)

where Qi,Ki,V i ∈ Rn× d
m are the query, key, value vectors

for head i, n is the length of x, d is the hidden size, m is the
number of head, WZ ∈ Rd×d and bZ ∈ R1×d are learnable
weight matrix and bias. Additionally, the feed-forward net-
work layer is to further extract information from Z through
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some linear layers with non-linear activation functions. We
can see that the quadratic complexity of n mainly comes from
Formulas 1 and 2. Optimizing the two formulas is the key to
developing efficient Transformer variants.

2.2 Related Work
In recent years, lots of efficient Transformer variants have
been proposed. For convenience, we summarize formulas 1
and 2 to softmax(QKT)V . Shen et al. [Shen et al., 2021]
split the softmax(QKT) into softmax(Q)softmax(KT) to
get an approximation, and then computed softmax(KT)V
first, where the front softmax normalizes Q along its
second dimension (d), the back softmax normalizes K
along its first dimension (n). In this way, the complex-
ity can be reduced from O(n2d) to O(nd2). Katharopou-
los et al. [Katharopoulos et al., 2020] approximated
softmax(QKT)V by (elu(Q)+1)(elu(K)+1)V , and cal-
culated the product of the last two terms to reduce the com-
plexity. Similarly, Choromanski et al. [Choromanski et al.,
2020] disassembled softmax(QKT) based on the random
projection approximation. These variants approximate the
Formula 1 using two separate terms, but often bring some loss
of accuracy. Wang et al. [Wang et al., 2020] introduced two
learnable projection matrices to decompose V and K, and
implemented a linear-complexity Transformer. However, the
learned projection matrices are inflexible to some complex
datasets. Child et al. [Child et al., 2019] proposed the sparse
self-attention layer which integrates atrous attention and local
attention into the self-attention layer. To reduce the quadratic
complexity to linear, Zaheer et al. [Zaheer et al., 2020] de-
signed a sparse attention mechanism made up of global atten-
tion, sliding attention and random attention. These two meth-
ods tend to superpose multiple different sparse patterns, but
because of bringing additional computation, they have poor
optimization results for short sequences. Nikita et al. [Ki-
taev et al., 2020] applied local sensitive hash [Gionis et al.,
1999] and reversible feed forward network to reduce com-
plexity, which is very complex and requires to reimplement
the gradient back propagation. Moreover, Hua et al. [Hua
et al., 2022] proposed a linear variant called FLASH, which
applies the gated linear unit into self-attention layer and uses
the mixed chunk attention to accelerate computing. But some
researchers pointed out that training FLASH is unstable [Ma
et al., 2022]. In summary, each of these variations has its
limitations and often lacks solid theoretical foundation.

3 Methodology
3.1 Singularformer
Singularformer implements a linear Transformer variant (as
shown in Figure 3) by applying the attention mechanism to
Ai’s singular vectors whose corresponding singular value is
not zero. The core idea of Singularformer is based on the
following facts:
Fact 1: The attention matrix Ai (obtained by the Formula 1)
is singular or non-full-rank. And the upper bound on the rank
of Ai is d

m .
Proof of the Fact 1: According to the rank theorem for matrix
products, the rank of the products is lower or equal to the

Figure 3: Illustration of Singularformer. From an intuitive per-
spective, we use αV to merge the n tokens of input into r tokens
(r << n), and use αU to unfold the r tokens back to n tokens.
While from a theoretical perspective, αU and αV are the singular
vector matrices of the original attention matrix, and this is essen-
tially the SVD process of the original attention matrix.

ranks of the matrix factors. Noticing that Ai = QiTKi, we
can get:

R(Ai) ≤ min{R(Qi),R(Ki)} (4)

where R(·) is the rank of a matrix. And the Qi,Ki are all in
Rn× d

m . For most cases, d
m is less than n. Therefore, we can

derive that:

min{R(Qi),R(Ki)} ≤ d

m
(5)

⇒ R(Ai) ≤ d

m
(6)

Fact 2: The attention matrix Ai can be decomposed into
αUA

i′αT
V , where αU ∈ Rn×R(Ai) is an orthogonal ma-

trix with the left singular vector of Ai as the column vector,
αT

V ∈ RR(Ai)×n is an orthogonal matrix with the right sin-
gular vector of Ai as the row vector, Ai′ ∈ RR(Ai)×R(Ai) is
a diagonal matrix formed by the singular values of Ai.
Proof of the Fact 2: According to the SVD theorem, any ma-
trix M ∈ Rm×n must have a singular value decomposition
M = UΣV T with singular values σ1 ≥ σ2 ≥ ... ≥ σr > 0
and r = R(M). As a result, for Ai ∈ Rn×n, we have:

Ai = (u1 ... un)


σ1

...
σr

 (v1 ... vn)
T

= σ1u1v
T
1 + ...+ σrurv

T
r + 0ur+1v

T
r+1 + ...+ 0unv

T
n

= (u1 ... ur)

(
σ1

...
σr

)
(v1 ... vr)

T (7)

Here, ui,vi ∈ Rn×1 are the singular vectors, r = R(Ai)
is the number of nonzero singular values. Finally, we

write the (u1 ... ur) as αU ,

(
σ1

...
σr

)
as Ai′,

(v1 ... vr)
T as αT

V to get Ai = αUA
i′αT

V .
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Singular attention layer. Fact 1 and Fact 2 inspire us to
design a new computation mode for Formulas 1 and 2:

Hi = αUA
i′αT

V V
i (8)

where αU ∈ Rn×r, Ai′ ∈ Rr×r, αT
V ∈ Rr×n, r is the rank

of Ai, i.e. R(Ai). By this computation mode, if we calculate
it as the following order αU (A

i′(αT
V V

i)), the complexity
will be in O(2 rd

mn + r2 d
m ). In addition, Fact 1 tells us r =

R(Ai) ≤ d
m , therefore, the complexity can be written as

O(2( d
m )2n+ ( d

m )3), which is in linear time about n.
The next problem is how to determine αU ,A

i′,αT
V . An

intuitive idea is to use the neural network to learn these rep-
resentations. In particular, given that the original Ai is com-
puted from Qi,Ki, or the embedded sequence input X with
softmax activation, we can also assume that the αU ,A

i′,αT
V

are all computed from them. We define:

Ai′ = softmax((αT
QQ

i)(αT
KKi)T) (9)

where αT
Q,α

T
K ∈ Rr×n, X ∈ Rn×d is the embedded input

sequence, (·)i is to take the (i − 1) d
m ∼ i d

m columns. Then,
we utilize four learnable layers of X to fit αU ,α

T
Q,α

T
K ,αT

V :

αU = softmax(fU (X)) (10)

αT
Q = softmax(fQ(X)T) (11)

αT
K = softmax(fK(X)T) (12)

αT
V = softmax(fV (X)T) (13)

Among them, fU (·), fQ(·), fK(·), fV (·) are the projection lay-
ers to transform the n× d matrix X into matrices with shape
n× r.

In our implementation, we share the four linear layers1
fU (·), fQ(·), fK(·), fV (·) by introducing a set of linear-layer
parameters Wa ∈ Rd×r, ba ∈ R1×r. We define:

fU (X) = fQ(X) = fK(X) = fV (X) = XWa + ba (14)

Finally, we can compute Z by the Formula 3.
Value of the parameter r. In order to avoid adding ad-
justable parameters, it is a good choice to fix r to a fixed
value. According to Fact 1, we know that r ≤ d

m . When
Qi,Ki are of full rank, we have r = d

m . Otherwise, we can
use a smaller r if Qi,Ki are also singular. Instead of explor-
ing the lower limit of r, it is better to decrease d or increase
m. Therefore, we fix the value of r in d

m in Singularformer.
Feed-forward network layer and multi-layer Singular-
former. The feed-forward network layer of Singularformer

1We tried the model without sharing the four linear layers but
didn’t get ideal results. In BBC dataset, there is only a 0.03% im-
provement in performance but a 117.6% increase in model scale and
a 37.3% decrease in inference speed.

is similar to the standard Transformer. In the multi-layer Sin-
gularformer implementation, we introduce the residual addi-
tion from the previous layer for Ai′ by borrowing the idea
of Realformer [He et al., 2021] to improve the convergence
performance.
Orthogonal constraint and diagonal constraint. Based on
the above computational procedure, we can obtain a fast and
efficient self-attention layer. However, according to Fact 2,
we need to ensure that αU is column orthogonal, αV is row
orthogonal, and Ai′ is diagonal. Considering that directly
constraining αU ,αV ,A

i′ to orthogonal or diagonal matrices
may restrict the capabilities of neural networks, we use the
idea of regularization to implement a soft constraint. Specifi-
cally, we introduce the following two loss items to our meth-
ods:

Lorthogonal =
1

r2
||(αT

UαU ) ◦ (1− I)||2F

+
1

r2
||(αV α

T
V ) ◦ (1− I)||2F (15)

Ldiagonal =
1

r2
||Ai′ ◦ (1− I)||2F (16)

where r is the size of Ai′, 1 is a r×r matrix with all elements
one, I is a r×r identity matrix, ◦ is the element-wise product,
|| · ||2F is the square of the Frobenius norm which is equal to
the sum of the squares of the elements in the matrix. The final
loss function is defined as:

L = Ltask + γ1Lorthogonal + γ2Ldiagonal (17)

where γ1, γ2 are the scaling factors of Lorthogonal, Ldiagonal

to adjust the strength of the constraint, Ltask is the original
loss term of a specific task.

3.2 A High-Level Perspective of Singularformer
In brief, Singularformer rewrites formulas 1 and 2 of the stan-
dard Transformer as formulas 9 and 8, and they can be sum-
marized as:

Hi = α× softmax(α̂Qi(α̂Ki)T)× α̂V i (18)

where α = softmax(XWa + ba) ∈ Rn×r, α̂ =
softmax((XWa+ba)

T) ∈ Rr×n. From a mathematical per-
spective, Wa decomposes X in the second token dimension
space to obtain α and α̂, while α̂ decomposes Qi,Ki,V i in
their first token dimension space, and α restores the change
of first token dimension space. From an intuitive perspec-
tive, α̂ tends to aggregate the n query vectors of Qi, key vec-
tors of Ki, value vectors of V i into r pseudo query, key,
value vectors. The pseudo vectors can be seen as some high-
level representations of the original vectors Qi,Ki,V i. Af-
ter message passing between the pseudo vectors, α is trying
to learn the inverse of the aggregation. In addition, the orthog-
onal constraint also has its intuitive meaning. The orthogonal
constraint tries to orthogonalize α̂ along its row dimension,
and each row of α̂ corresponds to an aggregation mode for
the original vectors. Therefore, the orthogonal constraint can

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4436



Figure 4: Visualization of the theoretical space-time complexity.

Methods space complexity time complexity

Transformer mn2 + 5dn 2dn2 + 4d2n
Linformer (5d + 2k + mk)n + 2kd (4d2 + 4kd)n

Singularformer (d + r)n + 6rd + mr2 3rdn + 4rd2 + 2r2d

Table 1: The results of space-time complexity.

drive the model capture differentiated aggregation modes dur-
ing training process, which reduces redundancy and obtains
more powerful performance.

3.3 Analysis of Space-Time Complexity
To analyze the space-time complextiy of Singularformer, we
define the number of multiplications as the metric of time
complexity, and the number of elements in the matrix pro-
duced during the computing steps as the metric of space com-
plexity. We compute the complexity results of the attention
layer in standard Transformer, Linformer and Singularformer,
as shown in Table 1. In order to better illustrate the compar-
ison between them, we visualize the results in Figure 4. m
is set to 8. k of Linformer is set to 256, which is the default
value in their paper [Wang et al., 2020]. r of Singularformer
is set to 256, which is an adequate number for d

m . We can see
that when n is extremely large, Linformer has obvious advan-
tages compared to the standard Transformer. However, when
d is extremely large and n is extremely small (the case of
short sequences), Linformer’s complexity may even be more
than that of the standard Transformer. By contrast, Singular-
former performs better in the scenario with small n and large
d. Moreover, with the increase of n and d, it will have more
advantages than the standard Transformer and Linformer.

4 Experiments
4.1 Datasets and Evaluation Metrics
In order to demonstrate the effectiveness of Singularformer,
we choose R8 [Debole and Sebastiani, 2005], BBC [Greene
and Cunningham, 2006], 20NG [Lang, 1995], IMDb [Maas et
al., 2011], MIMIC-III 50 [Johnson et al., 2016], SCOPe95/40
[Fox et al., 2014], CIFAR 100 [Krizhevsky and Hinton, 2009]
datasets from different fields to conduct the experiments.
Among them, R8, BBC, 20NG are three news topic classifi-
cation datasets. IMDb collects a lot of movie reviews, which

are divided into positive and negative reviews. MIMIC-III
50 is a multi-label long document classification dataset about
medical coding. SCOPe95 and SCOPe40 are two datasets for
protein folding prediction. The SCOPe40 means the proteins
are less than 40% identity to each other, while the SCOPe95
means that the proteins share less than 95% identity to each
other. CIFAR 100 is a dataset from the computer vision field.
It includes lots of 32× 32 RGB images from 100 categories.
We take each 2 × 2 pixel in the image as a token in se-
quence. By this way, each image can be seen as a sequence
with 32

2 × 32
2 = 256 tokens. To evaluate model performance

on the 8 datasets, we select accuracy (ACC) as the evaluation
metric, which is defined as the proportion of samples that are
correctly predicted.

Figure 5: Model framework. Firstly, the input sequence is embedded
into a sequence of vectors by the embedding layer. Then we feed the
embedded sequence to the backbone to capture semantic features
of the sequence. After that, the max pooling and the avg pooling
are used to summarize the obtained semantic features. Finally, the
summarized features are concatenated and fed into the output layer
to get the final classification output. The output layer is composed
by two dense layers with a ReLU activation between them.

Hyper-parameters Values Hyper-parameters Values

embedding size 384 scaling factor of Lorthogonal 0.01
number of layers 6 scaling factor of Ldiagonal 0.01

hidden size 384 batch size 64
number of heads 6 learning rate 0.0001

dropout in embedding layer 0.2 epochs 256
dropout in hidden layers 0.1 warm up epochs 4

Table 2: Hyper-parameter settings of experiments.

Methods Sequence length thresholds of

memory consumption inference speed

BigBird 704 848
Linformer(k = 256) 448 368

FLASH(g=256) 432 400
Singularformer 192 144

Table 3: Sequence length thresholds of the linear Transformer.

4.2 Baselines and Implementation Details
To demonstrate the performance of Singularformer, we
choose Post-LN Transformer [Vaswani et al., 2017], Pre-
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Methods R8 BBC 20NG IMDb MIMIC-III 50 SCOPe95 SCOPe40 CIFAR 100

quadratic Transformers

Post-LN Transformer 0.97963±0.003 0.97545±0.006 0.87374±0.001 0.87750±0.002 0.42655±0.012 0.66923±0.004 0.29350±0.005 0.53128±0.009
Pre-LN Transformer 0.97844±0.003 0.97635±0.003 0.86660±0.003 0.87627±0.005 0.40886±0.000 0.68865±0.004 0.31334±0.006 0.52128±0.008

Realformer 0.97899±0.003 0.97635±0.003 0.87642±0.003 0.88538±0.001 0.42376±0.009 0.64721±0.003 0.25889±0.006 0.52070±0.008

linear Transformers

BigBird 0.97917±0.003 0.97665±0.004 0.86155±0.004 0.87618±0.003 0.37672±0.008 0.66864±0.004 0.28802±0.006 0.46790±0.015
Linformer(k = 256) 0.97953±0.001 0.96916±0.005 0.86803±0.002 0.87637±0.005 0.40737±0.006 0.56476±0.003 0.23275±0.003 0.43428±0.007
FLASH(g = 256) 0.97798±0.002 0.97814±0.003 0.86880±0.003 0.87731±0.005 0.41524±0.003 0.67562±0.006 0.30809±0.003 0.35194±0.007

Singularformer 0.98145±0.001 0.97754±0.003 0.87756±0.003 0.88665±0.005 0.43942±0.005 0.65674±0.005 0.30886±0.006 0.52230±0.009

Table 4: Comparison of Singularformer and other competing baselines on the test set.

Figure 6: Accuracy (vertical axis), inference speed (horizontal axis), and GPU memory consumption (size of the circles) of different models
for each dataset.

LN Transformer [Xiong et al., 2020], Realformer [He et al.,
2021], BigBird [Zaheer et al., 2020], Linformer [Wang et al.,
2020], FLASH [Hua et al., 2022] as baselines. By referring to
their original papers, the projection dimension k of Linformer
is set to 256, the chunk size g of FLASH is set to 256.

In the experiments, the maximum sequence length is set to
141, 664, 700, 539, 1024, 328, 337, 256 on R8, BBC, 20NG,
IMDb, MIMIC-III 50, SCOPe95, SCOPe40, CIFAR 100, re-
spectively. To ensure the fairness of experimental compari-
son, we use the same model framework as shown in Figure 5
but substitute the backbone with different Transformer vari-
ants. We also ensure that the other model or training parame-
ters are the same, which are shown in table 2. We train these
models by AdamW optimizer [Loshchilov and Hutter, 2018],
and the automatic mixed-precision training strategy [Micike-
vicius et al., 2018] is used to save memory. Moreover, to
ensure the reliability of the experimental results, all random
seeds are fixed, the weight parameters of all models are ini-
tialized with a truncated normal distribution (std = 0.02), the
bias parameters are initialized with zeros. We conduct 5-fold
cross-validation in all datasets, that is, the training set is ran-
domly divided into 5 parts, and one of them is selected as the
validation set at each time to retain the model with the op-
timal number of training epochs. Then the retained models
make predictions on test set and obtain the ACCs.

Figure 7: Performance of using different r on R8 and SCOPe40
datasets.

4.3 Results

Based on our experimental setting, the results of all models
on all datasets are shown in Table 4, and the comparisons of
ACC, speed, memory consumption between the methods are
shown as Figure 6. As we can see, Singularformer not only
has very low memory consumption, but also achieves rela-
tively good and stable performance on all datasets. Singu-
larformer even outperforms the quadratic Transformers (i.e.
Post-LN Transformer, Pre-LN Transformer and Realformer
whose complexity is quadratic dependent on n) on R8, BBC,
20NG, IMDb, MIMIC-III 50 datasets. For the linear Trans-
formers (i.e. BigBird, Linformer, FLASH and Singular-
former), Singularformer achieves the best performance in 6
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Figure 8: The distribution of attention correlation between the quadratic Transformers and Singularformer.

out of the 8 real-world datasets. Although FLASH performs
better in BBC and SCOPe95 datasets, it needs more GPU
memory consumption and infers slower than Singularformer.
In addition, we find that the ACCs of Linformer and FLASH
on some datasets (SCOPe40, SCOPe95, CIFAR 100) is much
lower than other methods. We speculate that this is caused
by the fixed projection of Linformer and the design of single
attention head in FLASH. BigBird has the highest memory
consumption and the slowest inference speed.

In addition, we compute the sequence length thresholds
at which these linear Transformers outperform the standard
Transformer (Post-LN Transformer) in terms of GPU mem-
ory consumption and inference speed. The results are shown
in Table 3. When the sequence length exceeds 144, Singular-
former has a faster inference speed than the standard Trans-
former. When the sequence length rises to 192, the space con-
sumption advantage of Singularformer will become apparent.
For other linear variants, the sequence lengths generally need
to exceed 400 to achieve better complexity than the standard
transformer. The results demonstrate the significant advan-
tages of Singularformer for handling short sequences.

5 Discussion

5.1 The Effect of Using Different r

To verify whether the value d
m of r is optimal, we analyze

the performance of using different r for R8 and SCOPe40
datasets, as shown in Figure 7. It can be seen that the differ-
ence of using different r on R8 dataset is significantly smaller
than that of SCOPe40 dataset. This is in accordance with
what we expected, because R8 is a relatively simple classifi-
cation dataset, which means that Qi and Ki do not require
particularly complicated expressions, that is, they are not full
rank, and thus the change of r has little impacts on the perfor-
mance. In contrast, SCOPe40 is a very complex classification
task, and requires a far more complex expression of Qi and
Ki to guarantee classification performance. When r ≤ d

m ,
increasing r can improve the expression ability of Qi and Ki.
When r reaches d

m , the effect is optimal, further increasing r
will not bring a significant improvement, and even the redun-
dant information will interfere with the model learning. In
any cases, setting r to d

m in Singularformer is very appropri-
ate in terms of both consumption and performance.

5.2 The Effectiveness of Learning to Decompose
Self-Attention

In this study, we employ neural networks to learn the decom-
pression of Ai to accelerate the standard Transformer. In or-
der to verify the effectiveness of learning to decompose Ai

into αUA
i′αT

V , we extract the attention matrices from Singu-
larformer and the quadratic Transformers and compare their
distributions. We use Ai,l ∈ Rn×n to represent the attention
matrix from layer l, head i. For layer l, A1,l,A2,l, ...,Am,l

are aggregated into A∗,l by max pooling. Then, we summa-
rize A∗,1,A∗,2, ...,A∗,L into A∗,∗ by average operation to
obtain the final attention matrix:

A∗,l = poolingmax(A
1,l,A2,l...,Am,l) (19)

A∗,∗ =
1

L

L∑
l=1

A∗,l (20)

For Singularformer, we can use αU
lAi,l′αT

V
l to approximate

Ai,l and compute A∗,∗′ in the same way. To measure the
distribution difference between the attention matrices A∗,∗

and A∗,∗′, we calculate the Pearson correlation coefficient
between the i-th row of the two matrices separately, and av-
erage the results of all rows to obtain the attention correla-
tion the two matrices. Distributions of the correlation on the
test set of all datasets are plotted in Figure 8. As we can
see, the correlation between Singularformer and the quadratic
Transformers is generally positive (correlation > 0), which
also proves the effectiveness of Singularformer for decom-
posing the self-attention. Among them, the correlation on
R8, BBC, 20NG, IMDB and MIMIC3 is generally more than
0.6, which achieves a strong positive correlation. The correla-
tion on CIFAR100 is about 0.5, which is a moderate degree of
correlation. However, the correlation between SCOPe95 and
SCOPe40 is only about 0.2, which is a weak correlation. To
figure out the reason for the weak correlation on SCOPe95
and SCOPe40, we further analyze the correlation between
Post-LN Transformer, Pre-LN Transformer, Realformer, Sin-
gularformer and obtain the correlation heat map in Figure 9.
We find that even the correlation between the quadratic Trans-
formers only have a correlation between 0.2-0.3 on SCOPe95
and SCOPe40 datasets. We speculate that this is also due to
the complexity of the datasets. When there isn’t enough data
for training, it is difficult for Transformers to capture consis-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4439



Figure 9: The attention correlation among Post-LN Transformer,
Pre-LN Transformer, Realformer, Singularformer in SCOPe95 (left)
and SCOPe40 (right) datasets.

Figure 10: Attention visualizations of CIFAR 100’s test set: (a)-(f)
are cases with 0-quantile, 20-quantile, ..., 100-quantile correlations.

tent attention information. This explains why the weak cor-
relation of Singularformer appears on these two datasets in
Figure 8. In summary, Singularformer can learn highly sim-
ilar attention information to the standard Transformers with
greatly reduced space-time complexity, which also shows the
effectiveness of decomposing Ai into αUA

i′αT
V . In addi-

tion, we present 6 attention visualizations (sorted by the cor-
relation) from CIFAR 100’s test set, as shown in Figure 10.

6 Conclusion
As a powerful neural network backbone, the standard Trans-
formers have very strong feature extraction ability across
multiple domains. However, the quadratic complexity greatly
increase the training cost and limit the possibility of stacking
design of the model. Therefore, based on the idea of SVD, we
propose a novel linear-complexity Transformer called Singu-
larformer. The experiments on 8 real-world datasets demon-
strate that Singularformer has excellent performance and ro-
bustness under linear complexity. In the future, we will try to
further explore the potential of Singularformer in the field of
large-scale pre-training, multi-modal modeling, etc.
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